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Plant lectins has the ability to interfere in crucial biofilm formation aspects, playing a significant role in 
evaluation of patients at high and low risk of disease development. However, there is limited studies on 
the physiological role of lectins on bacteria living in biofilms like caries process. Thus, we aimed to 
provide a view of lectins biotechnological potential against bacterial biofilms development. Biofilm is a 
structured bacterial consortium that provides essential compounds for its survivor. This 
microorganism organization occurs naturally, since this arrangement increases its survival possibility. 
Bacterial biofilms are related to human health problems and are responsible for many infectious 
diseases, such as oral diseases, associated with inert surfaces, including medical devices for internal 
and external use. Thus, lectins are a large group of heterogeneous proteins that exhibit antibacterial 
activity, as well as ability to interfere with microbial biofilms formation process. The lectins ability to 
form complexes with microbial glycoconjugates has stimulated its application as probes to the whole 
cell, as well as its mutants and numerous cellular constituents and metabolites. Thus, the impact of 
bacterial resistance provided by biofilm formation on human health encourages researches aiming to 
understand biofilm mechanisms as well as strategies to eradicate or minimize these communities 
damages. 
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INTRODUCTION 
 
Plant lectins have been used for diagnosis and 
prevention of various diseases. This is justified by 
property set translated by the ability to recognize 
structural elements of organizational surface from 
pathogens (Cavalcante et al., 2011). However, when it 

comes to interaction with bacterial biofilms, this strategy 
has been incipiently exploited (Lopes et al., 2005). 

Given this context, this study proposes the following 
question: what are the potential of biotechnological 
application of plant lectins in diagnostics and disease 
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prevention? 

Since lectins, as molecules, have the ability to bind 
glicoconjugates (crucial function for biofilm formation), 
these proteins may play a significant role in the 
evaluation of patients at high and low risk for biofilm 
associated disease development. 

In dentistry, there are few studies related to the use of 
lectins in the diagnosis and prevention of diseases. 
Studies on this subject also failed to respond effectively, 
and the physiological role of lectins are against the caries 
process. Some authors suggest various proposals 
regarding to this question and present meaningful data, 
especially with regard to the actions of lectins of higher 
plants (Teixeira et al., 2007; Cavalcante et al., 2011; 
Klafke et al., 2013). 

Thus, this study aims to give a view of the 
biotechnological potential of plant lectins as a tool to deal 
with bacterial biofilms as a source of bacterial resistance.  
 
 
MICROBIAL BIOFILMS: CHARACTERISTICS, 
FORMATION AND FUNCTIONS 
 
Biofilm characteristics  
 
The microbial word observation using different 
microscopy techniques over the years, has provided 
accurate researches of the microorganisms arranged in 
communities sharing nutrients, metabolites, genetic 
elements and thus, being able to resist even in withstand 
environment, causing diseases that could be difficult to 
eliminate. Biofilms have a crucial impact on human health 
in different ways, since they can be formed in natural 
environments, medical devices and industrial equipment 
(Lopez et al., 2010). 

The majority of microorganism naturally aggregates 
and produces a self-produced polysaccharide matrix 
called a biofilm (McDougald et al., 2012).  These 
communities may be established in a wide variety of 
surfaces (Abee et al., 2011). 

Besides the ability to produce extracellular polymers, 
cells in communities presents a reduced pattern of 
growth, as well as up or down regulation of specific 
genes. The organization of microorganisms in biofilms 
occurs naturally, since these communities arrangement 
increases the possibility of survival of these microscopic 
organisms. Synthesis of extracellular polymeric sub-
stances by microorganisms is accepted as a key 
mechanism to facilitate irreversible cell adhesion to 
inanimate surfaces in wet environments, thus promoting 
the development of a biofilm (Beech et al., 2005). The 
presence of the ‘‘matrix of extracellular polymeric 
substance’’, which contains polysaccharides, proteins 
and DNA, whose formation is a consequence of the 
metabolism of the microbial community is one specific 
characteristic of bacterial biofilm (Erriu et al., 2013).  

 
 
 
 

These communities also display a particular profile, 
since they can host different species of microorganisms 
in an arrangement that allows cooperation instead of 
competition (Bordi and Bentzmann, 2011). A 
communication system between bacterial species is 
responsible for the development and integrity of the 
biofilm structure. These system synthetize pheromones 
that allow cell-to-cell communication which induce the 
biofilm-forming bacteria to react as one against external 
stress. This Quorum Sensing (QS), chemical 
communication between bacterial cells, is closely 
involved both in biofilm formation and in surface motility 
in pathogens, and whose activation is linked to molecules 
auto-inducers (AIs) (Aparna and Yadav, 2008; Karatuna 
and Yagci, 2010). 

