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Detoxification of Cr (VI) produced from the mine tailings 
particularly from chromite mines is an essential approach 
from environmental point of view. The conventional 
physico-chemical processes of metal detoxification are 
very expensive and not environment friendly. Therefore, 
metal binding capacity of several microbes has been 
explored to decontaminate polluted aquatic sources in an 
eco-friendly as well as cost-effective way (Das et al., 
2008). Several microorganisms including bacteria, algae, 
yeast and fungi have been reported to effectively 
accumulate heavy metals both in living and dead forms 
(Jia et al., 2014; Conjeevaram et al., 2007; Mala et al., 
2006). However, inert substances like cork are no 
exception for Cr(VI) adsorption from industrial waste 
water (Sfaksi et al., 2014). Removal of Cr(VI) from the 
untreated tannery effluents around East Kolkata 
Wetlands by Pseudomonas aeruginosa has been studied 
(Chatterjee et al., 2011). Likewise, Cr(VI) biosorption and 
bioaccumulation by Morganella morganii has been 
documented by Ulger et al. (2014) and studies on 
removal of Cr(VI) and Ni(II) by heavy metal resistant 
Aspergillus niger and Micrococcus sp. isolated from the 
soil of an electroplating industry (Congeevaram et al., 
2007) has been established.  

The solid microbial biomass, due to its higher affinity for 
the dissolved metal species attracts complexes and 
removes it from the aqueous phase by different 
mechanisms. The process continues till equilibrium is 
established between the amount of solid bound sorbet 
species and its portion remaining in the solution (Das et 
al., 2008). 

Fungal biomaterials due to their inherent physico-
chemical properties have been established as efficient 
biosorbents. High percentage of the cell wall material and 
availability of fungal biomass as a by-product of various 
antibiotic and food industries makes it an obvious choice 
as suitable biosorbent (Das et al., 2008). Removal of 
Cd(II) and Pb(II) has been reported by fungal species in 
batch and continuous reactors (Huang et al., 1994) and 
by immobilized Rhizopus nigricans (Kogrej and Pavko, 
2001). Similarly, Pal et al. (2006) reported the biosorption 
of cobalt by Morteriella sp. isolated from the serpentine 
soils of Andaman. Srivastava and Thakur (2006) reported 
the use of A. niger as biosorbent to remove Cr(VI) from 
tannery effluent, while, Kovasevic et al. (2000) documen-
ted the biosorption of chromium, copper, nickel and zinc 
by fungal pellets of A. niger 405. Uptake of chromium by 
living cells of A. foetidus (Prasenjit and Sumathi, 2005) 
and remediation of Cr(VI) contamination from waste 
water by A. flavus is not uncommon (Deepa et al., 2006). 
Biosorption of Ni(II) and Pb(II) as well as Cr(VI) and 
Fe(III) from binary metal solutions by Phanerochaete 
chrysosporium (Ceribasi and Yetis, 2001; Marandi, 2011) 
and R. arrhizus respectively (Sag and Kutsal, 1996) has 
also been well established.  

Mining overburden and mine tailings are rich in heavy 
metals  due to their  origin, and  the  microorganisms  that  
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flourish in these heavy metal containing areas obviously 
exhibit metal tolerance as their integral property and 
hence can be effectively utilized in decontamination of 
metal polluted sites (Mishra et al., 2009). Reports of 
metal tolerant microbes indigenous to geologically rich 
areas are not uncommon (Bohidar et al., 2009; Pal et al., 
2005; Mulligan et al., 2004; Rao et al., 2002; Castro et 
al., 2000). Although literature pertaining to the isolation of 
chromium resistant fungi from chromite mining environ-
ment are scanty, Aspergillus and Penicillium spp. resistant 
to chromium have been isolated from chromium deposits 
of Fukuoka, Japan and evaluated for the abilities to 
remove Cr(VI) from the contaminated soil (Fukuda et al., 
2008). The chromite mines of Orissa, India also harbor 
some chromium tolerant isolates both bacteria and fungi 
(Das et al., 2013; Samuel et al., 2012; Behra et al., 2010; 
Gupta et al., 2007) that has been employed both for 
metal prospecting and remediation. 

