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The excessive usage of conventional antibiotics leads to the emergence of multidrug-resistant bacterial 
strains which threaten public health and stimulates searching for new sources of bio-therapeutic drugs. 
The aim of this study was to investigate the antimicrobial activity of maggot excretions/secretions from 
larvae of Sarcophaga argyrostoma, a common species of the family Sarcophagidae in Egypt. The 
excretions/secretions (ES) produced by third instar larvae were sterile filtered and tested against 
selected pathogenic strains of Gram positive (Gram+ve) bacteria, Staphylococcus aureus and Bacillus 
subtilis; Gram negative (Gram-ve) bacteria, Escherichia coli and Pseudomonous aeruginosa; and the 
filamentous fungus Aspergillus flavus. The ES product produced by third instar maggots proved to be 
more effective against Gram-ve bacteria. Larval ES, at 0.125 mg/ml concentration, were significantly 
potent towards P. aeruginosa, E. coli and S. aureus in a descending sequence. The minimum inhibitory 
concentrations of S. argyrostoma ES were 0.125 mg/ml for P. aeruginosa and E. coli, using the 
turbidimetric assay method. Twice and four times this concentration were required to inhibit growth of 
S. aureus (0.25 mg/ml) and B. subtilis (0.5 mg/ml), respectively. The antibacterial properties of S. 
argyrostoma ES were not affected by heating or freeze-thaw cycles when tested against E. coli. 
 
Key words: Sarcophaga argyrostoma, antimicrobial activity, larval excretions, larval secretions, minimum 
inhibitory concentration. 

 
 
INTRODUCTION 
 
As necrophagous flies are living in the filthy environment 
filled with microorganisms, they must possess robust 
immune  cellular   and   humoral  components  to  counter 

infection (Wang, 2010; Hall et al., 2016). These 
components, dried bodies and secretions, have been 
used in folk medicine  to  treat  many  diseases  including 
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different types of infections and cancer (Ratcliffe et al., 
2011). It’s unclear whether the maggots produce and 
secrete antimicrobial molecules as a defensive 
mechanism or produce them to enhance the survival of 
their symbiotic bacteria internally and/or on vertebrate 
carrion. However, these facts together encourage 
entomologists to study these promising antimicrobial 
factors from larval products as health reports estimated 
that, 1-2% of third-world populations would experience 
chronic skin wounds (Brem et al., 2000). 

During maggot debridement therapy (MDT), success is 
partly due to bactericidal properties of the fly’s gut and/or 
exo-secretions which include the salivary gland secretions 
and fecal waste (Mumcuoglu et al., 2001; Kerridge et al., 
2005). Maggot’s ES contains several proteases and 
antimicrobial substances which aid in debridement, 
disinfecting and accelerating wound healing (Nigam et 
al., 2006). Maggot excretions/secretions (ES) anti-
microbial components have been shown to disinfect 
wounds by destroying bacteria that often do not respond 
to commercially available antibiotics, such as methicillin-
resistant S. aureus (MRSA) (Bexfield et al., 2004). 
Furthermore, maggot ES inhibited the pro-inflammatory 
response of human neutrophils and monocytes in the 
wound healing process (van der Plas et al., 2007, 2009a, 
b). These secretions contained factors that could break 
down and inhibit S. aureus and P. aeruginosa biofilms, 
which colonized wounds and protected harmful bacteria 
from both the host immune system and therapeutic 
antibiotics. Lately, Pöppel et al. (2016) proved that Lucilia 
sericata maggot excretion products could accelerate the 
wound healing by excreting a pro-coagulant 
chymotrypsin-like serine protease. This protease was 
able to reduce the clotting time and showed a potential 
mechanism of wound debridement by digesting the 
extracellular matrix proteins. 

Blow flies and flesh flies were previously searched for 
their value for MDT and whether they are good or poor 
candidates (Sherman et al., 2000). The antimicrobial 
actions against a variety of Gram+ve and Gram-ve 
bacteria were studied from maggot’s ES of L. sericata 
(Daeschlein et al., 2007; Huberman et al., 2007; Jaklic et 
al., 2008), Lucilia cuprina (Arora et al., 2010; El Shazely 
et al., 2013), Calliphora vicina (Barnes et al., 2010) and 
three Chrysomya species (Ratcliffe et al., 2015). 
Currently, there is a tendency to use modern biosurgery 
(that is, maggot therapy without maggots) instead of 
traditional biosurgery (Vilcinskas, 2011), where maggot’s 
derivatives or active molecules could be therapeutically 
used in either their native or recombinant/synthetic form 
to face the antibiotic-resistant bacteria in hospitals and 
communities. Some antimicrobial factors from muscoid 
flies were developed as new antimicrobial and anti-tumor 
drugs using peptide combining patterns (Ratcliffe et al., 
2011; Chernysh and Kozuharova, 2013). Pöppel et al. 
(2015) used insect biotechnology to characterize the 
transcriptomes of  antimicrobial  peptides  (AMPs),  which 