Furthermore, these microbial societies have their own 
rules and behavior, including altruism and cooperation, 
which benefits the group (Shapiro, 1998; Parsek and 
Greenberg, 2005). Some of these subpopulations can 
exhibit expertise that is orchestrated by chemical 
communications (Weigel et al., 2007) providing a singular 
way of interaction among species, inducing marked 
changes on symbiotic relationships between their 
components (Hansen et al., 2007). 
 
 

Biofilm formation 
 

The knowledge of the molecular basis involved in biofilm 
development has been updated by improvements in 
methods for genetic and genomic studies, as well as the 
development of laboratorial technology, that reveals the 
processes involved on development, physiology and 
behavior of microorganisms in this new environment 
condition. For example, a plethora of systems allows the 
bacterial identification, appropriated surface anchoring 
and cell adhesion to form multicellular communities 
(Bordi and Bentzmann, 2011). Bacterial growth in pure 
media conditions has been the main approach to perform 
microbiological culture, from Pasteur’s studies to the 
present day. These experiments have been used to 
provide knowledge and understanding of prokaryotic 
genetic and metabolism, further facilitating pathogens 
from a variety of diseases isolation and identification of 
diseases (Costerton et al., 1987).  

The term biofilm was introduced with evidence that 
bacterial behavior associated with surfaces could not be 
predicted by observations performed in microorganisms 
cultured in suspension, in their planktonic form. This is a 
term that describes sessile microbial populations 
introduced through surveys of biofilms (Jakubovics and 
Kolenbrander, 2010). 

Biofilm formation may be considered a bacterial 
community protective mechanism against external injury, 
thus, it seems reasonable that extracellular signals 
regulate the activation of specific metabolic patterns that 
trigger its stability. Such signaling may arise from various  



 

 

 
 
 
 
external sources, and can be produced and secreted by 
the bacterial community itself, where molecules named 
self-inducers accumulate in the extracellular medium with 
concentrations correlated with population density (Lopez 
et al., 2010), and may trigger signaling cascades that 
lead to responses in multicellular bacterial population, 
when in high concentrations. This mechanism of cell-cell 
communication (called quorum sensing) controls a large 
amount of processes including those related to biofilm 
formation (Camilli and Bassler, 2006). Furthermore, each 
bacterial species has its own apparatus to accomplish 
adhesion, and contains a different number of antagonic 
or sinergistic molecules which are cell specific and can 
be released depending on the situation (Hagan et al., 
2010). 

The process of biofilm formation (Figure 1) has been 
extensively described (Costerton et al., 1995; Habash 
and Reid, 1999; Donlan and Costerton, 2002), and 
involves few steps: an initial reversible connection of 
plaktonic cells to a surface followed by a maturation 
phase. This initial binding involves attractive and repul-
sive forces between cells and surface, which include 
electrostatic and hydrophobic interactions, van der Waals 
and hydrodynamic forces at appropriated temperature 
(Agarwal et al., 2010). After this surface binding, bacterial 
cells grow and divide to form dense clusters of cells that 
characterize the biofilm. This phase is associated with the 
polysaccharide production by bacterial cells, and become 
irreversibly adhered to the substrate. Temporally, these 
microcolonies develop into a mature biofilm, acquiring a 
typical architecture with projections separated by 
channels filled with fluid. The final stage (dispersion 
phase) involves the shutdown of cells or groups of cells 
from mature biofilm, being considered an essential step 
in the bacterial spread (Santos et al., 2008; Batoni et al., 
2011).  

As far as the cell surface hydrophobicity and the 
presence of fimbriae and flagella is concerned, 
exopolissacaride production is one of the main factors 
that influence the rate and degree of microbial cell 
adhesion on different surfaces and protects against 
environmental stress and dehydration (Vu et al., 2009). 
The extracellular material is mostly produced by the 
biofilm cells forming. It consists of different types of 
biomolecules, designated as extracellular polymeric 
substances (EPS), that forms the scaffold for the three-
dimensional architecture of the biofilm and is linked to cell 
adhesion to surfaces and for cohesion in the biofilm 
(Flemming and Wingender, 2010). Thus, the EPS 
production has been the subject of several studies to 
impair formation and maturation of these microbial 
communities (Murray et al., 2009; Nagorska et al., 2010). 
 
