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In this paper, we present a modified and new version of spectral method which is based on 

minimization of obtained residual term in 
)(

),(||.||
xw

  norm, where )(),( xw 
 is a weight function with 

respect to Jacobi polynomials. Using this approach is efficient and effective rather than Tau and 
collocation methods. It reduces the nonlinear ordinary differential equations to the nonlinear 
programming problems which is an easy problem to solve. Hence, easy implementation of the method 
is the importance of our approach and some numerical test experiments show the accuracy and 
efficiency of this method. 
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INTRODUCTION 
 
Spectral methods have been successfully applied in the 
approximation of differential boundary value problems 
(Gottlieb and Orszag, 1977; Boyd, 2000; Canuto et al., 
1984, 2006; Trefethen, 2000). The most three widely 
used spectral versions are the Galerkin, Collocation, and 
Tau methods (Canuto et al., 1984, 2006; Trefethen, 
2000). Their utilities are based on the fact that if the 
solution sought is smooth, usually only a few terms in an 
expansion of global basic functions are needed to 
represent it to high accuracy (Gottlieb and Orszag, 1977; 
Boyd, 2000; Canuto et al., 1984, 2006; Trefethen, 2000). 
The main advantage of these methods lies in their 
accuracy for a given number of unknowns. For smooth 
problems in simple geometries, they offer exponential 
rates of convergence (spectral accuracy) (Hesthaven et 
al., 2009). In contrast, finite difference and finite element 

methods yield only algebraic convergence rates (Ben-yu, 
1996).  

Approximating functions in spectral methods are 
related to polynomial solutions of eigenvalue problems in 
ordinary differential equations, known as Sturm-Liouville 
problems (Trefethen, 2000; Hesthaven et al., 2009; Ben-

yu, 1996). On the non-periodic canonical interval 
 1,1],[

 
the Jacobi polynomials are the well known class of 
polynomials exhibiting spectral convergence, of which 
particular examples are Chebyshev polynomials of the 
first and second kinds, and Legendre polynomials 
(Gottlieb and Orszag, 1977; Boyd, 2000; Canuto et al., 
1984, 2006; Trefethen, 2000; Hesthaven et al., 2009; 
Ben-yu, 1996; Imani et al., 2011). We must note at this 
point that, collocation methods have become 
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increasingly popular for solving differential equations, 
rather than another spectral method such as Tau and 
Galerkin methods because of thier easy implementation 
(Imani et al., 2011). More so, the other importance of 
Collocation methods are providing very useful highly 
accurate solutions to nonlinear differential equations.  

In this study, we present a new approach for the 

minimization of obtained residual term in 
 

)(
),(||.||

xw


 

norm, where 
 )(),( xw 

 is a weight function with respect 
to Jacobi polynomials. We consider the class of nonlinear 
ordinary differential equations in the following form: 
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Where 
 ),(),(),(0,,, xRxQxPmls iii

 and 
 )(xf

 are 

defined on the interval  1.1  x  .Using our method, we 
reduced the nonlinear ordinary differential Equations (1) 
and (2), to the nonlinear programming problems which 
easily solves the problem.  The remainder of the paper is 
organized as follows:  

The properties of Jacobi polynomials and the basic 
formulation of them required for our subsequent 
development were introduced. The operational matrix of 
general Jacobi polynomials (product, derivative and 
moment) is devoted to with some useful theorems. 
Nonlinear programming problems and their models were 
prersented. The application of general Jacobi matrix 
method to the solution of Problems (1) and (2) were 
summarized. Thus, nonlinear  programming problems are 
formed and the solutions of the considered problem are 
introduced.  

The proposed method is also applied to several 
numerical experiments and a comparison is made with 
existing methods in the literature. Finally, we have 
monitored a brief conclusion in this work. Note that we 
have computed the numerical results by Matlab (version 
2012) programming. 

 
 
The Jacobi polynomials 
 
 The Jacobi polynomials associated with the real 

parameters 
 1),>1,>(  

 are the sequence of 

polynomials     
 0,1,...)=(),(),( nxPn



     satisfying      the  
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orthogonality relation (Hesthaven et al., 2009; Ben-yu, 
1996; Imani et al., 2011),  
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These polynomials are eigenfunctions of the following 
singular Sturm-Liouville equations in Hesthaven et al. 
(2009) 
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and produces a complete 
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with the following inner product and norms: 
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A function 
 1,1][)( 2

),(  
w

Lxy
, can be expressed in 

terms of general shifted Jacobi polynomials as 
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where the coefficient 
 

ia
 is given by  
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In practice, only the first  1m  terms shifted Jacobi 
polynomials are considered. Then we have:  
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where the shifted Jacobi coefficient vector  
(0,0,1)  and the 

shifted Jacobi vector 
 )(),( xP 

 are given by  
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OPERATIONAL MATRIX OF GENERAL SHIFTED 
JACOBI POLYNOMIALS (PRODUCT, DERIVATIVE 
AND MOMENT) 
 
In this section, we present the operational matrices of 
general Jacobi polynomials (product, derivative and 
moment). The derivative and moment operational matrix 
with respect to classical Jacobi polynomials are obtained 
in Eslahchi et al. (2012) and we present them in the 
following theorem. To do this, first we introduce the 
concept of operational matrix.  
 
