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A two-parameter Quasi Lindley distribution (QLD), of which the Lindley distribution (LD) is a particular 
case, has been introduced. Its moments, failure rate function, mean residual life function and stochastic 
orderings have been discussed. It is found that the expressions for failure rate function, mean residual 
life function, and stochastic orderings of the QLD shows its flexibility over Lindley distribution and 
exponential distribution. Although, the QLD has two parameters, the expressions for coefficients of 
variation, skewness, and kurtosis depend upon only one parameter. The maximum likelihood method 
and the method of moments have been discussed for estimating its parameters. The distribution has 
been fitted to some data-sets to test its goodness of fit to which earlier the Lindley distribution has 
been fitted by others and it is found that to almost all these data-sets the QLD provides closer fits than 
those by the Lindley distribution. 
 
Key words: Lindley distribution, moments, failure rate function, mean residual life function, stochastic ordering, 
estimation of parameters, goodness of fit. 

 
 
INTRODUCTION 
 
Lindley (1958), introduced a one-parameter distribution, 
known as Lindley distribution, given by its probability 
density function  
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It can be seen that this distribution is a mixture of 

exponential    and gamma  2, distributions. Its 

cumulative distribution function has been obtained as 
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Ghitany et al. (2008a) have discussed various properties 
of this distribution and showed that in many ways 
Equation (1) provides a better model for some 
applications  than  the  exponential  distribution.  The  first 

four moments about origin of the Lindley distribution have 
been obtained by Ghitany et al. (2008a) as: 
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 and its central moments have been obtained as  
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Ghitany et al. (2008a) studied the various properties of 
this distribution. A discrete version of this distribution has 
been suggested by Deniz and Ojeda (2011) having its 
applications in count data related to insurance. Sankaran 
(1970) obtained the Lindley mixture of Poisson 
distribution. Ghitany et al. (2008b, c) obtained size-biased 
and zero-truncated version of Poisson- Lindley 
distribution and discussed their various properties and 
applications.   Ghitany   and  Al-mutairi  (2009) discussed
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various estimation methods for the discrete Poisson-
Lindley distribution. Bakouch et al. (2012) obtained an 
extended Lindley distribution and discussed its various 
properties and applications. Mazucheli and Achcar (2011) 
discussed the applications of Lindley distribution to 
competing risks lifetime data. Ghitany et al. (2011) 
developed a two-parameter weighted Lindley distribution 
and discussed its applications to survival data. 
Zakerzadah and Dolati (2010) obtained a generalized 
Lindley distribution and discussed its various properties 
and applications. 

In this study, a two parameter quasi Lindley distribution 
(QLD), of which the Lindley distribution Equation (1) is a 
particular case, has been suggested. Its first four 
moments and some of the related measures have been 
obtained. Its failure rate, mean residual rate and 
stochastic ordering have also been studied. The nature of 
the QLD, its distribution function and its hazard rate 
function has been shown graphically by drawing different 
graphs for different values of its parameters. Estimation 
of its parameters has been discussed and the distribution 
has been fitted to some of those data sets where the 
Lindley distribution has earlier been fitted by others, to 
test its goodness of fit. 
 
 

QUASI LINDLEY DISTRIBUTION 
 

Quasi Lindley distribution with parameters  and  is 

defined by its probability density function (p.d.f) 
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It can easily be seen that at   , the QLD Equation (5) 

reduces to the Lindley distribution Equation (1) and at 

0  , it reduces to the gamma distribution with 

parameters  2, . The p.d.f. Equation (5) can be shown 

as a mixture of exponential   and gamma 

 2, distributions as follows: 
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The nature of QLD for different values of its parameters 

 and  has been shown graphically in the Figure 1(a), 

(b), (c) and (d). In the figure QL (1,1) means QLD with 

parameters 1,  and 1   . In Figure 1(d), five graphs 

of  QLD  for  different  values of its parameters have been 
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combined for ready comparisons. 