 

Correlations of biomedical interest 
 
Bacterial biofilms are related to human health problems 
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responsible for many infectious diseases associated with 
inert surfaces, including medical devices for internal and 
external use. They could also be formed in water pipes in 
hospitals, leading to infections after admission (Bordi and 
Bentzmann, 2011). The relevance of biofilm formation on 
medical devices, such as catheters or implants, can 
result in chronic infections difficult to treat (Hall-Stoodley 
et al., 2004; Donlan, 2008; Hatt and Rather, 2008). 
Chronic infections with biofilms involvement include 
periodontitis, cystic fibrosis pneumonia, and others 
infections associated with indwelling devices such as 
catheters, heart valves and prostheses (Stewart, 2002). 

Confocal microscopy evidenced that live mature 
biofilms are not single structured layers in a microbial cell 
surface, but a heterogeneous entities in time and space, 
constantly changing due to external and internal 
processes (Donlan and Costerton, 2002). A biofilm may 
be composed by bacterial or fungal species, or several 
species of bacterial, fungal and even algae and protozoa 
(Batoni et al., 2011). Chemical compounds formed by 
only a micro-organism may also be present in some 
infectious pathologies, such as in biofilms formed in heart 
valves infective endocarditis consisting of 
Staphylococcus epidermidis (Butany et al., 2002). 
Furthermore, infections have been associated with the 
formation of biofilms on surfaces such as human tooth, 
skin and urinary tract (Hatt and Rather, 2008). This 
community organization provides microbial resistance to 
various antimicrobial, protection from protozoa and host 
defenses (Matz and Kjelleberg, 2005; Anderson and 
O'toole, 2008).  

It has been recently reported that 95-99% of 
microorganisms occurs naturally in biofilms arrangements 
(Nikolaev and Plakunov, 2007). These microbial 
communities protect their residents not only from oxygen 
but also from other environmental factors (Paerl and 
Pinckney, 1996). Bacterial growing in biofilms causes 
chronic infections (Costerton et al., 2003) which are 
characterized by persistent inflammation and tissue 
damage (Bjarnsholt et al., 2009). Chronic infections, 
including foreign body infections, are 1) persistent despite 
antibiotic therapy and host innate and adaptive immune 
system and inflammatory response and 2) in contrast to 
colonization, is characterized by pathological immune 
response and disease persistence (Hoiby et al., 2010). 
 
 
Mechanisms of antimicrobial resistance 
 

Microorganisms belonging to these microbial 
communities exhibit particular properties, such as 
tolerance and resistance to different drugs, opsonization 
and phagocytosis, allowing them to survive in harsh 
environments and resist t selective pressures (Weitao, 
2009). It seems that host immunity is ineffective in "clean" 
these microcommunities, since evidence shows the 
inability of phagocytic cells to act (Leid et al., 2002) or 
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Figure 1. 2a, 3a, 4a, and 5a: Atomic Force Microscopy (AFM) 2D images with sacanning of 30x30 µm of cellulose nitrate 
membrane (CNM). 2b, 3b, 4b and 5b: AFM 2D images with scanning of 10x10 µm of CNM. 2c, 3c, 4c and 5c: surface roughness 
chart. Source: Adapted from Santos et al. (2008). 
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Figure 2. Mechanisms of antimicrobial resistance in bacterial biofilms. 

 
 
 
possibly even if phagocytose occurs, macrophage 
production and release of reactive oxygen species is 
impaired (Jesaitis et al., 2003). Figure 2 shows the main 
mechanisms of resistance to antibacterial drugs in 
bacterial biofilms. 

Antibiotics minimal inhibitory concentration (MIC) 
effective on biofilm-growing bacteria may be up to 1000-
fold higher than that of planktonic bacteria (Hoiby et al., 
2010). Biofilm-specific mechanisms are coordinately in a 
reversible and transient manner, contributing to the high 
levels of antibiotic resistance of these structures in a 
different pathway from the well-characterized intrinsic 
resistance mechanisms (for example, expression of anti-
biotic-degrading enzymes, inducible decrease in 
antibiotic influx, inducible increase in antibiotic efflux and 
alteration in antibiotic target sites) employed by 
planktonic cells (Sun et al., 2013). 

