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Phytopathogenic bacteria have evolved several virulence strategies to face hostile environment of the
host plant. In this article, we reviewed the recent progress in research on characterization of the
virulence factors including secretion system with their protein effectors, toxins production, extracellular
polysaccharides, growth regulators, cell wall degrading enzymes, biofilm formation, siderophores and
their role in the plant infection and symptom development focusing particularly on a group of bacteria
such as Erwinia amylovora, Agrobacterium tumefaciens, Pseudomonas syringae, Ralstonia
solanacearum and Xanthomonas compestris that cause different plant diseases including wilts, spots,
blights and cankers. The elucidation of each step in pathogenesis may constitute a key step in any
design of new molecules for targeting plant pathogenic bacteria for plant disease control.
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siderophores.

INTRODUCTION

Most phytopathogens must evolve numerous strategies
to survive in different environmental conditions to invade
and colonize their hosts known as virulence factors.
These factors have the ability to modulate the
physiological and biochemical mechanisms to enhance
the spread of the pathogen, as well as to facilitate the
release of nutrients and water from host cells (Toth et al.,
2003).

The plant bacterial pathogens, involve many virulence
factors that are secreted in the extracellular environment
of the host cells. The most studied factors are: (1)
adherence to the host cells, with surface adhesins, (2)
production of the degradative enzymes that destroy the
plant cells walls, (3) toxins that are in the apoplastic cell,
(4) other complex molecules are also deployed including
the exopolysaccharide (EPS) and those modulating the
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plant hormone production. The major intensive studies in
the field of plant bacteria interactions are the
characterization of the pathogen virulence factors and
their main roles in the pathogenecity and the specificity of
the host. The elucidation of such aspect may lead to the
planning and establishment of new strategy in the plant
disease control. In the following section, we overviewed
the recent development of the function and mechanism in
the plant bacterial pathogens.

SECRETION SYSTEM

Plant pathogenic bacteria have evolved numerous
sophisticated strategies for selective transport of proteins
and nucleoproteins involved in the virulence across cell
membranes in both the apoplastic environment and the
cytoplasmic of the plant cells. Currently, six major classes
of systems implicated in the virulence have been
identified and described in plant pathogenic bacteria
named from type | to type VI or T1SS to T6SS. The
translocation mechanism of effector proteins from the
bacterial cytosol to the external bacterial cell is known as
secretion (Alfano et al., 2000).

In plant pathogenic Gram-negative bacteria, two major
system are described. The single step process, in which
secretion proteins are exported across the inner and the
outer membrane without any periplasmic step, however,
the two steps process namely the Sec and the Tat
secretion system are first exported in the periplasmic and
then transported across the external membrane to the
exterior of bacteria cell. In the following section, we
summarized the general features of the six identified
secretion system known in the phytoopathogenic Gram-
negative bacteria (Alfano et al., 2000; Preston et al,,
2001).

T1SS secretion sytem

In phytopathogenic Gram-negative bacteria, the type |
secretion system also known as the ATP binding cassette
(ABC) transporters is involved in the export of various
molecules from the cytosol to the external environment
without any periplasmic step (Delepelaire et al., 2004).
The type | secretion system consists of three distinct
proteins that compose a continuous chanel (lan et al.,
2006). The inner membrane ATP binding cassette (ABC)
proteins transporters is a specific outer membrane known
as outer membrane protein (OMP) and the so called
membrane fusion protein (MFP) which is connected to
the inner membrane and spans the periplasmic space
and extends to the outer membrane(lan et al., 2006).
Many proteins of great importance in pathogenesis are

transferred by the ABC secretion system in plant
pathogenic bacteria including proteases, lipases or
performing toxins. The T1SS is required for numerous
plant pathogenic Gram-negative bacteria including both
the Erwinia amylovora and Erwinia chrysanthemi (lan et
al., 2006; Liu et al., 2008).