The first derivative of Equation (5) is 
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From this it follows that:  
 

(i) for 1  , 
0

1
x
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
  is the unique critical point at 

which  f x is maximum. 

(ii) for 1  ,   0f x  , that is,   f x is decreasing in x . 

 
Therefore, the mode of the QLD is given by 
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The cumulative distribution function (c.d.f.) of the QLD is 
obtained as 
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The graphs of distribution function of QLD for different 

values of its parameters   and  are shown in Figure 2. 

In Figure 2 CQL(1,1) means cumulative distribution 

function with parameters 1and 1   .  

 
 
MOMENTS AND SOME RELATED MEASURES 

 
The rth moment about origin of the QLD has been 
obtained as 
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Taking 1,2,3r   and 4 in Equation (9), the first four 

moments about origin of the QLD are obtained as  
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It can easily be verified that for   , the moments 

about origin of the QLD reduce to the respective 
moments of the Lindley distribution. The central moments 
of the QLD have thus been obtained as 
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The coefficients  of  variation    ,  skewness  1

and the
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Figure 1. Plots of the density function (5) for some parameter values  and . 
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Figure 2. Plots of the distribution function (8) for some parameter values  and . 

 
 
 
kurtosis  2 of the QLD have been obtained as  
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It is interesting to note that all these expressions are 

independent of the parameter   and depend upon the 

parameter   only. It can also be seen that the QLD is 

positively skewed. 

 
 
FAILURE RATE AND MEAN RESIDUAL LIFE 

 

For a continuous distribution with p.d.f.  f x and 

c.d.f.  F x , the failure rate function (also known as the 

hazard rate function) and the mean residual life function 
are respectively defined as  
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The corresponding failure rate function,  h x and the mean 

residual life function,  m x of the QLD are thus given by:  
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And     
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It can be easily verified that    0 0
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. It is also obvious that  h x is an 

increasing function of x ,   and  , whereas  m x is a 

decreasing function of x , and . The failure rate 

function and the mean residual life function of the QLD 
show its flexibility over Lindley distribution and 
exponential distribution. The nature of hazard rate 
function of QLD has been shown graphically in Figure 3 
for different values of its parameters and it is obvious 
from  the  various  graphs  that the hazard rate function is  
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Figure 3. Plots of the hazard rate function (17) for some parameter values  and . 

 
 
 

monotonically increasing for , ,andx   . In the figure, 

hQ (1,1) means hazard rate function with parameters 

1and 1   . 

 
 

STOCHASTIC ORDERINGS 
 

Stochastic ordering of positive continuous random 
variables is an important tool for judging the comparative 
behaviour. A random variable X is said to be smaller than 

a random variable Y in the  
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The following results due to Shaked and Shanthikumar 
(1994) are well known for establishing stochastic ordering 
of distributions 
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The  QLD   is   ordered   with   respect   to   the  strongest  

“likelihood ratio” ordering as shown in the following 
theorem: 
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Case (i) If 1 2   and 1 2  , then  
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Case (ii) If 
1 2   and 

1 2  , then  
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This means that 
lrX Y and hence

hrX Y , 

mrlX Y and
stX Y . This theorem shows the flexibility of 

QLD over Lindley and exponential distributions. 
 
 
ESTIMATION OF PARAMETERS 
 
Maximum likelihood estimates  
 

Let 1 2, , , nx x x  be a random sample of size n  from QLD 

Equation (5) and let xf  be the observed frequency in the sample 

corresponding to X x   1,2,...,x k such that 
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where k  is the largest observed value having non-zero frequency. 

The likelihood function, L of the QLD Equation (5) is given by 
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and so the log likelihood function is obtained as  
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The two log likelihood equations are thus obtained as  
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The two Equations (23) and (24) do not seem to be solved directly. 
However, the Fisher’s scoring method can be applied to solve these 
equations. We have 
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The following equations for ̂  and ̂  can be solved: 
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where 
0  and  

0  are  the  initial  values  of     and   , 

respectively. These equations are solved iteratively till sufficiently 

close values of ̂  and ̂  are obtained. 