The biofilm EPS act as a barrier to delay the antibiotics 
diffusion into biofilms (Stewart, 2002) because the active 
substances may either react chemically with biofilm 
matrix components or attach to anionic polysaccharides 
(Sun et al., 2013).  

Biofilms contain a small reversible subpopulation of so-
called persister cells that adopt a slow-or nongrowing 
lifestyle through the emergence of small colony variants, 
and are highly tolerant to extracellular stresses, such as 

antibiotic treatment. Many antibiotics are less effective 
against slow- or non-growing cells when compared with 
fast-growing ones because these antibiotics target 
growth-specific factors; thereby, the slow growth rates of 
biofilm-growing cells will render them less susceptible to 
antibiotics (Sun et al., 2013). After antibiotic treatment, 
persister cells may survive, creating the reservoirs of 
cells that may regrow causing a recalcitrant chronic 
infection. When nutrients are limited in the media, 
bacteria become highly resistant to antibiotics; this 
phenomenon is called starvation (Nguyen et al., 2011). 
Starvation is found in biofilms as consequence of nutrient 
consumption by peripheral cells and reduced diffusion of 
oxygen and nutrients through biofilms. This condition 
induces the stringent response characterized as the 
repression of growth and division, with the stimulation of 
amino acid synthesis in order to promote bacterial 
survival (Chatterji and Ojha, 2001). The starvation 
response is a determinant of biofilm-specific antimicrobial 
resistance in P. aeruginosa (Nguyen et al., 2011).  

Besides the aforementioned mechanisms, it was 
recently verified that inactivation of ethanol oxidation 
genes increases the sensitivity of P. aeruginosa biofilms 
to antibiotic treatment, indicating the contribution of 
ethanol oxidation to biofilm specific antibiotic resistance 
(Beaudoin et al., 2012).  
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Planktonic cells may exhibit multidrug efflux pumps that 
mediate antibiotic efflux leading to antibiotic resistance. 
Nine efflux pumps of P. aeruginosa have been shown to 
contribute to this organism’s high intrinsic resistance to 
antibiotics (Mima et al., 2005). A P. aeruginosa efflux 
pump encoded by PA1874-1877, has been shown to 
contribute to the biofilm-specific antibiotic resistance of P. 
aeruginosa (Zhang and Mah, 2008).  

A relevant factor in biofilm antibiotic resistance is the 
extracellular DNA within the biofilm matrix. This molecule 
can bind to and sequester cations, resulting in a cation-
limited environment within biofilms that activates the two-
component regulatory systems PhoP/Q and PmrA/B 
required for the expression of multiple antibiotic 
resistance genes in P. aeruginosa (Mulcahy et al., 2008).    
 
 
LECTINS: CONCEPT AND CHARACTERISTICS 
 
Based on lectins knowledge, Van Damme et al. (1996) 
defined it as proteins which have at least one non-
catalytic domain that reversibly binds to carbohydrates, 
mono or oligosaccharides, and classified it into four types 
according to their structural characteristics: merolectins, 
hololectins, quimerolectins and superlectins. In 1996, the 
same authors introduced the class superlectins, which 
presents two carbohydrate binding sites, a significant 
different structure, and recognizes unrelated sugars. An 
example of this group is the lectin TxLC tulip-1 subunits, 
which has a specific site for mannose and one for N-
acetyl-galactosamine, working completely independently 
(Van Damme et al., 1996). 

In order to facilitate the use of lectins in glycobiology, 
Wu and colleagues (2009) classified the molecules 
according to their specificity for monosaccharides and 
oligosaccharides structures. These molecules can act as 
mediators of information in biological systems, and 
interact with glycoproteins, glycolipids and oligosac-
charides (Gupta et al., 2010; Gomes et al., 2010). 

Thus, lectins are a large group of proteins of structural 
heterogeneity which may differ in amino acid 
composition, apparent molecular weight, structure and 
number of subunits and also by whether or not related to 
metal ions or divalent cations (Cavada et al., 2001). 
These molecules have been used extensively in the 
physiology field, biochemistry and biomedical sciences. 
However, the true biological function of these proteins is 
not clear. 

Some studies aimed to bring relevant issues on this 
topic (Rüdiger and Rouge, 1998; Lannoo and Van 
Damme, 2010), even for the family Leguminosae lectins 
with high primary sequence similarity, common functions 
could not be attributed, since some parameters, such 
specific carbohydrate, location and time of production are 
different (Carneiro, 2010). 

