Full Length Research Paper

Redox and spectral behaviour of copper (II)-chloro and bromo complexes in some nonaqueous solvents

E. J. Ukpong¹*, N. W. Akpanudo¹ and J. Prasad²

¹Department of Science Laboratory Technology, Akwa Ibom State College of Agriculture. P. M. B 1001, Abak, Nigeria. ²Chemistry Department, Allahabad University, Allahabad, India.

Accepted 22 January, 2010

The redox behaviour of 3×10^{-3} M each of CuCl₂.2H₂O and CuBr₂.H₂O have been investigated at Platinum (Pt) electrode and 1×10^{-3} M CuCl₂.2H₂O at glassy carbon (GCE) electrode in dimethylformamide (DMF), dimethylsulfoxide (DMSO), acetonitrile (AN) and ethanol/0.1 M tetrabutylammonium perchlorate (TBAP) using cyclic voltammetry. For CuCl₂ System, Epc₁ and E⁰ are more positive, Δ Ep is smaller and Ipa₁/Ipc₁ is > at GCE than at Pt electrode, exception being ethanol where opposite trend is observed. In ethanol, two reduction steps c₁/a₁ due to Cu²⁺/ Cu⁺ couple while a₂/c₂ due to Br/Br₂ couple are observed in CuBr₂ system. The electron paramagnetic resonance (EPR) features of copper (II) chloro species in DMF and DMSO show splitting of the g_{II} in frozen solution. For frozen CuBr₂ system, the spectral features in DMF, DMSO and ethanol are characterized by four small peaks in the g_{II} and one g₁ signal as found for CuCl₂ in ethanol. However, splitting of the g_{II} peak occurs in AN which was not observed in similar solvent for CuCl₂.

Key words: Redox, spectral, voltammograph, EPR, nonaqueous, cupric halide.

INTRODUCTION

Comparison of stability constants of the chloro and bromo complexes of Cu (II) and Cu (I) in organo solvents with the corresponding constants in water have been reported, (Ukpong and Prasad, 2005). This illustrates the importance of solvents in complex ion stability. The present cyclic voltammetric studies are an attempt to investigate the redox behaviour of these halo species of copper (II/I) in some organo solvents. The EPR studies have also been carried out in order to investigate the number of Cu (II) species in frozen solution of these solvents.

MATERIALS AND METHODS

Electrochemical

The cyclic voltammetric measurements were carried out with a BAS Model CV-IB (Indiana USA) instrument having an electrochemical cell with a three-electrode system. The working electrodes were glassy carbon, (GC) and platinum (Pt). Platinum wire was used as an auxiliary electrode, while a saturated calomel electrode, (SCE) as reference electrode with $E^{0'} = 0.242V$ vs. NHE. The cyclic voltammograms were recorded an X-Y recorder.

All the cyclic voltammetric experiments were done in an inert atmosphere achieved by purging the cell solution with nitrogen gas for about 20 min and maintained over the cell solution during recording of the voltammograms. The nitrogen was purified by bubbling through alkaline vanadous sulphate solution and passing through a calcium sulphate drying tube bubbling through the cell solution. Sodium perchlorate (NaClO₄), sodium bromide (NaBr) were Analar grade while TBAP was obtained from Aldrich (USA). M/100 standard solutions of analytical reagent (Analar) grade CuCl₂.2H₂O and CuBr₂.H₂O were prepared in spectroscopy grade nonaqueous solvents. Freshly prepared solutions were used for the electrochemical studies, while all experiments were carried out in $25 \pm 1 \,^{\circ}$ C in 0.1 M TBAP supporting electrolyte.

EPR

The EPR spectral measurements were obtained using a Varian Eline X-band spectrometer equipped with a dual cavity and operating in a 9.152 - 9.232 GHz range with 100KH₂ modulation. The gvalues were calibrated with TCNE, that is, tetracyanoethylene (g=2.0028) sealed in a quartz capillary as an external standard and

^{*}Corresponding author. E-mail: jimmukpong@yahoo.com.

Solvent	Epc _l /mV	Epa _l /mV	lpc₁/μA	Ipa _l /μA	E°/mV	∆E/mV	lpa _l /lpc _l
Ethanol	+ 405	+ 520	6.2	6.2	+ 462	115	1.0
	+ 360 ^a	+ 525 ^a	6.0 ^a	5.5 ^a	+ 442 ^a	165 ^a	0.91 ^a
DMSO	+ 195	+ 395	4.0	3.2	+ 295	200	0.80
	+ 245 ^ª	+ 385 ^a	3.0 ^a	3.0 ^ª	+ 315 ^a	140 ^a	1.0 ^a
DMF	+ 280	+ 540	6.5	5.2	+ 410	260	0.80
	+ 425 ^a	+ 510 ^a	5.0 ^a	5.5ª	+ 468 ^a	85 ^a	1.10 ^ª
AN	+ 435	+ 600	4.9	5.5	+ 518	165	0.86
	+ 490 ^a	+ 605 ^a	7.25 ^a	6.5ª	+ 552 ^a	115 ^a	0.89 ^a
For Cu(ClO ₄) ₂ .6H ₂ 0 in DMSO/0.1M TBAP - 20 + 105			9.95	4.75	+ 42	125	0.48

