Full Length Research Paper
References
Adeyemi NO, Atayese MO, Sakariyawo OS, Azeez JO, Olubode AA, Ridwan M, Adebiyi A, Oni O, Ibrahim I (2021). Influence of different arbuscular mycorrhizal fungi isolates in enhancing growth, phosphorus uptake and grain yield of soybean in a phosphorus deficient soil under field conditions. Communications in Soil Science and Plant Analysis 52(10):1171-1183. |
|
Aguégué RM, Akpode C, Adjobimey T, Sina H, Assogba SA, Koda AD, Agbodjato NA, Adjovi NRA, Adjanohoun A, Babalola OO, Baba-Moussa L(2023). Mycorrhizal symbiosis for sustainable optimization of tropical agriculture: a review of research. Symbiosis in Nature. http://dx.doi.org/10.5772/intechopen.110084 |
|
Bazghaleh N, Hamel C, Gan Y, Tar'an B, Knight JD (2018). Genotypic variation in the response of chickpea to arbuscular mycorrhizal fungi and non-mycorrhizal fungal endophytes. Canadian Journal of Microbiology 64:265-275. |
|
Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Frontiers in Plant Science 10:1068. |
|
Bender SF, Wagg C, van der Heijden MGA (2016). An underground |
|
revolution: Biodiversity and soil ecological engineering for agricultural sustainability. Trends in Ecology and Evolution 31(6):440-452. |
|
Berruti A, Lumini E, Bianciotto V (2017). AMF components from a microbial inoculum fail to colonize roots and lack soil persistence in an arable maize field. Symbiosis 72:73-80. |
|
Calvo P, Nelson L, Kloepper JW (2014). Agricultural uses of plant biostimulants. Plant and Soil 383(1-2):3-41. |
|
Calvo-Polanco M, Sánchez-Romera B, Aroca R, Asins MJ, Declerck S, Dodd IC, Martínez-Andújar C, Albacete A, Ruiz-Lozano JM (2016). Exploring the use of recombinant inbred lines in combination with beneficial microbial inoculants (AM fungus and PGPR) to improve drought stress tolerance in tomato. Environmental and Experimental Botany 131:47-57. |
|
Cardoso IM, Kuyper TW (2006). Mycorrhizas and tropical soil fertility. Agriculture Ecosystems and Environment 116:72-84. |
|
Cely MVT, de Oliveira AG, de Freitas VF, de Luca MB, Barazetti AR, Dos Santos IMO, Gionco B, Garcia GV, Prete CEC, Andrade G (2016). Inoculant of arbuscular mycorrhizal fungi (Rhizophagus clarus) increase yield of soybean and cotton under field conditions. Frontiers in Microbiology 7:1-9. |
|
Chen K, Zhang J, Muneer MA, Xue K, Niu H, Ji B (2023). Plant community and soil available nutrients drive arbuscular mycorrhizal fungal community shifts during alpine meadow degradation. Fungal Ecology 62:101211. |
|
Chotangui AH, Hachim KN, Adamou S, Mandou MS, Solange MS, Beyegue-Djonko H, Assonfack BRT, Kouam EB, Tankou CM (2022). Growth and yield response of groundnut (Arachis hypogaea L.) to rhizobial and arbuscular mycorrhiza fungal inoculations in the western highlands of Cameroon. Plant 10(3):69-75. |
|
Duc NH, Mayer Z, Pek Z, Helyes L, Posta K (2017). Combined inoculation of arbuscular mycorrhizal fungi, Pseudomonas fluorescens and Trichoderma spp. for enhancing defense enzymes and yield of three pepper cultivars. Plant Ecology 15:1815-1829. |
|
Fortin JA, Plenchette C, Piché Y (2015). Les mycorhizes : L'essor de la nouvelle révolution verte. Editions Multi-Mondes 163 p. |
|
Frew A (2020). Contrasting effects of commercial and native arbuscular mycorrhizal fungal inoculants on plant biomass allocation, nutrients, and phenolics. Plants, People, Planet 3(5):536-540. |
|
Gutjahr C, Paszkowski U (2013). Multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis. Frontiers in Plant Science 4:204. |
|
Hart M, Ehret DL, Krumbein A, Leung C, Murch S, Turi C, Franken P (2015). Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes. Mycorrhiza 25(5):359-376. |
|
Itelima JU, Bang WJ, Onyimba IA, Sila MD, Egbere OJ (2018). A review: biofertilizer; a key player in enhancing soil fertility and crop productivity. Journal of Microbiology and Biotechnology Reports 2(1):22-28. |
|
Jie W, Liu X, Cai B (2013). Diversity of rhizosphere soil arbuscular mycorrhizal fungi in various soybean cultivars under different continuous cropping regimes. PLoS One 8:1-9. |
|
Johnson NC, Graham JH, Smith FA (1997). Functioning and mycorrhizal associations along the mutualism-parasitism continuum. New Phytologist 135:575-586. |
|
Köhl L, Lukasiewicz CE, van der Heijden MGA (2016). Establishment and effectiveness of inoculated arbuscular mycorrhizal fungi in agricultural soils. Plant, Cell and Environment 39(1):136-46. |
|
Lesueur D, Deaker R, Herrmann L, Bräu L, Jansa J (2016). The Production and Potential of Biofertilizers to Improve Crop Yields. In: Arora et al. (eds.), Bioformulations: for Sustainable Agriculture pp. 71-92. |
|
Lu Y, Yan Y, Qin J, Ou L, Yang X, Liu F, Xu Y (2023). Arbuscular mycorrhizal fungi enhance phosphate uptake and alter bacterial communities in maize rhizosphere soil. Frontiers in Plant Science 14:1206870. |
|
Mcgonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990). A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal. New Phytologist 115:495-501. |
|
Miller RM, Jastrow JD (2000). Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds DD (Eds.), Arbuscular Mycorrhizas: Physiology and Function. Kluwer Academic, Dordrecht, pp. 3-18. |
|
Mohanty S, Swain CK (2018). Role of microbes in climate smart agriculture. In: Panpatte D, Jhala Y, Shelat H, Vyas R. (eds) Microorganisms for Green Revolution. Microorganisms for Sustainability, vol 7 Springer, Singapore. |
|
Nambiar PTC, Nigam SN, Dart PJ, Gibbons RW (1983). Absence of Root Hairs in Non-Nodulating Groundnut, Arachis hypogaea L. Journal of Experimental Botany 34(141):484-488. |
|
Noba K, Ngom A, Guèye M, Bassène C, Kane M, Diop I, Ndoye F, Mbaye MS, Kane A, Ba AT (2014). L'arachide au Sénégal?: état des lieux, contraintes et perspectives pour la relance de la filière. Oléagineux Corps gras Lipide 21 :D205. https://doi.org/10.1051/ocl/2013039 |
|
Qin Z, Peng Y, Yang G, Feng G, Christie P, Zhou J, Zhang J, Li X, Gai J (2022). Relationship between phosphorus uptake via indigenous arbuscular mycorrhizal fungi and crop response: A 32P-labeling study. Applied Soil Ecology 180:104624. |
|
Rocha I, Ma Y, Souza-Alonso P, Vosátka M, Freitas H, Oliveira RS (2019). Seed coating: a tool for delivering beneficial microbes to agricultural crops. Frontiers in Plant Science 10:1357. |
|
Sene G, Thiao M, Samba-Mbaye R, Ndoye F, Kane A, Diouf D, Sylla SN (2010). Response of three peanut cultivars toward inoculation with two Bradyrhizobium strains and an arbuscular mycorrhizal fungus in Senegal. African Journal of Microbiology Research 4(23):2520-2527. |
|
Sene G, Thiao M, Sy O, Mbaye MS, Sylla SN (2021). Seed coating with mycorrhizal fungal spores and Leifsonia bacteria: A tool for microbiological fertilization and a seed protection strategy from insect damage. Proceedings of the National Academy of Sciences, India Section B 91:909-918. |
|
Sene G, Thiao M, Sy O, Mbaye MS, Sylla SN (2023). Reducing mineral fertilizer use for sustainable agriculture: the influence of seed coating with arbuscular mycorrhizal fungal spores and Leifsonia bacteria on maize (Zea mays L.) and sorghum (Sorghum bicolor (L.) Moench) production. Journal of Agricultural Biotechnology and Sustainable Development 15(1):1-13. |
|
Sharma S, Bhuvaneswari V, Saikia B, Karthik R, Rajeshwaran B, Naveena PS, Gayithri M (2023). Multitrophic Reciprocity of AMF with Plants and Other Soil Microbes in Relation to Biotic Stress. In: Mathur P, Kapoor R, Roy S (eds) Microbial Symbionts and Plant Health: Trends and Applications for Changing Climate. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-99-0030-5_13 |
|
Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008). Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287-296. |
|
Smith SE, Read DJ (2008). Mycorrhizal Symbiosis, 3rd ed. Academic Press Inc., London, UK P 815. |
|
Thioub M, Ewusi-Mensah N, Sarkodie-Addo J, Adjei-Gyapong T (2019). Arbuscular mycorrhizal fungi inoculation enhances phosphorus use efficiency and soybean productivity on a Haplic Acrisol. Soil and Tillage Research 192:174-186. |
|
Torrecillas E, Alguacil MM, Roldan A (2012). Host preference of arbuscular mycorrhizal fungi colonizing annual herbaceous plants in semiarid Mediterenean prairies. Applied and Environmental Microbiology 78:6180-6186. |
|
Van der Heijden MG, Martin FM, Selosse MA, Sanders IR (2015). Mycorrhizal ecology and evolution: The past, the present and the future. New Phytologist 205:1406-1423. |
|
Wagg C, Barendregt C, Jansa J, van der Heijden MGA (2015). Complementarity in both plant and mycorrhizal fungal communities are not necessarily increased by diversity in the other. The Journal of Ecology 103:1233-44. |
|
Wissuwa M, Ae N (2001). Genotypic differences in the presence of hairs on roots and gynophores of peanuts (Arachis hypogaea L.) and their significance for phosphorus uptake. Journal of Experimental Botany 52(361):1703-1710. |
|
Xiang X, Zhang J, Li G, Leng K, Sun L, Qin W, Peng C, Xu C, Liu J, Jiang Y (2022). Positive feedback between peanut and arbuscular mycorrhizal fungi with the application of hairy vetch in Ultisol. Frontiers in Microbiology 13:1002459. |
|
Yano K, Yamauchi A, Kono Y (1996). Localized alteration in lateral root development in roots colonized by an arbuscular mycorrhizal fungus. Mycorrhiza 6:409-415. |
|
Ye Q, Wang H, Li H (2022). Arbuscular Mycorrhizal Fungi Improve |
|
Growth, Photosynthetic Activity, and Chlorophyll Fluorescence of Vitis vinifera L. cv. Ecolly under Drought Stress. Agronomy 12(7):1563. |
|
Zhang Y, Dong L, Shangguan Z (2023). Appropriate N addition improves soil aggregate stability through AMF and glomalin-related soil proteins in a semiarid agroecosystem. Land Degradation and Development 34(3):710-722. |
Copyright © 2025 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0