T2SS secretion system

In Gram-negative bacteria, the T2SS secretion system
known as the sec dependant system translocate folded
proteins across the inner membrane either by sec
pathway or Tat pathway to the periplasm and then the
extracellular environment. The plant pathogenic bacteria,
uses such a system to export hydrolytic enzymes
involved in degrading different plant substrates including
cellulases, xylanases, amylases and proteases. Several
plant pathogenic bacteria include Pseudomonas
fluorescens, Erwinia carotovora pv  atroseptica,
Xanthomonas compestris pv compestris and X. oryzae pv
oryzae (Peabody et al., 2003).

T3SS secretion system

Several plant bacterial pathogens have evolved a
strategy of delivering an array of effectors and toxins
proteins directly into the cytoplasm of host cells known as
the type Ill secretion systems (Preston et al.,, 2001;
Lindeberg et al. 2012). Theses virulence determinants
have the capacity to modulate the physiological functions
(Staskawicz et al., 2001; Buttner and Bonas, 2003). The
type lll secretion apparatus is composed of more than of
20 proteins consisting of basal body spanning both the
inner and the outer membrane of the bacterial cells, and
an extracellular needle with a tip complex extending into
the host cell (Staskawicz et al., 2001). The TTSS in
phytopathogenic bacteria is encoded by hypersensitive
response and pathogenecity (hrp) gene involved in the
transfer of Avr proteins in the host cell inducing both
either pathogenecity on sensitive host or hypersensitive
reaction on resistant host. The plant pathogens that use
the TTSS system include Xanthomonas spp., Erwinia
spp., Pseudomonas syringae and Ralstonia solanacearum
(Birch, 2001; Noel et al., 2002; Angot et al., 2006).

TASS secretion system

The type IV secretion system (T4SS) is present in both
the Gram-negative and positive plant pathogenic bacteria
(Wallden et al., 2010). This tranlocation system is an
important system that deploy the sec gene to transport



the pathogenecity factors from the inner bacterial cell into
the extracellular environment or directly into the plant
host cell (Judd et al., 2005). The type IV secretion system
is involved in the translocation into the plant cell of either
the single stranded DNA (ssDNA), the multi subunit
toxins or the monomeric proteins including the
permeases. This secretion system is related to a
conjugation machines. Among the most representative
phytopathogenic bacteria that uses the T4SS secretion
system is Agrobacterium tumefaciens that target the
oncogenic DNA-protein complex in plant cell (Zupan et
al., 2000; Juhas et al., 2008; Wallden et al., 2010).

T5SS secretion system

The type V secretion system (T5SS) is widely present
among the Gram-negative bacteria (Tseng et al., 2009).
This translocation system is considered as one of the
simplest secretion pathway (Desvaux, 2004; Tseng et al.,
2009). The T5SS translocation system is dedicated to
transfer a single specific polypeptide known as the
passenger domain in two step process (Moreira et al.,
2004). The first step is mediated by a sec translocator
across the inner membrane. The second step concerns
the own transportation of the passenger through the outer
membrane by forming a protected module called a (3
barrel (Van Sluys et al., 2002). During the translocation of
passenger domain, the signal sequence can either
remain on the bacterial surface or cleave and then
released in the extracellular milieu. The type V secretion
system can exist in two subtypes which are the
autotransporters (AT) system (Type Va) and the TPS
nown as AT-2. In Gram-negative bacteria, the virulence
factors associated with T5SS passenger are numerous
including biofilm formation, adhesins, toxins, enzymes
production and cytotoxic activity (Leo at al., 2012; Jacob-
Dubuisson, 2013). Among the plant pathogenic Gram-
negative bacteria that involve the T5SS secretion system
as pathogenicity determinant include Xylella factidiosa,
the causative agent of Pierce's disease (Igo et al., 2007),
the Xanthomonads (Van Sluys et al., 2002; Moreira et al.,
2004) and E. chrysanthemi (Tseng et al., 2009).