Table 1. Cyclic voltametric parameters at Pt electrode for 3×10^{-3} M CuCl₂.2H₂0 and at GCE Electrode for 1×10^{-3} M CuCl₂.2H₂0 in some nonaqueous solvents at v = 25mVs⁻¹.

a: Values are given for 1 x 10³ M CuCl₂.2H₂O at the GCE working electrode; all potentials are measured in mV vs. SCE.

placed in the ESR cavity alongside the sample. The frozen (77K) 4 x 10^{-3} M solutions of analytical reagent (Analar) grade CuCl₂.2H₂O and CuBr₂.H₂O prepared in spectroscopy grade non-aqeous solvent were placed in a Varian liquid nitrogen Dewar flask for EPR spectral measurements.

RESULTS AND DISCUSSION

Table 1 shows the cyclic voltammetric parameters for copper (II) chloro complex species in ethanol, DMSO, DMF and AN at GCE and Pt electrodes. It can be observed that the cathodic peak potential, Epc_1 and formal electrode potential $(E^{0^{\prime}})$ are more positive, the magnitude of ΔEp (Epa₁ - Epc₁) is smaller and the peak current ratio, lpa₁/lpc₁ is greater at GCE than at Pt electrode, exception being alcohol where opposite trend is observed. This indicates that the reduction is easier and the electrode process appears to be more reversible at GCE in a given organic solvent. In different solvents, Epc_1 as well as E^{0} increases (becomes more positive) in the following sequence: At Pt electrode; DMSO < DMF < ethanol < AN and at GCE: DMSO < ethanol < DMF < AN. This shows that copper (II) chloro complex species are more stabilized in DMSO and less stabilized in AN. Molroux and Elving (1978) have observed that the electrode process is affected by electrode material. It could be noted (Table 1) that the reduction potential Epc1 shifts in the negative direction with increasing donor number (Gutman, 1967) of the solvent (ethanol excepted). It can also be seen that the reduction potential for square planar [Cu(DMSO)₄) (ClO₄)₂] solvated complex (Marcorrigiano et al., 1978) is significantly more negative (that is, difficult reduction) as compared to that for Cu (II)

- chloro solvated species (Elleb et al 1982) in DMSO/0.1M TBAP. This suggests that the chloride ions preferentially stabilize copper (I) while DMSO stabilize preferentially copper (II) as CIO_4^- ion is a very weakly coordinating ligand.

Also, the peak current ratio, lpa_1/lpc_1 for $[Cu(DMSO)_4).(ClO_4)_2]$ species is <1, indicating that Cu (I) solvated species is chemically unstable as compared to Cu (II) complex species (Elleb et al., 1980, 1982).

Kaddish et al. (1978) concluded that coordinating solvents shifted the iron (III) reduction potential in a positive direction whereas strongly coordinating anions shifted the potential in a negative direction in the case of TPPFex complexes. Further, it has been observed that as the solvent donicity (donor number) increases from 15, the iron (III/II) potential shifts negatively with increased donor number.

A close look at Table 2 shows that Epc_1 and $\text{E}^{0'}$ for bromo-copper (II) solvated species becomes more positive in the order: DMSO < DMF < ethanol < AN as also found in the case of chloro-copper (II) solvated species at Pt electrode (Table 1). Further, the current ratio, $\text{Ipa}_1/\text{Ipc}_1 > 1.0$ in ethanol and DMF, indicates that the electrogenerated Cu (I) complex species is adsorbed at the surface of the Pt electrode. However, a comparison of the magnitude of Epc_1 , $\text{E}^{0'}$, and ΔEp is smaller for Cu (II) - bromo complex. This indicates that the reduction is easier and the electrode process is more reversible in Cu (II) - bromo complex system than that in Cu (II) - chloro complex system at Pt electrode.