Lectins  in plants  have important  biological  functions, 

 
 
 
 
such as protein reserves, defense and communication 
(Sharon, 1980; Cook, 1986; Van Damme et al., 1998). 
These molecules functions in plants are viewed from two 
perspectives: the lectin interacts with external sources, 
aggressors or symbionts (animals, bacteria or fungi), and 
another function in which the lectin plays a physiological 
role in the plant (Sharon and Lis, 1995). 

Lectins with a high degree of similarity in amino acid 
sequence, secondary and three-dimensional structure 
are found in plants of Leguminosae family, thus revealing 
a well-defined taxonomic line (Cavada et al., 1993; 
Sharon and Lis, 1995). These lectins, generally comprise 
two or four subunits, that could be identical or different 
and with molecular weight of about 25-30 kDa. These 
subunits could be formed by a single polypeptide scaffold 
stabilized by non-covalent bonds like hydrogen bonds, 
electrostatic and hydrophobic interactions forming or not 
canonical dimmers (Vasconcelos, 2010). Lectins 
belonging to Diocleinae subtribe are tetramers composed 
by a mixture of intact subunits formed by a polypeptide 
chain of 237 amino acid residues and fragmented 
subunits, in which the same polypeptide chain is divided 
in two fragments (Chrispeels et al., 1986). Examples are 
the lectins ConA and ConBr, which have high structural 
similarity in amino acid sequences. The difference in 
crystalline structure between ConA and ConBr is only in 
two amino acids and neither of them is close to the 
carbohydrate binding site on both lectins. However, this 
difference makes ConBr structure more open than the 
Con A (Cavalcante et al., 2011). 

Lectins have a variety of structural characteristics and 
are widely distributed in nature, been identified in fungi, 
bacteria, insects, animals, plants, as well as virus 
(Moreira et al., 1991). These molecules may be involved 
in various natural phenomena, among them the process 
of fertilization, embryogenesis, cell migration, organ 
formation and immune defense (Sharon and Lis, 2004). 
The imbalance of these processes may trigger the 
development of several pathologies (Sharon and Lis, 
1989). 

When Nowell (1960) described the mitogenic activity of 
Phaseolus vulgaris (PHA) lectin on human lymphocytes, 
an important new branch of research arose for the 
applicability of these molecules in biological systems. On 
cells surfaces there are carbohydrate molecules existing 
as glycoproteins, glycolipids and polysaccharides, and 
these molecules are directly involved in many cellular 
processes. The investigation of mechanisms involved in 
cell-cell interaction has emphasized the importance of 
carbohydrates in biochemical processes, viewed as 
energy-rich molecules or prosthetic elements (Carvalho, 
2008). 

Carbohydrates are essential elements for recognition in 
a wide variety of biological processes, in physiological 
and pathological conditions (Varki, 1993; Sharon and Lis, 
1995). Thus, the fact of lectins often detect differences in  



 

 

 
 
 
 
carbohydrates configuration, they would be powerful tools 
for this exchange of information between cells. 

The use of lectins as biotechnological approaches are 
justified by a large number of scientific studies showing 
biological relevant activities related to these proteins 
(Kitada et al., 2010, Kimble et al., 2010; Singh et al., 
2010; Cao et al., 2010). Among these biological activities, 
it is noted that lectins exhibit antibacterial activity (Alencar 
et al., 2005; Holanda et al., 2005, Wong et al., 2010), and 
lectins have ability to interfere with process of microbial 
biofilms formation (Teixeira et al., 2006, 2007, Oliveira et 
al., 2007; Islam et al., 2009; Cavalcante et al., 2011). 

Various infections are started by lectin-carbohydrate 
interactions, such as cell adhesion and phagocytosis of 
P. aeruginosa (Imberty et al., 2004), Neisseria 
gonorrhoeae (Sharon, 2006), Escherichia coli (Firon et 
al., 1983), trypomastigote form of Trypanosoma cruzi 
(Silber et al., 2002) and promastigotes of Leishmania 
major (Sacks et al., 1985). Several of these pathogens 
establish mechanisms of a required attachment or 
adhesion to the host tissue or cells, otherwise, these 
microorganisms could be eliminated by the natural 
defense mechanisms of host, such as the airflow on 
respiratory system or urine excretory system (Sharon and 
Lis, 1993). In addition, proper adhesion of the pathogen 
provides better access to nutrient sources, facilitates the 
introduction of toxic substances in host tissue and even 
the penetration of the pathogen in these tissues 
(Karlsson, 1998). 
 