T6SS secretion system

The type VI secretion system (T6SS) has been recently
discovered as new mechanism for effectors transportation
across the cell membrane in the Gram-negative bacteria
(Bingle et al., 2008, Filloux et al., 2008; Shrivastava and
Mande, 2008; Pukatzki et al., 2010). The structure of the
T6SS secretion system presents a significant similarity
withthe bacteriophage tailswhichinjecttheir effector protein
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proteins either directly into the host cell or in the
extracellular milieu (Tseng et al., 2009; Pukazki et al.,
2010). The T6SS secretion system is involved in the tran-
slocation of numerous pathogenicity determinants
including the biofilm formation, the quorum sensing and
antibacterial toxins. This secretion mechanism has been
identified in many Gram-negative bacteria including
Agrobacterium tumificiens, Pectobacterium atrosepticum
and Pseudomonas syringae (Wu et al., 2008; Records
and Gross, 2010) and Xanthomonas oryzae (Fillouw et
al., 2008).

PECTIN DEGRADING ENZYMES

Pectin substrate is a complex polysaccharide presents in
all plants in the middle lamella of primary cell wall
consisting mainly of galacturonic acid residues linked with
an a(1-4) glucosidic bond (Pedrolli et al., 2009; Kothari
and Baig, 2013). The acid groups are largely esterified
with methyl groups. Plant pathogenic bacteria are known
to produce an array of inducible extracellular enzymes
that degrade plant cell wall constituents (Collmer and
Keen, 1986). These enzymes are thought to play a key
role as virulence factors. The most enzymes in bacteria
plant pathogen and fungi are those degrading the pectin
substances which are also the widely studied as
determinants (Collmer et al., 2002). Among the widely
pectic enzymes in phytopathogenic bacteria are two
important classes namely the pectate lyases (PL) and
polygalacturonases (PG) (Collmer and Keen, 1986; Saile
et al., 1997). The plant pathogens that secrete complexes
of pectic enzymes such as the pectate lyases (PL) (Boch
et al., 2002; Collmer et al., 2002) and polygalacturonases
(PG) includes the soft rot Erwinias namely E. carotovora
and E. chrysanthemi (Barras et al., 1994; Carpita and
McCann, 2000; Collmer et al., 2002).

SIDEROPHORES

Iron is an essential element for nearly all microorganisms
including the plant pathogenic bacteria as it participates
in numerous process such as redox reactions, oxygen
binding and as cofactors for vital enzymes (Buyer and
Leong, 1986). To maintain the availability of the free iron
at acceptable concentration to limits the growth of
invading bacterial pathogen, the host uses two major
proteins for the transport and storage of free iron
including the transferins and ferritins (Dave and Dube,
2000; Gull and Hafeez, 2012). Many plant pathogenic
bacteria secrete molecular weight for ferric ion (Fe3+)
chelate and transfer agent known as siderophores from
the host then pumped in the bacteria cytosol by specific
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membrane receptors (Leong and Neilands, 1981,
Williams and Griffiths, 1992). Siderophores have been
shown to play a major role as virulence factors for numerous
plant pathogenic bacteria in plant disease. Among the
compounds secreted include chrysobactin which is a
catechol by E. chrysanthemi and E. carotovora (Perswerk
etal., 1989; Alfano and Collmer, 2004) and the hydroxamate
which is a siderophore produced by Agrobacterium
tumefaciens (Leong and Neilands, 1981). Another iron
transportation system mediated by specific proteins is
known as NRAMP activated by infected plant particularly
in response to biotic stress or iron limitation in plant host.
The NRAMP are now known to be involved in innate
immunity and to be the basic resistance for plant towards
the pathogens( Expert et al., 2012; Dellagi et al., 2009).

ANTIMICROBIAL COMPOUNDS DETOXIFICATION

For the defense mechanisms, most plants produce
antimicrobial compounds as secondary metabolites in
response to pathogen infection (Glazebrook et al., 1997).
Phytoalexins are among these antimicrobial substances
which are considered as molecules at sufficient concen-
tration that limit and reduce the growth and multiplication
of pathogenic microorganisms (Hammond-Kosack and
Jones, 1996). Among the major studied and illustrated
compounds are pisatins in peas (VanEtten et al., 1975;
Van Etten et al., 1989), saponins in oats, isoflavonoids in
legumes and terpenoids in Solanaceae (Turbek et al.,
1992). On the other hand, different mechanisms were
described particularly in fungi which counter these
antimicrobial substances. The pisatin are detoxified by
cytochrome CP 450 monoxygenase (Matthews and Van
Etten, 1983). Similarly, Fusarium oxysporum f.sp.
Lycopersicum produce an inducible extracellular enzyme
known as tomatinase which detoxifies the alpha tomatine.
Furthermore, most Xanthomonads detoxify reactives
oxygen and superoxyde species using catalases (Qian et
al., 2005). Recently, two inducibles enzymes were
secreted by Pseudomonas syringaeare involved in the
isothiocyanates detoxification (Fan et al., 2011).

