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Sesquiterpenes are formed from countless biogenetic pathways and are therefore a constant challenge 
to spectroscopists in structure elucidation. In this study, we explore the ability of generalized 
regression neural network (GRNN), an architecture of artificial neural networks (ANNs), to predict the 
substituent types on eudesmanes, one of the most representative skeletons of sesquiterpenes. Carbon-
13 (

13
C) nuclear magnetic resonance (NMR) chemical shift values of skeletons of 291 eudesmane 

sesquiterpenes were used as the input data used for the network. Each substituent type on the skeleton 
of the different compounds were coded and used as the output data for the network. These data were 
used to train the network. After training, the network was simulated using 34 test compounds. The 
results showed that the GRNN had between 73.33 to 100% recognition rates of the test compounds. 
GRNN could therefore be a powerful aid in the structural elucidation of organic compounds. 
 
Key words: Artificial neural networks (ANNs), generalized regression neural network (GRNN), eudesmane 
skeleton, sesquiterpenes, structural elucidation. 

 
 
INTRODUCTION  
 
Many phytochemical research efforts are directed at 
isolation of the compounds responsible for the activities 
displayed by plants. Elucidation of structures of the 
isolated compounds from their proton nuclear magnetic 
resonance (

1
H NMR) and Carbon-13 (

13
C) NMR spectra 

is often a difficult task. Computer-assisted structure 
elucidation (CASE) methods have been developed to 
help in this regard. CASE seeks to find, within a given 
solution space, the single structure that best fits a set of 
chemical and spectral boundary conditions. Structural 
elucidation  involves finding, from structural information of 

an unknown compound derived from chemical and/or 
spectra evidence, the fittest structural formula that 
satisfies all the constraints (Yongquan, 2003). The input 
information consists of molecular formula derived from 
mass spectrometry or elemental analysis, and routine 

1
D 

and 
2
D NMR spectra. 

The starting point for structure elucidation is molecular 
formula derived from Mass Spectrometry (MS), 

1
D and 

2
D 

NMR spectra. The collective spectral information is 
interpreted as a set of substructures predicted to be 
present   or   absent   in   the   unknown.   The    deduced  
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Figure 1. Single neuron model. 

 
 

 

information, together with its molecular formula, is the 
usual input in structure generation. A high-quality 
reference library containing both structures and complete 
spectra or substructures and subspectra being 
representative of the types of compounds encountered in 
the laboratory, is an invaluable component for a CASE 
system (Elyashberg et al., 2002; Strokov and Lebedev, 
1999). The premise implicit in the spectrum interpretation 
is that if the spectrum of the unknown and a reference 
library spectrum have a subspectrum in common, then 
the corresponding reference substructure is also present 
in the unknown. The components generated by spectra 
interpretation are fed into the structure generator, which 
will exhaustively generate all possible structures from 
these components. Examples of structure generators 
include MOLGEN, GENIUS and COCON. Their 
applications are described elsewhere (Meiler and Kock, 
2004).  

A structure elucidation problem is equivalent to a 
combinatorial optimization problem if the spectra-based 
structural information of the unknown is treated as 
constraints to be satisfied. The central task is thus to 
prune the size of the search space to a computationally 
acceptable extent. The methods mentioned above 
attempt to reduce the size of the search by taking 
advantage of problem-specific information. Nevertheless, 
pruning heuristics are not always enough because the 
incompleteness of chemical and/or spectroscopic 
evidence as the existence of vague information makes 
the actual search space expand drastically (Yongquan, 
2003). 

