Full Length Research Paper
References
Abbas H, Patel RM, Parekh VB (2018). Culturable endophytic bacteria from halotolerant Salicornia brachata L.: Isolation and plant growth promoting traits. Indian Journal of Applied Microbiology 21(1):10-21 |
|
Adesemoye AO, Torbert HA, Kloepper JW (2009). Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecology 58(4):921-929. |
|
Agbodjato AN, Noumavo PA, Baba-Moussa F, Salami HA, Sina H, Sèzan A, Bankolé H, Adjanohoun A, Baba-Moussa L (2015). Characterization of potential plant growth promoting rhizobacteria isolated from maize (Zea mays L.) in Central and Northern Benin (West Africa). Applied and Environmental Soil Science 2015:1-9. |
|
Ahmad F, Ahmad I, Khan MS (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbialogical Resesrch 163(2):173-81. |
|
Alikhani HA, Saleh-Rastin1 N, Antou H (2006). Phosphate solubilization activity of rhizobia native to Iranian soils. Plant Soil 287:35-41. |
|
Alizadeh O, Ordookhani K (2011). Use of N2- fixing Bacteria Azotobacter, Azospirillum in Optimizing of Using Nitrogen in Sustainable Wheat Cropping. Advances in Environment Biology 5:1572-1574. |
|
Antoun H (2013). Plant-growth-promoting rhizobacteria, article revised of the previous edition article by Antoun H, Kloepper J, 2001, Université Laval, Québec, Canada 3:1477-1480. |
|
Arora M, Kaushik A, Rani N, Kaushik CP (2010). Effect of cyanobacterial exopolysaccharides on salt stress alleviation and seed germination. Journal of Environmental Biology 31(5):701-704. |
|
Ashraf M, Hasnain S, Berge O, Mahmood T (2004). Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biology Fertility Soils 40(3):157-162. |
|
Ashrafuzzaman M, Hossen FA, Ismail MR, Hoque MA, Islam ZM, Shahidullah SM, Meon S (2009). Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. African Journal of Biotechnology 8:1247-1252. |
|
Bezzate S, Aymerich S, Chambert R, Czarnes S, Berge O, Heulin T (2000). Disruption of the Panenibacillus polymyxa levansucrase gene impairs its ability to aggregate soil in the wheat rhizosphere. Environnemental. Microbiology 2(3):333-342. |
|
Cappuccino JC, Sherman N (1992). Microbiology: A Laboratory Manual. (third Eds.) Benjamin (ed). Cumming Publishing Company, New York. USA. pp.125-179. |
|
Cherif H (2014). Amélioration de la croissance du blé dur en milieu salin par inoculation avec Bacillus sp. et Pantoea agglomerans isolées de sols arides. Thèse de Doctorat, Université Ferhat Abbas, Sétif .Algérie. pp.01-177 |
|
Chibani HR (2017). Sélection et caractérisation des bactéries solubilisant le phospahate isolées du sol salin dans l'ouest algérien : effet sur la promotion de la croissance du blé (Triticium sp.), Thèse de Doctorat, Université Abdelhamid Benbadis, Algérie. pp.01-177. |
|
de Groot A, Filloux A, Tommassen J (1991). Conservation of xcp genes, involved in the two-step protein secretion process, in different Pseudomonas species and other gram-negative bacteria. Molecular and General Genetics 229:278-284. |
|
Donadio S, Carrano L, Brandi L, Serina S, Soffientini A, Raimondi E, Montanini N, Sosio M, Gualerzi, CO (2002).Targets and assays for discovering novel antibacterial agents. Journal of Biotechnology 99(3):175-185. |
|
El Houda (2011). Isolement de Pseudomonas spp. fluorescents d'un sol salé. Effet d'osmoprotecteurs naturels. Mémoire. Université Ferhat Abbas Setif. Algérie. P. 30. |
|
Gumiere T, Ribeiro CM, Vasconcellos RL, Cardoso EJ (2014). Indole-3-acetic acid producing root-associated bacteria on growth of Brazil Pine (Araucaria angustifolia) and Slash Pine (Pinus elliottii). Antonie Leeuwenhoek. 105:663–669. |
|