TOXINS (PATHOTOXINS)

Plant pathogenic bacteria are known to produce a wide
range of both specific and nonspecific host phytotoxins.
Some are polypeptids, glycoproteins others are
secondary metabolites that are required as virulence
factors in plant disease (Alfano and Collmer, 2004).
These toxins acts by using diverse mechanisms from
modulating and suppressing plant defense response to
alteration and inhibition of normal host cellular metabolic
process (Thomas et al., 1983). These toxins act also

directly on the expression and development of disease
symptoms. Among the most well studied pathotoxins
known also as phytotoxins include syringomycins,
syringopeptins, tabtoxins, phaseolotoxins and coranotine
described particularly in P. syringae pathovars(Thomas et
al., 1983).

Syringomicins and syringopeptins

Both syringomycins and syringopeptins are a group of
polar cyclic peptidide known as lepodepsipeptides toxins
which are secreted by several pathovars of P. syringae
(Lu et al., 2005). These toxins act by disrupting the host
cell membrane forming small pores leading to the electro-
lyte leakage from plant cell cytoplasm inducing necrosis
of plant tissue of affected plant (Blender et al., 1999).

Coronatine

Plant pathogenic coronatine is produced by several
pathovars of P. syringae and contribute as virulence
factor. Coronatine consists of two major polyetide
components, the coronafacic acid and coronamic acid
molecules. Coronatine share similarity in structure with
jasmonic acid-isoleucine(JA-lle) and hence mimic them
(Brooks et al., 2005; Katsir et al., 2008). Coronatine plays
a key role in early stage of infection by inhibition of the
stomatal immune defense leading to the entry of the
pathogen. This toxin counteract the pathogen associated
molecular patterns (PAMPs) induced stomatal closure in
both P. syringae and X. compestris (Hutchison and Gross,
1997; Gommez-Gomez and Boller, 2002). In fact, PAMPs
consists of conserved components motifs that include
flagellin and lipolysaccharide (LPS). These molecular
patterns are recognized by plant pathogen recognition
receptors (PRRs). These perception of PAMPs activates
the basal defenses mechanisms in early stages of interact-
tion of plant pathogen interaction (Bittel and Robatzek,
2007; Melotto et al., 2008; Nurnberger and Kemmerling,
2009). On the other hand, these pathotoxin also contri-
bute to expression of other diseases including the
chlorosis symptoms, hypertrophy and lesion formation
(Sekai et al., 1979; Brooks et al., 2005). Another well
studied class of siderophores, are those synthetized by
fluorescent pseudomonads. Pyoverdine play a key role in
controlling iron availability in the rhizosphere (Visca et al.,
2002; Expert et al., 2012). On the other hand, the
pyoverdine was recently identified as virulence factors in
P. syringae pv.tabaci (Tagushi et al., 2010).

Phaseolotoxins

Phaseolotoxins are synthetized by different pathovars of



Pseudomonas syringae including the pathovars
phaseolicola and actinidia. The phaseolotoxin is a
tripeptide which is hydrolyzed to produce an octicidine
metabolite that is an irreversible inhibitor of ornithine
carbonoyl transferase (OCTase) (Arrebola et al., 2003;
Melotto and Kunkel, 2013). The OCTase enzyme is
considered to play a major role in the urea cycle of the
plant (Arrebola et al., 2003).