El-Bassiony and Stoffolano          1037 
 
 
 
are synthesized in L. sericata larval tissues. Previous 
authors identified 47 genes which encode putative AMPs 
and they produced 23 synthetic AMPs that showed 
activity against broad spectrum Gram-ve and Gram+ve 
bacteria. The objective of this study was to evaluate the 
antibacterial properties of maggot’s ES of Sarcophaga 
argyrostoma on five pathogenic microbial strains as a first 
step in a process to find novel antibiotic-like compounds 
that may be used to overcome the bacterial resistance 
problems, and to provide insight into the maggot’s 
antimicrobial action. 
 
 
MATERIALS AND METHODS 
 
Rearing laboratory colony 
 
S. argyrostoma was captured from Abu Rawash, Giza provenance, 
Egypt. The colony was maintained for one year under a 16L:8D h 
cycle at 28 ± 2°C and 50% RH in the Entomology Department, 
Faculty of Science, Cairo University. Adults had continual access to 
water and granulated sugar in 45x45x45 metal cages. Females 
were allowed to oviposit on fresh beef meat and the larvae were 
reared on the same food source. Early third instar larvae were used 
in the experiments. 
 
 
Maggot ES extraction 
 
A modified method from Kerridge et al. (2005) was used for 
extraction. Briefly, approximately 200 larvae (~ 35 g) were used in 
each assay. Larvae were washed with ethyl alcohol for 5 min, 
replaced with 0.5% formaldehyde for another 5 min and finally 
rinsed two times with sterile phosphate saline (PBS) buffer (pH 7.2) 
(Dulbecco’s). Larvae were incubated with 2 ml of PBS for 60 min at 
27°C and 50% RH in darkness. The resultant liquid was then 
extracted using a pipette and centrifuged at 8,000 g for 10 min at 
4°C. The supernatant was filter sterilized through a 0.22 µm 
membrane (Xi’an Zenlab) for antibacterial screening, collected in 
disinfected Eppendorf vials, and stored at -20°C. The protein 
concentration of the extract was determined by BCA* protein kit 
(Thermo Scientific) and bovine serum albumin was used as the 
standard.  
 
 
Microbial cultures 
 
Strains of S. aureus (ATCC 12600), B. subtilis (ATCC 6051), E. coli 
(ATCC 11775), P. aeruginosa (ATCC 10145) and A. flavus (IMI 
111023) were isolated from Abo-Elrish hospital and were used to 
assess the biological activity of the extract. The optimal testing 
methods approved by the National Committee for Clinical 
Laboratory Standards (NCCLS) were used to evaluate the 
susceptibility of bacteria and filamentous fungus (NCCLS, 1993, 
1997, 2002). Bacterial strains were incubated in Luria-Bertani 
medium (LB) agar broth at 37°C for 24 h while the fungus A. flavus 
was reactivated by incubation in potato dextrose agar at 27°C for 
12–15 h. 
 

 
Disc diffusion assay 
 
The modified Kirby-Bauer method (Bauer et al., 1966) was used to 
evaluate the susceptibility of both bacteria and filamentous fungus 
to the ES extract. 100 µl of  each  microbial  culture  solution,  about 



1038          Afr. J. Microbiol. Res. 
 
 
 

Table 1. Antimicrobial activity of excretions/secretions (ES) of Sarcophaga 
argyrostoma larvae evaluated by disc diffusion method.  
 

Microorganism 
Inhibition area (mm) 

Tetracycline Amphotericin B ES 

Gram-positive bacteria    

Staphylococcus aureus 16.00 ± 0.1 - 11.87* ± 1.4 

Bacillus subtilis 14.03 ± 0.2 - 8.50* ± 1.1 
    

Gram-negative bacteria    

Escherichia coli  24.13 ± 0.1 - 17.77* ± 0.8 

Pseudomonous aeruginosa 21.10 ± 0.1 - 19.53 ± 1.06 
    

Filamentous fungus    

Aspergillus flavus - 28.83 ± 1.41 13.07* ± 2.1 
 

Data expressed as mean ± S.E. Three replicates were carried out for each experiment. 
Tetracycline and amphotericin B were used as positive controls for bacteria and fungus, 
respectively; and sterile ddH2O was used as a negative control. *Refers to significance (p≤ 
0.0001) between control and ES on each organism. 