Harrison MJ, Pacha RE, Morita RY (1972). Solubilization of inorganic phosphates by bacteria isolated from upper Klamath lake sediment. Limnology and Oceanography 17(1):50-57. |
|
Henao LJ, Mazeau K (2009). Molecular modelling studies of clay-exopolysaccharide complexes: soil aggregation and water retention phenomena. Materials Science and Engineering 29:2326-2332. |
|
Heulin T, Achouak W (2012). Les rhizobactéries productrices d'exopolysaccharides et la gestion durable des sols. La Grande Muraille Verte, IRD Éditions pp. 369-376 |
|
Heydari S, Moghadam PR, Arab SM (2008). Hydrogen cyanide production Ability by Pseudomonas fluorescence bacteria and their inhibition potential on weed. In: Proceedings "Competition for Resources in a Changing World: New Drive for Rural Development", Tropentag, Hohenheim. Germany. |
|
Indiragandhi P, Anandham R, Madhaiyan M, Sa TM (2008) Characterization of plant growth promoting traits of bacteria isolated from larval guts of diamondback moth Plutellaxylostella (Lepidoptera: Putellidae). Current Microbiology 56(4):327-333 |
|
Jang SS (2006). Section 4: Phosphate Solubilizers. Biofertilizer Manual In: FNCA Biofertilizer Project Group, 2006. ISBN4-88911-301-0 C0550. Korea. pp. 103-111. |
|
Joseph B, Patra RR, Lawrence R (2007). Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). International Journal Plant Production 1(2):141-152. |
|
Kumar NR, Arasu VT, Gunasekaran P (2002). Genotyping of antifungal compounds producing plant promoting rhizobacteria, Pseudomonas fluorescens. Current Sciences 82:1463-1466. |
|
Lanteigne C, Gadkar VJ, Wallon T, Novinscak A, Filion M (2012). Production of DAPG and HCN by Pseudomonas sp. LBUM3s00 contributes to the biological control of bacterial canker of tomato. Phytopathology 102(10):967-973. |
|
Leveau JY, Boiux M, De Roissart HB (1991). La flore lactique: technique d'analyse et de contrôle dans les industries agro-alimentaires. 2e Ed. Tec & Doc, Lavoisier. Paris. 3:2-40. Available at |
|
Lorck H (1948). Production of hydrocyanic acid by bacteria. Physiologia Plantarum 1(2):142-146. |
|
Mayak S, Tirosh T, Glick BR (2004). Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry 42(6):565-572. |
|
Mehta P, Chauhan A, Mahajan R, Mahajan PK, Shirkot CK (2010). Strain of Bacillus circulans isolated from apple rhizosphere showing plant growth promoting potential. Current science 98(4):538-542. |
|
Mercado-Blanco J, Bakker PAHM (2007). Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie van Leeuwenhoek 92:367-389. |
|
Messele B, Pant LM (2012). Effects of Inoculation of Sinorhizobium ciceri and Phosphate Solubilizing Bacteria on Nodulation, Yield and Nitrogen and Phosphorus Uptake of Chickpea (Cicer arietinum L.) in Shoa Robit Area. Journal of Biofertilizers Biopesticides 3(5):1-6 |
|
Mezaache S (2012). Localisation des déterminants de la suppression de quelques souches de Pseudomonas isolées de la rhizosphère de la pomme de terre, thèse de doctorat, Université Ferhat ABBAS, Sétif, Algérie. P 221. |
|
Naik PR, Sakthivel N (2006). Functional characterization of a novel hydrocarbonoclastic Pseudomonas sp. strain PUP6 with plant-growth-promoting traits and antifungal potential. Research in Microbiology 157(6):538-546. |
|
Noumavo AP, Agbodjato AN, Gachomo EW, Salami HA, Baba-Moussa F, Adjanohoun A, Kotchoni OS, Baba-Moussa L (2015). Metabolic and biofungicidal properties of maize rhizobacteria for growth promotion and plant disease resistance. African Journal of Biotechnology 14(9):811-819. |
|
Patten CL, Glick BR (1996). Bacterial biosynthesis of indole-3- acetic acid. Canadian Journal of Microbiology 42(3):207-220. |
|