The tabotoxinine beta lactam (TBL), the active form of
the tabotoxine is produced in the host plant after
hydrolosis with an aminopeptidase (Moore et al., 1984;
Arrebola et al., 2007). The TBL pathotoxin plays a key
role as an inhibitor of the glutamic synthetase (Thomas et
al., 1983). Both the tabtoxines and phaseolotoxins
contribute to the virulence of the P. syringae by inhibiting
the host response defense at early stage and by inhibiting
the photosynthesis process leading to severe chlorosis of
the affected plant tissues (Arrebola et al., 2007).

ADHESINS AND
POLYSACCHARIDES

EXTRACELLULAR

Adhesins are considered as biomolecules such as
proteins and glycoproteins that mediate the binding of the
bacteria tothe hostcell (Katzen etal., 1996). The adherence
is the first step interaction between the pathogen and the
plant host which lead to the attachment and colonization
of foliage or root tissues of the host plant (Kao et al,
1992; Alfano and Collmer, 1996). The plant pathogenic
bacteria utilize several types of adhesins including a
proteinous fimbrial or non fimbrial adhesions. Another
group of adhesins which play key role in numerous plant
pathogen interaction are the exopolysaccharides (EPS)
(Kim et al., 2003; Melotto and Kunkel, 2013). The EPS
are carbohydrate compounds secreted and maintained
tightly associated with the bacterial capsule or released
around the bacterial matrix. The importance of adhesins
as virulence factors has been studies in numerous plant
pathogens. Hence, X. compestris produce a major
exopolysaccharide known as Xanthan gum implicated in
infection (Denny, 1995; Melotto and Kunkel, 2013). The
EPS amylovorin is another example of adhesins
produced by E. amylovora, the causal agent of fire blight.
P. syringae, the causal agent of several plant diseases
produces different EPS such as alginate, levan (Denny,
1995). Proteinous fimbrial adhesins are also implicated in
the infection caused by P. syringae (Yu et al., 1999).

QUORUM SENSING AND BIOFILM PRODUCTION

Quorum sensing is a bacterial communication mechanism
that regulates the density of microbial population using
the gene expression in response to the environmental
and chemical sensing system (Kanda et al., 2011; Melotto
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and Kunkel, 2013). The signal molecules known as
autoinducers that are detected by different bound
receptors of bacterial cells are produced in coordinate
manner at a specific bacterial stage such as disease
physiological function including epiphytic growth, compe-
tition or colonization and virulence stage (von Bodman et
al., 2003; Kanda et al., 2011). Quorum-sensing signal N-
acyl homoserine lactones are known to regulate numerous
virulence factors including enzymes production and
exopolysaccharides in many plant pathogenic bacteria
(Teplitski et al., 2000). Among the quorum-sensing
regulator detected in P. syringae PsrA, is Pel regulator in
E. chrysanthemi. However, a series of reglators namely
MgsR, QseBC and exporter TgsA, could be present in E.
amylovora (Hugouvieux-Cotte-Pattat et al., 1992).

Biofilm is a complex multilayer cellular structure
attached to an inanimate surface or tissues and
embedded within an exopolysaccharide material (Welch
et al., 2000; Dow et al., 2003). Biofilm provides a
protection for bacterial cell from a wide range of hostile
and extreme environmental conditions including deshy-
dratation, extreme pH and UV radiation (Welch et al.,
2000; Melotto and Kunkel, 2013).

Biofilm also shield bacteria cell from host immune
response and antimicrobials compounds (Dow et al.,
2003). Several plant pathogenic bacteria have been
considered as biofilm producer as virulence factors
including X. compestris (Dow et al., 2003) and P. syringae
(Keith et al., 2003).

CONCLUSION

Based on several advances in literature on bacterial
disease, it is clear that plant bacteria expresses virulence
factors in each specific stage of pathogenesis. The
virulence of plant pathogens is a multifactorial
phenomenon which involves host-pathogen interactions
that must be largely explored. In this review, we
summarized the major bacterial virulence determinants
that are required for establishing infection and disease
development. On the other hand, an efficient strategy for
bacterial disease control needs further studies of the
virulence factors at the molecular levels in order to know
their contribution in the plant pathogen interaction.
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