 
Lectins action on biofilms mechanisms 
 
The first report of inhibitory action of peptides in 
microorganisms, dated from 1942, refers to a protein 
obtained from wheat (Balls et al., 1942; Nakatsuji and 
Gallo, 2012). Lectins from higher plants have defense 
function against pathogens such as bacteria and fungi by 
immobilization and recognition of infectious microbial 
agents by binding, thus preventing the multiplication and 
subsequent colonization of the host plant (Etzler, 1986). 
Inhibition of bacteria growth and fungi by lectins, such as 
Amaranthus, has been previously reported in the 
literature (De Bolle et al., 1996). The concentrations used 
are considered higher than the concentration used in 
similar studies (Liao et al., 2003; Santi-Gadelha et al., 
2006; Oliveira et al., 2007, 2008). However, Liao and 
colleagues (2003) tested the antimicrobial activity of plant 
and seaweed lectins using concentrations between 102 
and 800 µg/mL and found that ConA and WGA from land 
plants did not inhibit any of the analyzed vibrios. 

Lectins have antibacterial activity, and this effect (on 
Gram-positive and Gram-negative bacteria) occurs 
through interactions with bacterial cell wall components 
(Paiva et al., 2010). Santi-Gadelha and colleagues 
(2006),  using  electron  microscopy,  observed  the pre- 
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sence of pores and severe disruption of bacterial 
membrane of Gram-positive, confirming the marked 
antimicrobial activity and pointing a possible mechanism 
of growth inhibition by lectins, since these pores formed 
in the membrane allows the output of the cell content 
(Terras et al., 1993; Oliveira et al., 2008). 

By the genetic expression analysis of genes related to 
the S. mutans biofilm on Canavalia maritime lectin, 
Cavalcante et al. (2013) observed that although the 
mechanism of action of these lectins requires a better 
understanding, the results reported in that present article 
suggest that ConM acts by starting or interrupting 
intracellular signaling pathways that culminate with the 
lowest expression of genes associated with virulence and 
biofilm formation in S. mutans.  

The carbohydrate binding sites on the bacterial surface 
probably have a key role in antibacterial activity, which 
makes it responsible for bacterial recognition. In a recent 
study, it was noted that differences in antimicrobial 
activity against S. mutans and S. oralis may be related to 
differences in the composition of surface carbohydrates 
characteristic of each bacteria. Almost all microorganisms 
express carbohydrates on its surface (Cavalcante et al., 
2011). These carbohydrates may be covalently linked, as 
in teichoic acid linked to the peptidoglycan glycosylated 
or non-covalently linked, as in the capsular 
polysaccharides (Santi-Gadelha et al., 2006; Calderon et 
al., 1997). 

The ability of lectins to form complexes with microbial 
glycoconjugates has stimulated its application as probes 
to whole cells, its mutants and numerous cellular 
constituents and metabolites. Microbial receptors for 
Concanavalin A have been described. For example, 
glycosylated teicoic acid found on the surface of various 
Gram-positive bacteria (Calderon et al., 1997) and 
neutral polysaccharides produced by members of the 
genera Leuconostoc and Streptococcus (Santi-Gadelha 
et al., 2006) can be sites to lectin binding. The 
development of high-affinity ligands able to selectively 
recognize a variety of different patterns in small oligosac-
charides would be of significant interest as diagnostic and 
experimental tools for many bacterial infections. The 
selective binding of lectins to certain bacteria have been 
proposed for use in drug delivery of antimicrobial agents 
with the Canavalia ensiformis lectin having as point of 
action, Streptococcus sanguis and Corynebacterium 
hofmannii; and lectin of Triticum vulgaris targeting 
Streptococcus epidermis in in vitro experiments (Kaszuba 
et al., 1995). 
 
 
CONCLUSIONS 
 
Microbial biofilms formation and maintainability are 
directly linked to carbohydrate residues. These molecules 
mediate  the  adhesion  of   the bacteria  to  the  surface  
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substrate (biotic or abiotic) for biofilm formation as well 
as, acting between microorganisms interaction to form 
cell aggregates. As molecules are able to bind 
specifically and selectively to carbohydrates, lectins have 
a crucial function in microbial biofilms studies, becoming 
a powerful tool to analyze glycidic structures of microbial 
origin aggregates.  

The impact of bacterial resistance, provided by biofilm 
formation on human health encourages researches 
aiming to understand its mechanisms, as well as 
strategies to eradicate or minimize these communities’ 
damages.  
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