The chromite mines of Sukinda and Baula-Nuasahi belt 
of Jajpur and Keonjhar districts of Orissa, India, 
respectively form a part of the famous chromite bearing 
Sukinda ultramafic complex. Mining is conducted by both 
open-cast and underground techniques in this area 
leading to the generation of a huge amount of 
overburden, nearly 8 to 10 times of that of the ore 
(Acharya et al., 1998), which also represent huge reserve 
of nickel (0.99%), chromium (2.59%), iron (48.8%) and 
cobalt (0.03%) (Behra et al., 2011). Overburden 
generated through the process of mining is dumped in 
and around the mining site in huge piles ranging from 3 to 
10 m in height (Rath et al., 2010). This huge amount of 
solid waste is subjected to continuous environmental 
weathering resulting in lowering of the water table as well 
as, deterioration of surface and ground water quality 
(Mishra and Sahu, 2013). In this region, the ground water 
is reported to be polluted by 0.03-0.08 mg/l of Cr(VI) 
(Tiwary et al., 2005), which demand effective 
bioremediation measures for detoxification as well as 
removal of hexavalent chromium.  

Therefore, in the present communication attempts have 
been made to isolate chromium resistant fungi from the 
chromite mining overburden of Sukinda and Baula-
Nuasahi regions of Orissa, India, and optimize the 
conditions using the dried fungal biomass as biosorbent 
from aqueous solution for effective removal of hexavalent 
chromium.  
 
 
MATERIALS AND METHODS 
 
Isolation of chromium resistant fungi 
 
Chromium resistant fungi were isolated from 22 overburden 
samples (Cr content 0.02 - 16.56 mg/g) collected from the chromite 
mining areas of Sukinda and the Baula-Nuasahi regions of Orissa, 
India. The samples were serially diluted and plated on Czapek-Dox 
agar supplemented with 50 mg/l of Cr(VI) (K2CrO4). Morphologically 
distinct chromium resistant fungi which appeared on the plates after 
5-7 days  of incubation at 30C were purified  and the  pure cultures 
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Table 1. Screening of dried mycellial biomass of chromium resistant fungal isolates 
for biosorption of hexavalent chromium. 
 

Isolate 

Cr(VI) biosorbed (mg/g) 

Incubation (h) 

18 48 

Aspergillus niger SAU206 10.25±0.25 11.37±0.37 
A. niger SUK101 9.75±0.25 11.50±0.50 
A. niger SUK703 14.62±0.37 15.50±0.25 
A. niger NUA101 13.33±0.58 17.58±0.08 
A. phoenicus SAU207 11.25±0.25 13.50±0.50 
A. versicolor SUK403 9.0±0.50 10.87±0.12 
A. versicolor SKP206 11.12±0.12 15.25±0.00 
A. humicola SKP102 12.25±0.25 15.75±0.00 
A. awamori BOU108 11.00±1.00 13.00±0.00 
Penicillium sp. SUK107 11.87±0.87 14.25±0.50 
Penicillium sp. SKP302 10.50±0.50 12.87±0.12 
Penicillium sp. SAU202 9.00±1.00 9.25±1.25 
Penicillium sp. SUK701 9.00±0.00 10.37±0.37 
Penicillium sp. SUK507 10.12±0.12 15.50±0.25 
Penicillium sp. SUK705 12.62±0.62 15.00±0.05 
P. citrinum NUA204 12.00±0.50 15.83±0.58 
P. simplicissimum SAU203 12.00±0.50 15.00±0.00 
Morteriella sp. SUK201 11.12±0.37 12.50±0.00 
Fusarium sp. SKP101 8.62±0.37 9.25±0.25 
Trichoderma sp. SUK503 9.37±0.37 9.75±0.25 

 

Biosorption studies were conducted in batch mode with an initial biomass and Cr(VI) 
concentration of 2g/l and 25 mg/l and pH 7.0 respectively. Samples were incubated at 
30°C for 48 h under continuous shaking (120 rpm). Results represent means of 
triplicates ± SD. 

 
 
 
removed by the biomass varied significantly (Table 1). 
Moreover, biosorption of chromium was rapid during the 
first 18 h of incubation but continued up to 48 h 
irrespective of the fungal isolates.  