 
 
 

1x105 cells/ml, was spread onto Mueller-Hinton agar (BDH 
Laboratory Supplies, England) plates. 10 µl of the tested extract 
(2.0 or 10.0 mg/ml concentration) was added to 6.0 mm blank 
paper disc (Schleicher & Schuell BioScience GmbH) and discs 
were allowed to dry for 3 h at room temperature. Discs were then 
placed on agar and plates were incubated at 37°C for 24 h for 
bacteria and 25°C for 72 h for filamentous fungus. The radial zones 
of inhibition (mm) were measured. Tetracycline (10 µg/ml) and 
amphotericin B (40 µg/ml) were used as positive controls for 
bacteria and fungus, respectively; and sterile ddH2O was used as a 
negative control. All the assays were done in triplicate.  
 
 

Determining minimum inhibitory concentration (MIC) by 
turbidimetry  
 

The MIC was determined according to the micro plate method 
(Bhuiyan et al., 2011) with modification. Briefly, ES extract was 
diluted in 1:2 serial dilutions using dimethyl sulfoxide (LY303366) as 
solvent. The initial concentration of the ES extract was 1.0 mg/ml. 
100 µl of each dilution was dispensed into the wells of a 96-well, 
flat-bottom microtitre plate. 100 µl of each of the four bacterial 
culture solutions containing 1x105 cell/ml were dispensed into the 
ES wells. Tetracycline (10 µg/ml) served as control and was diluted 
following the above mentioned procedure using dimethyl sulfoxide 
while dimethyl sulfoxide served as negative control. The plates 
were incubated at 37°C for 24 h. The optical density (OD) of each 
well was read at 600 nm wavelength at zero (OD1) and 24 h (OD2). 
Each concentration was tested in triplicate and repeated three 
times (n=9). The bacterial growth ratio was calculated as OD2/OD1 
using the 0.125 mg/ml concentration. The MIC was calculated as 
the lowest concentration of larval ES extract that inhibited bacterial 
growth after 24 h incubation (Wiegand et al., 2008). 
 
 

Thermal stability of ES extract  
 

A tube containing 1 ml of ES extract (0.125 mg/ml concentration) 
was heated in a water bath at 100°C for 5 min while another tube of 
ES extract was cycled from freezing to room temperature 10 times, 
allowing for freezing and thawing of the sample. Then, the tubes 
were centrifuged at 8000 g for 5 min and the collected supernatants 
were assayed against E. coli for antibacterial activity using the 
turbidimetric assay. Five replicates were used for each experiment 
and tetracycline was used as control.  

Statistical analysis 
 

Data were expressed as arithmetic means ± standard error (S.E.) 
using SPSS 16.0 statistical software. The significance of 
differences between the two values was assessed using a two-
tailed unpaired Student’s t-test with significance set at p≤0.05. 
Tukey’s post hoc test was used to analyze multiple comparisons 
and p≤0.05 was considered as significant. 
 
 

RESULTS 
 

Disc diffusion assay failed to show any antimicrobial 
activity of S. argyrostoma ES against the five selected 
microbes (S. aureus, B. subtilis, E. coli, P. aeruginosa 
and A. flavus) at 2.0 mg/ml concentration. No zones of 
growth inhibition were noticed around wells containing 
the larval extract. However, at 10.0 mg/ml concentration, 
the larval extract exhibited high potency against P. 
aeruginosa almost similar to the control (Table 1). The 
other four organisms showed moderate potency which 
were significantly (p≤ 0.0001, n=3) lower than the 
antibiotics. The highest zone of growth inhibition (mm) 
was recorded in P. aeruginosa assay and the lowest one 
in B. subtilis (Table 1). 

By using turbidimetry to assay the antibacterial activity 
of S. argyrostoma ES against four bacterial strains (S. 
aureus, B. subtilis, E. coli and P. aeruginosa), it was clear 
that the extract is significantly potent (p≤ 0.001, n=9) 
against P. aeruginosa, E. coli and S. aureus at 0.125 
mg/ml concentration; the ES inhibited bacterial growth by 
90, 76 and 61.09%, respectively, as compared to controls 
(Figure 1). S. argyrostoma ES failed to show a significant 
effect on B. subtilis (p>0.05) at the same protein 
concentration, as its inhibition potency was less than 5% 
as compared to the control (Figure 1).  