Figure 1 shows voltammograms for CuBr₂.H₂O in ethanol at scan rate $v = 25mVs^{-1}$ and at Pt electrode. A close look at Figure 1A scanned from + 0.70 to - 0.1 V

			0			-
Table O (Description and a state of a s					(_ = I
	Velie Voltametrie I	harameters at Pt elec		WILLIBRO ZHOU IN SOME N	nnanii 60i 16 colvente at 1) - 25 mv	c
	Syone voltametric				$\frac{1}{2}$	0

Solvent	Epc _l /mV	Epa _l /mV	lpc₁/μA	Ipa _l /μA	E°/mV	∆E/mV	lpa₁/lpc₁
Ethanol	+ 445	+575	6.5	7.0	+510	130	1.10
DMSO	+ 200	+335	3.60	3.20	+268	135	0.88
DMF	+ 395	+545	6.25	7.50	+470	150	1.20
AN	+ 525	+630	7.0	6.25	+577	105	0.89

All potentials given in mV vs. SCE.

Figure 1. (A) CV of 3×10^{-3} CuBr.H₂O in 0.1 MT BAP; in ethanol; (B) CV of 3×10^{-3} NaBr and 0.2 M NaClO₄ in 75% alcohol - aqueous media both at v = 25 m Vs⁻¹ at Pt electrode.

depicts two redox steps marked c_1/a_1 and c_2/a_2 with formal potential $E^{0'}$ of 510 mV (lpc₁ = 445, Epa₁ = 575 mV) and 820 mV (Epc₂ = 715 mV; Epa₂ = 920 mV) respectively. In order to investigate this observation, a positive scan from OV vs. SCE of the medium containing $3x10^{-3}$ M NaBr and 0.2M NaClO₄ in 75% alcohol-aqueous media at scan rate 25 mVs⁻¹ has shown an anodic peak c_2 at + 920mV and in the reverse cycle, its corresponding cathodic peak c_2 at +720mV. On the basis of these observations, it is concluded that the redox step c_1/a_1 is due to Cu^{2+}/Cu^+ couple while the step a_2/c_2 is due to Br^-/Br_2 couple (Figure 1B).

It is relevant to mention that the principal experimental complication in the study of copper (II) bromine complexation is auto decomposition into copper (I) bromide or its complexes and bromine. In solution, the decomposition is more rapid. Dochlemann and Fromherz (1935) reported that as much as 19% of the copper was in the mono valent state in aqueous solutions with high lithium bromide concentration. It has been found that with cupric

Figure 2. X-Band EPR spectra of nonaqueous solution for 4 X 10⁻³ M CuCl₂.H₂O at 77K. (A) DMF, (B) DMSO, (C) AN, (D) Ethanol.

bromide in acetonitrile at room temperature, about half the copper is reduced in 25 h. If the solution is boiled, a mixture of bromine and acetonitrile is distilled off and the reaction proceeds to completion. On addition of water to the solution, remaining undistilled cupric bromide is precipitated.

The 77K (liquid nitrogen temperature) electron paramagnetic resonance (EPR) studies of 4×10^{-3} M CuCl₂.2H₂O and CuBr₂.H₂O has been done in frozen nonaqueous solutions (ethanol, DMF, DMSO and AN). The EPR features of copper (II) - chloro species in DMF and DMSO are similar both in g_{II} and g_⊥ regions, here splitting of the g_{II} peaks can be noticed (Figures 2A and B). The splitting of the g_{II} signals indicates the presence of more than one Cu (II) species in frozen solution. On the basis of their U V-visible and near IR spectral studies (Elleb et

al., 1980, 1982) concluded that CuCl(DMF)₊³ and CuCl₃ (DMF)⁻ are the solvated species in DMF solution while CuCl (DMSO)₃⁺ and CuCl₃ (DMSO)⁻ are solvated species in DMSO solution. Interestingly, however, a single g_⊥ EPR signal is observed in AN (Figure 2C). In alcohol, the EPR spectrum (Figure 2D, Table 3) is characterized by relatively larger g_{II} and smaller value of A_{II}. The g_{II} values of copper (II)-chloro complex species in these none aqueous solvents increase in the order DMF (2.380) < DMSO (2.402) < ethanol (2.415).

It could be noticed that the EPR spectral features of copper (II)-bromo complex species (Dochlemann and Fromherz, 1935; Braterman, 1963; and Ishiguro et al., 1987) in DMF, DMSO and alcohol (Figure 3A) are characterized by four small peaks in the g_{\parallel} and one intensed g_{\perp} in acetonitrile (Figure 3B), indicating that more than

		Cı	ICI2.2H20			(CuBr ₂ .H ₂ 0	
Solvent	gи	g⊥	g av	A _{II} Cu _{G(x104cm-1)}	gıı	g⊥	g av	A _{II} Cu _{G(x104cm-1)}
DMF	2.380 ^a 2.337 ^b	2.080	2.177 2.166	110 ^a (122) 120 ^b (130)	2.388	2.080	2.183	120(134)
DMSO	2.402 ^a 2.354 ^b	2.080	2.188 2.172	110 ^a (123) 120 ^b (132)	2.402	2.080	2.188	110(123)
AN		2.157			2.420 ^a	2.080	2.194	110 ^a (124)
Ethanol	2.415	2.080	2.192	110(124)	2.433	2.080	2.198	100(114)

Table 3. Cryogenic EPR spectral parameters for 4 x 10⁻³ M solutions of cupric halides in some nonaqueous solvents.

a: value corresponding to A_1 and A_2 ; b, value corresponding to B_1 and B_2 .