Preeti R, Pramod WR, Waseem R, Suchit AJ. (2012). Isolation and Characterization of Nickel and Cadmium Tolerant Plant Growth Promoting Rhizobacteria from Rhizosphere of Withania somnifera. Journal of Biology Environment Sciences 6(18):253-261. |
|
Rajkumar M, Nagendran R, Lee K.J, Lee WH, Kim SZ (2006). Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard. Chemosphere 62(5):741-748. |
|
Riegel P, Archambaud M, Clavé D, Vergnaud M (2006). Bactérie de culture et d'identification difficiles. (Eds.) Biomérieux. Paris, France. pp. 93-112. |
|
Ryu RJ, Patten CL (2008). Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by TyrR in Enterobacter cloacae UW5. Journal of Bacteriology 190(21):7200-7208. |
|
Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2009). Alleviation of drought stress effects in sunflower seedlings by exopolysaccharides producing Pseudomonas putida strain GAP-P45Biology and fertility of soils 46(1):17-26. |
|
Saranya DK, Sowndaram S (2014). Biological control of rhizobacteria against rice diseases caused by Rhizoctonia solani (Sheath blight) and Sarocladium oryzae (Sheath rot). International Journal of Advanced Research 2(5):818-823. |
|
Satyaprakash M, Nikitha T, Reddi EUB, Sadhana B, Satya Vani S (2017). Phosphorous and Phosphate Solubilising Bacteria and their Role in Plant Nutrition. International Journal of Current Microbiology and Applied Sciences 6(4):2133-2144. |
|
Shakeela S, Padder SA, Bhat ZA (2017). Isolation and characterization of plant growth promoting rhizobacteria associated with medicinal plant Picrorhiza Kurroa. Journal of Pharmacognosy and Phytochemistry 6(3):157-168. |
|
Singh A, Singh KP, Singh M, Bhareti P, Singh UP (2017). Antifungal activity of some strains of plant growthpromoting rhizobacteria. Journal of Pharmacognosy and Phytochemistry 6(6):577-582. |
|
Smibert RM, Krieg NR (1994). Phenotypic characterization. In: Methods for general and molecular bacteriology. Gerhardt P, Murray RGE, Wood WA, Krieg NR (ed). Am. Soc. Microbiol. Washington, D.C. pp. 607-654. |
|
Spaepen S, Vanderleyden J (2011). Auxin and Plant-Microbe Interactions. Cold Spring Harbor Perspectives in Biology 3(4):1-14. |
|
Sulbaran M, Pérez E, Ball MM, Bahsas A, Yarzabal LA (2008). Characterization of the Mineral Phosphate-Solubilizing Activity of Pantoea aglomerans MMB051 Isolated from an Iron-Rich Soil in Southeastern Venezuela (Bolivar State). Current Microbiology 58:378-383. |
|
Wang C, Knill E, Glick BR, Défago G (2000). Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Canadian Journal of Microbiology 46(10):898-907. |
|
Weller DM, Thomashow LS (1994). Current challenges in introducing beneï¬cial microorganisms into the rhizosphere. In: O'Gara F, Dowling DN, Boesten B (eds) Molecular ecology of rhizosphere microorganisms. VCH Weinheim, Germany pp. 1-18. |
|
Yadav J, Verma JP, Tiwari KN (2010). Effect of Plant Growth Promoting Rhizobacteria on seed germination and plant growth Chickpea (Cicer arietinum L.) under in vitro conditions. Biological Forum-An International Journal 2(2):15-18. |
|
Yazdani M, Bahmanyar MA, Pirdashti H, Esmaili MA(2009). Effect of Phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of Corn (Zea mays L.). World Academy of Science Engineering Technology International Journal of Agricultural and Biosystems Engineering 3(1):50-52. |
|
Zennouhi O, El Mderssa M, Ibijbijen J, Nassiri L (2018). Caractérisation génotypique de bactéries solubilisant le phosphate isolées de nodules racinaires d'Adenocarpus boudyi (Maire), endémique du Moyen Atlas central marocain. Journal of Applied Biosciences 126:12630-12637. |
Copyright © 2025 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0