The MIC of S. argyrostoma larval ES was 0.125 mg/ml 
for P. aeruginosa and E. coli using the turbidimetric assay 
method. This concentration increased to inhibit the growth 
of S.  aureus  (0.25 mg/ml)  and  B.  subtilis  (0.5  mg/ml).
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Figure 1. Bacterial growth ratio in the presence of excretions/secretions (ES) of 
Sarcophaga argyrostoma larvae evaluated by the turbidimetric assay method at 
0.125 mg/ml concentration. The bacterial growth ratio was expressed as OD2/OD1 
for n=9. Data expressed as mean ± S.E. Means with different letters are 
significantly different from each other (p≤0.05) for the same bacterial strain. 
Tetracycline served as positive control and dimethyl sulfoxide served as negative 
control. 

 
 
 

 
 

Figure 2. MICs of excretions/secretions (ES) of Sarcophaga argyrostoma larvae evaluated by the 
turbidimetric assay method. Data expressed as mean ± S.E. and each point represented 3 
experiments in triplicate wells (n=9). a= S. aureus, b= B. subtilis, c= E. coli and d= P. aeruginosa. 
*Refers to significance between control and ES p≤ 0.05.  Tetracycline served as positive control. 
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Figure 3. Heat stability of excretions/secretions (ES) of Sarcophaga argyrostoma larvae evaluated 
by the turbidimetric assay method against E. coli. Each point represented 5 replicates.  *Refers to 
significance (p≤ 0.05) between control and all tested ES after 24 h incubation period. Tetracycline 
served as positive control.  FT ES = 10 cycles of freezing and thawing. 

 
 
 
There were significant differences between potency of ES 
and the controls (p ≤ 0.05, n=9) at some concentrations 
in all experiments (Figure 2). The ES has a significantly 
lower potency than the antibiotic control at more diluted 
concentrations against both Gram-ve bacteria. 

The ES of S. argyrostoma proved to be heat stable 
(Figure 3). It was able to withstand both boiling at 100°C 
for 5 min and repeated freeze-thaw cycles without 
significant loss of potency (p>0.05, n=5). 24 h incubation 
led to significant loss of potency (p≤ 0.05) between 
control and both native and treated ES against E. coli.  
 
 
DISCUSSION  
 
The abusive usage of antibiotics leads to the emergence 
of multidrug resistant bacteria which form an obstacle in 
the battle of humans against infectious diseases. This 
dilemma promotes the development of new anti-infective 
drugs. Defensive peptides, the small molecular proteins 
which were extracted from different insect’s species, 
constitute the key factors of biological antibiotics that 
work against several bacteria and fungi (Seufi et al., 
2009). The importance of the maggot’s ES is not only 
limited to their killing powers against several bacterial 
strains, but also to the factors which are contributing to 
the cleaning of infected wounds. Altincicek and Vilcinskas 
(2009) and Andersen et al. (2010) mentioned that L. 
sericata has 65 immune-inducible genes including 
lysozyme- and transferrin-likegenes and 3 proline-rich 
AMPs. Proteases induced by larval secretions  may  play 

a crucial role in wound healing process. Valachova et al. 
(2014) identified the full-length cDNAs of five novel 
putative salivary proteases of L. sericata, three of them 
from the serine protease families which could play a 
significant role in debridement of wounds. Also, recent 
studies investigated the potentials of sterile L. sericata 
ES to prevent the formation and disrupt bacterial biofilms 
of S. aureus and P. aeruginosa (van der Plas et al., 
2008). It was found that ES prevented and disrupted S. 
aureus biofilms immediately and enhanced the formation 
of P. aeruginosa biofilms for 10 h after incubation, and 
then it began to breakdown P. aeruginosa biofilms (van 
der Plas et al., 2008). A combination of ES and 
conventional antibiotics could ensure complete 
breakdown of the biofilms (van der Plas et al., 2010).  

The larval ES of S. argyrostoma possess one or more 
antimicrobial factors using disc well diffusion assay. ES 
showed a higher antibacterial activity against Gram-ve 
bacteria than Gram+ve bacteria. No previous reports 
have been found dealing with sarcophagid larval 
excretion’s antibacterial activity, except for the work 
reviewed by Natori (2010) on Sarcophaga peregrine 
immunity molecules. Sapecin, a medium-sized cationic 
peptide belongs to the dipteran defensins, was isolated 
from the culture medium of the embryonic cell line of S. 
peregrine (Matsuyama and Natori, 1988). Defensins are 
4-6 kDa cyclic peptides and are the most widespread 
insect’s AMPs (Čeřovský and Bém, 2014). S. peregrine 
sapecin possesses an N-terminal flexible loop, a central  
α-helix and a C-terminal anti-parallel β-sheet (Hanzawa et 
al.,  1990).  L.  sericata  defensin  (lucifensin) differs from 



 
 
 
 

sapecin by five amino acid residues (Čeřovský and Bém, 
2014). Sarcotoxin 1A, a cecropin antimicrobial peptide 
from S. peregrine, was found to be primarily active 
against Gram-negative bacteria but shows moderate 
activity towards Gram-positive bacteria (Natori, 2010), 
which agrees with our results. Pöppel et al. (2015) 
suggested that most insects produce a broad spectrum of 
AMPs during innate immune responses and that the 
complex interaction of these AMPs mediate the efficient 
antimicrobial defense. 