After 18 h of metal-biomass interaction, many of the 
isolates including  A.niger SUK703, A. niger NUA101, A. 
humicola SKP102, Penicillium sp. SUK705, P. citrinum 
NUA204 and P. simplicissimum SAU203 exhibited more 
or less similar range of Cr(VI) biosorption. However, at 
prolonged incubation (48 h), it appeared that A. niger 
NUA101 could remove 70% of Cr(VI) from the aqueous 
solution and showed a metal loading capacity of 
17.58±0.08 mg Cr(VI)/g biomass.  

Similarly, metal loading capacities of a number of 
Aspergillus and Penicillium isolates were not inferior, 
which ranged from 15.0 to 15.83 mg/g of Cr(VI). A. niger 
NUA101, the best sorbent was selected for further 
studies to determine the optimal conditions for Cr(VI) 
sorption. 
 
 
Time course of Cr(VI) biosorption 
 
Time  course of Cr(VI)  biosorption  by the dried  mycellial 

mass of A. niger NUA101 showed strong affinity for 
chromium binding and sorbed considerable quantities of 
metal [13.33±0.58 mg Cr(VI)/g biomass] within 18 h of 
incubation. The metal loading capacity of the biomass, 
however, increased steadily with time and an equilibrium 
of 17.58±0.08 mg/g Cr(VI) was achieved after 48 h of 
incubation (Figure 2). Subsequent sorption experiments 
were, therefore, conducted till 48 h of incubation. 
 
 
Effect of chromium concentration 
 
The biosorption of Cr(VI) by A. niger NUA101 increased 
with an increase in initial metal ion concentration (Figure 
3). It was observed that with an increase of the initial 
metal ion concentration from 25 mg/l to 100 mg/l, metal 
sorption increased from 9.04±0.42 mg Cr(VI)/g biomass 
to 30.0±0.5 mg Cr(VI)/g biomass. There was however, no 
significant increase in the metal loading with further 
increase in Cr(VI) concentration up to 150 mg/l. 
 
 
Biosorption isotherms 
 
Chromium   biosorption   equilibrium  was   quantified   by 
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made to isolate chromium resistant bacteria and fungi 
from such environments (Acharya et al., 1998; Ahmed et 
al., 2005; Sen and Ghosh, 2007; Dey and Paul, 2013). 
Recent reports (Ahmed et al., 2005), also suggest that 
continuous exposure of soil fungi against heavy metals 
may influence adaptation of fungi to heavy metal 
concentration.  

Chromium resistant fungi isolated from the overburdens 
of chromite mining sites of Orissa, India, were not 
exception and showed a high degree of adaptation and 
tolerance to Cr(VI) and appeared to be potential candi-
dates for Cr-bioremediation (Figure 1). Taxonomically, 
majority of these isolates belonged to Aspergillus and 
Penicillium, however, Fusarium, Mortiriella and Trichoderma 
were not uncommon.  

Considering the comparative inefficiency of live 
biomass in metal uptake as compared to non-living 
biomass due to the metabolic interference in a living cell, 
attempts have been made to utililize the dried mycellial 
mass of these Cr-tolerant fungal isolates for sorption of 
Cr(VI). A. niger NUA101, the most efficient strain derived 
from overburden (Table 1), attained an equilibrium of Cr 
biosorption in 48 h (Figure 2) and corroborates the 
findings of Mala et al. (2006). However, reports of 
efficient metal accumulation by live fungal cultures are 
not uncommon (Srivastava and Thakur, 2006; Congeevaram 
et al., 2007). 

The increase in Cr(VI) sorption by dried biomass of A. 
niger NUA101 with an increase of the initial metal ion 
concentration (Figure 3) indicated the better efficiency of 
the organism to sequester more Cr(VI) similar to 
Aspergillus sp. and Rhizopus sp.(Ahmed et al., 2005), 
where Cr biosorption increased with an increase in metal 
concentration from 2 to 6 mM.   