Figure 3. X-Band EPR spectra of nonaqueous solution for 4 X 10^{-3} M CuBr.H₂O at 77K. (A) Ethanol, (B) AN,

one copper (II)-bromo solvated complex species are present in solution. Braterman (1963) characterized a green specie, $CuBr_3.2$ solvent having the trigonal bipyramidal structure in various organic solvents particularly acetonitrile, which is obtained at bromide concentrations

lower than those needed to form purple specie, $CuBr_4^{2^\circ}$. Spectrum of 10 x 10⁻³ M bromide in acetonitrile has shown that half of the copper(II) is present as $CuBr_3^{-}$, some 10% as $CuBr_4^{2^\circ}$ and the remainder (\cong 40%) as Cu^{2° . The trend in g_{II} values for Cu (II)-bromo complex species in these nonaqueous solvents is similar to that for Cu (II)-chloro complex species (Table 3). It may also be noted that g_{\perp} values are independent (g_{\perp} =2.080) of the nature of the nonaqueous solvents for both copper (II)-chloro and bromo complexes. Also a comparison of Tables 2 and 3 shows that the frozen solution spectra exhibit axial spectra ($g_{II}>g_{\perp}$) that are characteristic of copper(II) complexes (Bertini and Scozzafava, 1981).

Conclusion

The voltammetric results of the copper (II)-chloro and bromo complexes confirm observations of earlier works with different techniques, especially the experimental complication in the study of copper (II) bromine complexation. The same observation goes for the spectral behaviour. However, it is interesting to note that copper (II)-bromo complex shows splitting of the g_{II} peak in AN, whereas this is not observed in similar solvent for CuCl₂ system.

AKNOWLEDGEMENT

The authors acknowledge with thanks, the receipt of financial assistance as a fellowship from the University Grants Commission (U.G.C), New Delhi, India, for carrying out this research work.

REFERENCES

- Bertini I, Scozzafara A (1981). In Metal Ions in Biological Systems, H. Seigel (Ed.), Marcel Dekker, Inc; New York, 12(2) 31-74.
- Braterman PS (1963). Copper (II) Bromide Complexes: A Discussion of the Tetrabromocuprate (II) Spectrum. Inorg. Chem. 2: 448.
- Dochlemann E, Fromherz H (1935). Absorption Spectra and Chemical Bonding in complexes of Copper (II). Z. Phys. Chem. Abt. A. 171: 371.
- Elleb M, Meullemeestre, Schwing-weill MJ, Vierling F (1982). Stability, Electronic Spectra and Structure of Copper(II) Chloride Complexes in Dimethylsulphoxide, 21: 1477.
- Elleb M, Meullemeestre, Schwing-weill MJ, Vierling F (1980). Stability, Electronic Spectra and Structure of Copper(II)Chloride Complexes in N, N-Dimethyl formamide 19: 2699-2704.
- Gutmann RV (1967). Coordination Chemistry in Non-Aqueous Solutions, Springer-Verlag, Wien and New York. pp.170-173.
- Ishiguro SI, Ozutsumi KI, Naggy L, Ohtaki H (1987). Calorimetric and Spectroscopic Studies of Bromo Complexes of Copper (II) in N, N-Dimethyl formamide; Bull. Chem. Soc. Jpn. 60: 1691-1698.
- Kadish KM, Beroiz D, Bottomley LA (1978). Reactions of Pyridine with series of para-substituted Tetraphenylporphyrin-cobalt and iron complexes. Inorg. Chem. 17: 1124-1129.
- Marcotrigiano G, Menabue L, Pellacani GC (1978). Spectroscopic and Electrochemical Study of Copper and Zinc Complexes in Nonaqueous Solvent. J. Trans. Met. Chem. 3(I): 108-112.
- Molroux J, Elving PJ (1978). Effects of Adsorption, Electrode Material and Operational Variables on the Oxidation of Dihydronicotinamide Adenine Dinucleotide at Carbon Electrodes Anal. Chem. 50(8): 1056-1062.
- Ukpong EJ, Prasad J, Asuquo J (2005). Cyclic Voltammetry of Chloro and Bromo Complexes of Copper(II) in aqueous halide ion concentrations. J. Chem. Soc. Nigeria 30(2): 171-180.