The current study showed that the larval ES has about 
half the lethal effect of amphotericin B on A. flavus. 
Further work, using different extraction and bioassay 
methods, should be done on other fungi and yeasts. A 
previous study succeeded in purifying an antifungal 
protein from the hemolymph of S. peregrine larvae, which 
worked successfully against Candida albicans and the 
protein’s lethal potentials were greatly enhanced by 
adding sarcotoxin IA (Iijima at al., 1993). The differences 
between our findings and the Iijima team may be due to 
the differences in antimicrobial properties of ES and the 
insect’s haemolymph. Also, Pöppel et al. (2014) 
separated an antifungal peptide, lucimycin, from the L.  
sericata cDNA library of genes. Lucimycin was effective 
against the phyla: Ascomycota, Basidiomycota and 
Zygomycota, but inactive against bacteria. 

In the current work, the turbidimetric assay was more 
effective in demonstrating the potent antibacterial activity 
of S. argyrostoma larval extract by the significant 
inhibition of bacterial growth. Using the turbidimetric 
method, L. sericata ES showed significant activity against 
S. aureus, Bacillus thuringiensis, E. coli, Enterobacter 
cloacae and P. aeruginosa (Bexfield et al., 2004). On the 
contrary, using the standard agar diffusion to assay L. 
sericata ES showed no activity against P. aeruginosa and 
E. coli (Kerridge et al., 2005). Previous authors 
suggested that contradictory results for the same species 
could be due to different extraction techniques, different 
bioassay methods or heavier bacterial inoculates.  

The MIC assay evidently demonstrated that, the larval 
extract of S. argyrostoma was more potent towards P. 
aeruginosa and E. coli than S. aureus. This is in 
concordance with findings of Huberman et al. (2007) and 
Barnes et al. (2010) on L. sericata hemolymph extract 
and ES, respectively, where significant bactericidal 
activity against P. aeruginosa than against S. aureus 
were recorded. Also, Teh et al. (2013) found that L. 
cuprina larval methanol extracts at 0.78 and 1.56 mg/ml 
concentrations were able to inhibit more than 50% of P. 
aeruginosa and E. coli, respectively, while 3.13 mg/ml 
was necessary to inhibit 50% bacterial growth of 
Klebsiella pneumonia.  

In the heat stability test, S. argyrostoma ES is resistant 
to heating when tested against E. coli. The current 
findings are consistent with Simmons (1935) and Bexfield 
et al. (2004) for L. sericata larval extracts; Simmons con- 
cluded that the active factors in maggot’s ES may not be 
of a viable nature. On the contrary, Kerridge et al.  (2005) 
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recorded a complete loss of antibacterial activity of L. 
sericata boiled extracts against methicillin-resistant S. 
aureus (MRSA). Our current freeze–thaw stability test is 
in agreement with the findings of both Bexfield et al. 
(2004) and Kerridge et al. (2005) who mentioned that the 
antibacterial properties of L. sericata ES were not 
significantly affected by freeze–thaw cycles. Hundreds of 
insect's antimicrobial peptides were tested for their 
resistance to heating and freezing, many of them were 
unstable and susceptible to temperature and other 
factors which prohibited their development as new drugs 
(Kang et al., 2012; El-Bassiony et al., 2016). 

Calliphorid flies received attention since they were used 
in MDT by ancient cultures. Continuous research efforts 
discovered and developed two low molecular weight 
antibacterial peptides in C. vicina, namely, the alloferons, 
which were found to be active as antiviral and anti-tumor 
factors (Chernysh and Kozuharova, 2013). Due to the 
biodiversity of the Sarcophagidae in Egypt and the 
scavenging mode of larval life, this family should produce 
numerous novel antimicrobial peptides or factors. At the 
moment, more research is needed on Sarcophagidae 
larval ES as suggested by this study. 

In conclusion, the ES of S. argyrostoma has shown to 
be highly effective against both Gram-ve and Gram+ve 
bacteria. The extract’s heat stability is encouraging for 
further investigations. Following additional isolation and 
characterization, this extract could potentially yield new 
antibacterial and/or antifungal drugs. 
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