 
Operational matrix 
 
 Definition 1.  Suppose  
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 where 
 

n ,...,, 10  are the basis functions on the given 

interval
 ],[ ba

. The matrices 
 

nnE   and 
 

nnF   are named 
as the operational matrices of derivatives and integrals 
respectively if and only if 
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 We further assume 
 ],,...,,[= 10 ngggg

 named as the 
operational matrix of the product, if and only if 
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 In other words, to obtain the operational matrix of a 

product, it is sufficient to find 
 

kjig ,,  in the following 
relation:  
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which is called the linearization formula (Eslahchi and 
Dehghan, 2011).  

Operational matrices are used in several areas of 
numerical analysis and they hold particular importance  in  

 
 
 
 
various subjects such as integral equations (Razzaghi 
and Ordokhani, 2001), differential and partial differential 
equations (Khellat  and Yousefi, 2006), etc. Also many 
textbooks and papers have employed the operational 
matrices for spectral methods. Now we present the 
following theorem: 
 
 
Theorem 1.  
 
If we consider the Jacobi approximation  
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 then Jacobi approximation of 
 kji xyx )]([ )(

 is in the 
following form 
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The nonlinear programming 
 

Like linear programming problems, another optimization 
problem which can be solved in a finite number of steps 
is a nonlinear programming problem. These optimization 
problems are in the following forms:  
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wherein the objective function 
 q(x)

 is nonlinear and the 
constraint functions are linear. Thus the problem is to find 
a solution where it is always possible to arrange that the 

matrix  G  is symmetric (Mikosch et al., 2006). As in linear 
programming, the problem may be infeasible or the 
solution may be unbounded, however these possibilities 
are readily detected in the algorithms, so the most part of 

it is assumed that a solution  x  exist (Fletcher, 2000). If 

the Hessian matrix  G  is positive-semidefinite,  x is a 

global solution, and if  G  is positive definite,  x is also 

unique. When the Hessian  G  is indefinite, then the local 
solutions which are not global can occur, and a 
computation of any such local solution is of interest 
(Mikosch et al., 2006; Fletcher, 2000). Classical methods 
for solving these problems are the Lagrangian methods 
and the Active set methods (Mikosch et al., 2006; 
Fletcher, 2000).  
 
 
THE METHOD OF NUMERICAL SOLUTION 
 
In this section, we describe our new approach for solving 
the class of nonlinear ordinary differential Equations (1) 
with respect to the mixed conditions Equations (2). Our 
approach is based on approximating the exact solution of 
Equation (1) by truncated Jacobi expansion as: 
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Also we assume that the coefficients 

 )(),(),( xRxQxP jjj  has Taylor series expansion in the 
following form: 
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Now by substituting Equation (23) into Equation (1), we 
obtain  
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So from Equation (24), we must simplify 
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Also we approximate the right hand side of Equation (24) 
as  
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Using Equations (25) and (26) into Equation (24), we 
obtain  
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From linear independency of Jacobi polynomials, we 
conclude that:  
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Therefore from Equation (30), we have a system of  1m  

algebraic equations for the  1m  unknown 

coefficients
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corresponding matrix form for the boundary conditions. 

For this purpose from Equation (2), the values 
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Substituting Equation (32) in the boundary conditions (2) 
and then simplifying it, we obtain the following matrix 
form  
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Now from Equations (30) and (33), we have 
 1 jm

 

algebraic equations and  1m  unknown coefficients.  
In ordinary spectral method such as Tau and 

Collocation methods for obtaining the unknown 

coefficients, we must eliminate  j  arbitrary equations 

from these 
 1 jm

 equations. But because of the 
necessity of holding the boundary conditions, we 

eliminate the last  j  equations from Equation (30). 

Finally, replacing the last  j  equations of (30) by the  j  

equations of (33), we obtain a system of  1m  equations 

and  1m  unknowns
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i . The elimination process in 
the classical spectral methods (Tau and Collocation 
methods) decrease the accuracy of the spectral method 
but in this paper we present a new approach as the 
following: 
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for minimization  of  an  obtained  residual term  Equation  

 
 
 
 
(34) from nonlinear ordinary differential Equation (1).  
 
 
Remark 1 
  
As we can see from Equation (34), in our new approach 
we have not eliminated the process, so we can obtain 
better results than the Tau and collocation methods.  
It is easy to check that Equation (30) is a nonlinear 
programming problem, because  
 
  

 

.