 
 
Estimates from moments  
 
Using the first two moments about origin of the QLD, we have 
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                        (29) 
 

This gives a quadratic equation in   as 

 

     22 4 2 6 4 0k k k                                          (30) 

 

Replacing the first and the second moments 1  and 2  by the 

respective sample moments, X and 2m   an estimate of k  can be 

obtained, using which, the Equation (30) can be solved and an 

estimate of   obtained. Substituting this estimate of   in the 

expression for the mean of the QLD, an estimate of   can be 

obtained as  
 

2 1ˆ
1 X






 
  

 

                                                                          (31) 

 
 
GOODNESS OF FIT 
 
The QLD has been fitted to a number of data- sets to 
which earlier the Lindley distribution has been fitted by 
others and it was found that to almost all these data-sets, 
the QLD provides closer fits than those by the Lindley 
distribution. Here the fittings of the QLD to two such data-
sets have been presented in Tables 1 and 2.  

The first data set is regarding the survival times (in 
days) of 72 guinea pigs infected with virulent tubercle 
bacilli, observed and reported by Bjerkedal (1960) and 
the second data set is regarding mortality grouped data 
for blackbird species,  reported by Paranjpe and Rajarshi 
(1986). 

The expected frequencies according to the Lindley 
distribution have also been given for ready comparison 
with those obtained by the QLD. The estimates of the 
parameters have been obtained by the method of 
moments. It can be seen that the QLD gives much closer 
fits than the Lindley distribution and thus provides a 
better alternative to the Lindley distribution. 

 
 

Conclusion 
 

In this study, we propose a two-parameter QLD, of which 
the  one-parameter LD   is   a   particular   case.   Several  
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Table 1. Data of survival times (in days) of 72 guinea pigs infected with virulent tubercle bacilli, observed and 
reported by Bjerkedal (1960). 
 

Survival time (In days) Observed frequency 
Expected frequency 

Lindley distribution QLD 

0 – 80 8 16.1 10.7 

80 – 160 30 21.9 26.9 

160 – 240 18 15.4 17.7 

240 – 320 8 9.0 9.1 

320 – 400 4 5.5 4.3 

400 – 480 3 1.8 1.9 

480 – 560 1 2.3 1.4 

Total 72 72.0 72.0 

Estimates of parameters  ˆ 0.011   ˆˆ 0.2609, 0.013     

2   7.8878 1.1976 

d.f.  3 2 
 
 

 
Table 2. Mortality grouped data for blackbird species reported by Paranjpe and Rajarshi (1986). 

 

Survival time (In days) Observed frequency 
Expected frequency 

Lindley distribution QLD 

0 – 1 192 173.536 167.974 

1 – 2 60 98.560 88.422 

2 – 3 50 46.464 46.218 

3 – 4 20 20.064 23.971 

4 – 5 12 8.096 12.426 

5 – 6 7 3.168 6.336 

6 – 7 6 1.408 3.274 

7 – 8 3 0.352 1.654 

> 8 2 0.352 1.725 

Total 352 352.000 352.000 

Estimates of parameters  ˆ 0.984   ˆˆ 7.4910, 0.7312    

2   49.846 16.464 

d.f.  4 3 
 
 

 

properties of the QLD such as moments, skewness and 
kurtosis have been discussed. Various reliability 
properties such as failure rate function, mean residual life 
function, stochastic orderings have been obtained and 
discussed and shown that the QLD is more flexible than 
Lindley and exponential distributions. The density 
function of the QLD along with its cumulative distribution 
function and hazard rate function has been shown 
graphically for different values of its parameters for 
comparative    study     with     Lindley    distribution.   The 
estimation of parameters by the method of maximum 
likelihood and the method of moments has been 
discussed. Finally, the proposed distribution has been 
fitted to a number of data sets relating to survival times to 
test its goodness of fit to which earlier the Lindley 
distribution  has  been  fitted  and  it  is  found   that   QLD  

provides better fits than those by the Lindley distribution 
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