Review
References
Abriouel H, Franz CM, Omar NB, Gálvez A (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiol. Rev. 35:201-232. |
|
Barboza-Corona JE, De la Fuente-Salcido N, Alva-Murillo N, Ochoa-Zarzosa A, López-Meza JE (2009). Activity of bacteriocins synthesized by Bacillus thuringiensis against Staphylococcus aureus isolates associated to bovinemastitis. Vet. Microbiol. 138: 179-83. |
|
Brand AM, De Kwaadsteniet M, Dicks LMT (2010). The ability of nisin F to control Staphylococcus aureus infection in the peritoneal cavity, as studied in mice. Lett. Appl. Microbiol. 5(6):645-649. |
|
Chaabouni I, Guesmi A, Cherif A (2012). Secondary Metabolites of Bacillus: Potentials in Biotechnology. In: Sansinenea E., editor. Bacillus thuringiensis biotechnology. Springer; Netherlands. pp. 347-366. |
|
Cotter PD, Ross RP, Hill C (2013). Bacteriocins-a viable alternative to antibiotics? Nature Rev. Microbiol. 11(2):95-105. |
|
Cotter PD, Hill C, Ross RP (2005). Bacteriocins: developing innate immunity for food. Nature Rev. Microbiol. 3(10):777-788. |
|
Chen H, Hoover DG (2003). Bacteriocins and their Food Applications. Compr. Rev. Food Sci. Food Saf. 2(3):82-100. |
|
Dabour N, Zihler A, Kheadr E, Lacroix C, Fliss I (2009). In vivo study on the effectiveness of pediocin PA-1 and Pediococcus acidilactici UL5 at inhibiting Listeria monocytogenes. Int. J. Food Microbiol. 133(3):225-233. |
|
De Kwaadsteniet M, Doeschate K, Dicks LMT (2009). Nisin F in the treatment of respiratory tract infections caused by Staphylococcus aureus. Lett. Appl. Microbiol. 48:65-70. |
|
De Kwaadsteniet M, ten Doeschate K, Dicks LMT (2008). Characterization of the structural gene encoding Nisin F, a new lantibiotic produced by a Lactococcus lactis subsp. lactis isolate from freshwater catfish (Clarias gariepinus). Appl. Environ. Microbiol. 74(2):547-549. |
|
De la Fuente-Salcido NM, Casados-Vázquez LE, Barboza-Corona JE (2013). Bacteriocins of Bacillus thuringiensis can expand the potential of this bacterium to other areas rather than limit its use only as microbial insecticide Can. J. Microbiol. 59:515-522. |
|
Drider D, Fimland G, Héchard Y, McMullen LM, Prévost H (2006). The continuing story of class IIa bacteriocins. Microbiol. Mol. Biol. Rev. 70(2):564-82. |
|
Driessen AJM, Nouwen N (2008). Protein translocation across the bacterial cytoplasmic membrane. Annu. Rev. Biochem. 77:1-25. |
|
Dobson A, Cotter PD, Ross RP, Hill C (2012). Bacteriocin Production: a Probiotic Trait? Appl. Environ. Microbiol. 78(1):1-6. |
|
Gutiérrez J, Larsen R, Cintas LM, Kok J, Hernández PE (2006). High-level heterologous production and functional expression of the sec-dependent enterocin P from Enterococcus faecium P13 in Lactococcus lactis. Appl. Microbiol. Biotechnol. 17:1-11. |
|
Huang T, Zhang X, Xiaoyu Su JP, Jin X, Guan X (2014). Aerobic Cr (VI) reduction by an indigenous soil isolate Bacillus thuringiensis BRC-ZYR2. Pedosph. 24:652-661. |
|
Kuipers A, Wirenga J, Rink R, Kluskens LD, Driessen AJM, Kuipers OP, Moll GN (2006). Sec-mediated transport of posttranslationally dehydrated peptides in Lactococcus lactis. Appl. Environ. Microbiol. 72:7626-7633. |
|
Kumar A, Prakash A, Johri BN (2011). Bacillus as PGPR in Crop Ecosystem. In: Maheshwari, D. K. (ed.) Bacteria in Agrobiology: Crop Ecosystems. Springer Berlin Heidelberg. |
|
León-Galván MF, Barboza-Corona JE, Lechuga-Arana A, Valencia-Posadas M, Aguayo D, Cedillo-Pelaez C, Martínez-Ortega EA, Gutierrez-Chavez A (2015). Molecular detection and sensitivity to antibiotics and bacteriocins of pathogens isolated from bovine mastitis in family dairy herds of central Mexico. BioMed Res. Internat. ID 615153, 9 pages . |
|