=)()()(2)()(

=)()(=)(=)(R

),(2

0=

),(),(),(
1

1
<

),(2),(2

0=

),(

2

),(

0=

1

1

2

2

),(

0=

2

2







ii

n

i

jiji

ji

ii

n

i

ii

n

i

ii

n

i

hb

dxxwxPxPbbdxxwxPb

dxxwxPbxPbxse






















   (35) 
 

In Equation (35), 
 

ib
are the functions of unknown 

coefficients by order of nonlinearity  s  (mentioned in 
Equation (1). It should be noted that only the linear 

differential equation (when 1s  ) by using Jacobi 
polynomials (or each other orthogonal ones) by defining 
the Norm-2 of residual, could be converted to quadratic 
programming problem. 
 
Remark 2 
  
The nonlinear programming problem (optimization 
problem) Equation (34) has unique solution because its 
Hessian matrix is a positive definite. 
 
 
THE TEST EXPERIMENTS 
 
In this section, several numerical experiments are given 
to illustrate the properties of the method and all of them 
were performed on the computer using programmed 
written and optimization toolbox in Matlab 2012. 
 

 
Experiment 1  

 
Consider the following nonlinear boundary value problem 
(Eslahchi et al., 2012).  
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and  we  show  the  results.  To  apply  the   method,   we 



 

 
 
 
 
assume that the solution is in the following form:  
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xPxPxPxP
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
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        (38) 
 
Also we reduce the nonlinear ordinary differential 
Equation (36) to a system of algebraic equations as the 
following: 
 

 0,=ID2D4 (0,0,1)

1111

(0,1,2)(0,0,1)2                         (39) 
 
 and also the boundary conditions as  
 

 
  1,=(0)=(0) (0,0,1)),(),((0,0,1)

10

0=

   T

ii

i

PP

         (40)                                                    
 
 and  
 

 
    1.=(0)=(0) (0,0,1)),(),((0,0,1)

10

0=

   DPP
T

ii

i             (41) 
 
By implementation of our method which is presented in 
section 5, we can obtain the exact solution. 

 
 
Experiment 2  

 
Consider the first-order nonlinear differential equation 
(Eslahchi et al., 2012).  
 

 1,01,=)()(2)( 2  xxyxyxy
                        (42) 

 

 with boundary condition 
 0.=(0)y

 The exact solution is  
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













 xxy

                       (43) 
 
Now we approximate the exact solution of Equation (42) 
by:  
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xPxPxy 
            (44) 

 
 where  
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          (45) 
 
 Also we expand the right hand side of Equation (42) as  
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 where  
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dxxwxPe
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
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 and  
 

 ,0,..,0].[= 0bB
                                                           (48) 

 
 First we reduce the Equation (42) into the following 
matrix form  
 

 ,B=I2D (0,0,2)

1111

(0,0,1)(0,0,1)                            (49) 
 
 and also its boundary condition as  
 

 
  0,=(1/2)=(0) (0,0,1)),(),(

10

0=

 T

ii

i

PPa
                 (50) 

 
By implementation of our method which is presented in 
this article we can obtain the numerical results. The 
obtained results and superiority of our method is 
presented in Table 1.  
 
 
CONCLUSION 
 
In this paper, we have presented a modified and new 
version of Spectral method. Our method reduces the 
nonlinear ordinary differential equations to the nonlinear 
programming problems. Also in our new method 
(opposite to the classical spectral methods which have 
the elimination process in obtaining unknowns), we do 
not  have  any  elimination  process.  Therefore   we   can  



 

88         Afr. J. Math. Comput. Sci. Res. 
 
 
 

Table 1. The comparison between the errors of our method and Tau and collocation methods when 
 10,= 1.25,=1.5,= N  of Experiment 1. 
 

 X  Tau method Collocation method Our method 

 -1.0 0.000000879 0.000000841 0.000000617 

 -0.8 0.000000789 0.000000720 0.000000540 

 -0.6 0.000000798 0.000000799 0.000000513 

 -0.4 0.000000678 0.000000689 0.000000504 

 -0.2 0.000000688 0.000000593 0.000000420 

 0.0 0.0000000000 0.000000000 0.000000000 

 0.2 0.000000631 0.000000610 0.000000530 

 0.4 0.000000680 0.000000690 0.000000543 

 0.6 0.000000356 0.000000410 0.000000355 

 0.8 0.000000340 0.000000349 0.000000214 

 1.0 0.000000523 0.000000541 0.000000314 

 
 
 
obtain better results than Tau and collocation methods. In 
addition, for showing the accuracy and efficiency of our 
approach, we have presented two experiments. In 
Experiment 2, we obtained better results than the Tau 
and collocation methods. 
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