Various adsorption isotherm equations (Langmuir and 
Freundlich isotherm models) have been used to study the 
nature of adsorption, with the basic purpose of optimi-
zation of the design of adsorption-units for removal of 
pollutants from the waste waters, (Subramanyam and 
Das, 2009). The linearised Langmuir and Freundlich 
adsorption isotherms (Figure 4A, 4B), indicate that 
adsorption of Cr(VI) on to the dried biomass of A . niger 
NUA101 is favorable, and linear coefficients (R2) showed 
a fit between the experimental and the calculated values. 

However, the inverse relationship of biomass concen-
tration and Cr(VI) sorbed by A. niger NUA101 (Figure 5) 
supported the observation of Pal et al, (2006) who also 
reported an inverse relation between concentration of 
Morteriella sp. 403 isolated from the serpentines of 
Andaman with the rate of Co(II) sorption in solution. In 
contrast, Prasenjit and Sumathi (2005) and several 
others (Srivastava and Thakur, 2006; Deepa et al., 2006) 
concluded that increase in the metal binding sites with 
increase in biomass concentration is the possible reason 
for the increment in the rate of biosorption. 

Temperature is known to affect the stability of the cell 
wall,   its   configuration  and   can   cause   ionization   of  
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chemical moieties, affecting its metal binding capacity 
(Gulay et al., 2003). Similarly, biosorption of heavy 
metals by microbial biomass is strongly pH sensitive and 
increases as solution pH increases (Yin et al., 1999). 
Poor sorption at low pH range could be due to the 
competition of the metal cations with H+ ions for metal 
binding sites on the biosorbent surface, while, the 
increase in pH favors sorption because of the elevated 
levels of negatively charged groups. At a low pH, some of 
the functional groups will be positively charged and may 
not interact with metal ions (Congeevaram et al., 2007). 
Hasan et al. (2000) reported maximum Ni(II) removal at a 
pH range of 4.5 to 5.5. The temperature (Figure 6A) and 
pH optima (Figure 6B) as observed in the present study 
for Cr(VI) sorption with A. niger NUA101 were similar to 
the observations of Sar et al. (1999) and Deepa et al. 
(2006). 

Presence of additional cations in the solution often 
affects the rate of metal biosorption. Kovacevic et al, 
(2000) reported that, kinetics of biosorption appears to be 
faster in the single-component systems in comparison to 
the multi-component one. Biosorption of hexavalent 
chromium by dried biomass of A. niger NUA101 changes 
with the presence of additional cations in the bisorption 
solution (Figure 7). The reduced uptake of Cr(VI) by the 
fungal biomass in presence of Ni(II) and Co(II), might be 
due to the competition of metal cations for complexation 
with active binding sites of the fungal cell wall. Hussein et 
al. (2004) reported that the rate of biosorption of Cu(II) is 
strongly affected by the presence of Cr(VI). This is due to 
modulation of the outer surface of the fungi by K2Cr2O7 
facilitating the binding of Cu(II). On the contrary, this non-
inhibitory effect of Zn (II) and Fe (III) on Cr(VI) biosorption 
can be attributed to the difference in ionic radii of the 
metal with the metal binding sites (Sag and Kutsal, 1996).  

Pre-treatment of the biomass often influence the rate of 
metal biosorption due to alteration of its physico-chemical 
properties (Ceribasi and Yetis, 2001). According to the 
present findings (Figure 8), autoclaving and acid pre-
treatment have reduced the rates of biosorption similar to 
those reported by Huang and Chiu (1994) and Kapoor 
and Viraraghavan (1998). Such reduction in the rate of 
biosorption could be due to the disorganization of the 
active metal binding sites on the fungal biomass, 
whereas, alkali and detergent treatment is said to remove 
surface impurities exposing more of the metal binding 
sites and hence enhancing biosorption of metals (Yan 
and Viraraghavan, 2000). 
 
 
Conclusion  
 
The chromite mine overburden of Sukinda and Baula-
Nuasahi region of Orissa, India, loaded with considerable 
amount of toxic chromium has resulted in the isolation of 
chromium resistant A. niger NUA101 capable of 
accumulating significant amount of Cr(VI) in the biomass  
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through the process of optimization of various process 
parameters. On the basis of the results obtained, it can 
be concluded that microbes inherent to the mining 
environment could be employed as heavy metal 
decontaminants; however, further in-depth studies are 
required to optimize the economical requirement. 
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