Locher KP (2009). Review:Structure and mechanism of ATP-binding cassette transporters. Philosophical Transactions of the Royal Society of London - Series B: Biol. Sci. 364(1514):239-245. |
|
Martin-Visscher LA, Gong X, Duszyk M, Vederas JC (2009). The three-dimensional structure of carnocyclin A Reveals that many circular bacteriocins share a common structural motif. J. Biol. Chem. 284(42):28674-28681. |
|
Kodali VP, Lingala VK, Karlapudi AP, Indira M, Venkateswarulu TC, Babu DJ (2013). Biosynthesis and potential applications of bacteriocins. J. Pure Appl. Microbiol. 7(4):2933-2945. |
|
Nes IF, Yoon SS, Diep DB (2007). Ribosomally synthesized antimicrobial peptides (bacteriocins) in lactic acid bacteria: a review. Food Sci. Biotechnol. 16:675-690. |
|
Oman J, van der Donk WA (2010). Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nature Chem. Biol. 6:9-18. |
|
Orelle C, Ayvaz TM, Everly R, Klug CS, Davidson AL (2008). Both maltose-binding protein and ATP are required or nucleotide-binding domain closure in the intact maltose ABC transporter. PNAS.105(35):12837-12842. |
|
Rea MC, Dobson A, O'Sullivan O, Crispie F, Fouhy F, Cotter PD, Shanahan F, Kiely B, Hill C, Ross RP (2011). Effect of broad-and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. Proceed. Natl. Acad. Sci. 108(1):4639-4644. |
|
Rea MC, Sit CS, Clayton E, O'Connor PM, Whittal RM, Zheng J, Hill C (2010). Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proceed. Natl. Acad. Sci. 107(20):9352-9357. |
|
Rihakova J, Cappelier JM, Hue I, Demnerova K, Fédérighi M, Prévost H, Drider D (2010). In vivo activities of recombinant Divercin V41 and its structural variants against Listeria monocytogenes. Antimicrob. Agents Chemother. 54(1):563-564. |
|
Riley MA, Wertz JE (2002). Bacteriocins: evolution, ecology and application. Annu. Rev. Microbiol. 56:117-137. |
|
Salazar-Marroquín EL, Galán-Wong LJ, Moreno-Medina VR, Reyes-López MÁ, Pereyra-Alférez B (2016). Bacteriocins synthesized by Bacillus thuringiensis: generalities and potential applications. Rev. Med. Microbiol. 27(3):95-101. |
|
Sanganna Gari RR, Frey NC, Mao C, Randall L, King GM (2013). Dynamic structure of the translocon SecYEG in membrane: direct single molecule observations. J. of Biol. Chem. 288:16848-16854. |
|
Skaugen M, Cintas LM, Nes IF (2003). Genetics of bacteriocin production in lactic acid bacteria. In: Wood BJB, Warner PJ (eds.).Genetics of lactic acid bacteria, Kluwer Academic/Plenum Publishers, Nueva York, EE.UU. |
|
Svetoch EA, Borzilov A, Eruslanov BV, Korobova OV, TeÄmurazov MG, Kombarova TI, Diatlov IA (2010). Use of enterocin S760 for prevention and treatment of experimental Salmonella infection in mice. Zh. Mikrobiol. Epidemiol. Immunobiol. (5):44-48. |
|
Svetoch EA, Eruslanov BV, Perelygin VV, Mitsevich EV, Mitsevich IP, Borzenkov VN, Levchuk VP, Svetoch OE, Kovalev YN, Stepanshin YG, Siragusa GR, Seal BS, Stern NJ (2008a). Diverse antimicrobial killing by Enterococcus faecium E50-52 bacteriocin. J. Agric. Food Chem. 56(6):1942-1948. |
|
Svetoch EA, Levchuk VP, Pokhilenko VD, Eruslanov BV, Mitsevich EV, Mitsevich IP, Perelygin VV, Stepanshin YG, Stern NJ (2008b). Inactivating methicillin-resistant Staphylococcus aureus and other pathogens by use of bacteriocins OR-7 and E 50-52. J. Clin. Microbiol. 46(11):3863-3865. |
|
Straume D, Kjos M, Nes IF, Diep DB (2007). Quorum-sensing based bacteriocin production is down regulated by N-terminally truncated species of gene Drider activators. Mol. Genet. Genomics 278:283-293. |
|
Wirawan RU, Swanson KM, Kleffmann T, Jack RW, Tagg JR (2007). Uberolysin: a novel cyclic bacteriocin produced by Streptococcus uberis. Microbiol 153:1619-1630. |
Copyright © 2025 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0