Artificial Neural Networks (ANNs) are defined as 
computational models with structures that are derived 
from a simplified concept of the brain, in which a number 
of nodes, called neurons, are interconnected in a 
network-like structure (Scotti et al., 2012). Due to its 
parallel nature, ANNs, could speed up the process of 
structural elucidation as the time-consuming sequential 
search  (especially for large spectra library) and matching 

procedures (sequential comparison of an unknown target 
spectrum with the set of library spectra) employed by the 
conventional databases is avoided (Rufino et al., 2005). 
ANNs are employed in pattern recognition problems, 
especially those associated with prediction, classification 
or control. The technique has been applied to the 
prediction of biological activity of natural products or 
congeneric compounds (Wrede et al., 1998; Fernandes 
et al., 2008), the identification, distribution and 
recognition of patterns of chemical shifts from 

1
H-NMR 

spectra (Aires-de-Sousa et al., 2002; Binev and Aires-de-
Sousa, 2004) and identification of chemical classes 
through 

13
C-NMR spectra (Fraser and Mulholland, 1999).  

Neural networks are nonlinear processes that perform 
learning and classification. ANNs consist of a large 
number of interconnected processing elements known as 
neurons that act as microprocessors. Each neuron 
accepts a weighted set of inputs and responds with an 
output. Figure 1 depicts a single neuron model. Such a 
neuron first forms weighted sum of the inputs. 
 

 

 

𝑛 = ( 𝑤𝑖𝑥𝑖) + 𝑏

𝑃

𝑖=1

 

 
 

where P and wi are the number of elements and the 
interconnection weight of the input vector xi, respectively, 
and b is the bias for the neuron. The knowledge is stored 
as a set of connection weights and biases. The sum of 
the weighted inputs with a bias is processed through an 
activation function, represented by f, and the output that it 
computes is as follows: 
 

 

 

𝑓 𝑛 = 𝑓   𝑤𝑖𝑥𝑖) + 𝑏

𝑃

𝑖=1

  

 
 

There are many ways to define the activation function 
such as the threshold function, sigmoid function, and the 
hyperbolic tangent function. The type of activation 
function depends on the type of the neural network to be 
designed. A  neural  network  can  be trained to perform a 
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particular function by adjusting the values of connections 
that is, weighting coefficients, between the processing 
elements. 

In general, neural networks are adjusted/trained to 
reach from a particular input a specific target output until 
the network output matches the target. Hence, the neural 
network can learn the system. This type of learning is 
known as supervised learning. The learning ability of a 
neural network depends on its architecture and applied 
algorithmic method during the training. Training 
procedure ceases if the difference between the network 
output and desired/actual output is less than a certain 
tolerance value. Thereafter, the network is ready to 
produce outputs based on the new input parameters that 
are not used during the learning procedure. A neural 
network is usually divided into three parts: the input layer, 
the hidden layer and the output layer. The information 
contained in the input layer is mapped to the output 
layers through the hidden layers. Each unit can send its 
output to the units on the higher layer only and receive its 
input from the lower layer. This structure is known as 
multilayer perceptron.  

Rufino et al. (2005) showed that ANNs methods give 
fast and accurate results for identification of skeletons 
and for assigning unknown compounds among distinct 
fingerprints (skeletons) of aporphine alkaloids. The 
computation method is much faster than the utilization of 
traditional methods for skeleton prediction, which makes 
neural networks ideal for selecting results for structure 
generators or checking the entries of a database. If a 
large number of skeletons have to be predicted or a fast 
and easy check of a structure is necessary, this approach 
is advantageous. 

In the present work, we show that where the skeleton 
of a class of compounds has been identified, the 
substituents positions and types on the skeleton can be 
predicted using generalized regression neural network 
(GRNN), one of the architectures of ANNs. We focus on 
eudesmane-type compounds, one of the most 
representative skeletons of sesquiterpenes. 
Sesquiterpenes are formed from countless biogenetic 
pathways and therefore produce several types of carbon 
skeletons (Oliveira et al., 2000; Ferreira et al., 2004). This 
makes elucidation of their structure very challenging. In a 
previous work, Olievera et al. (2000) described the use of 
the expert system, SISTEMAT, as an auxiliary tool in the 
process of structure elucidation of eudesmanes. 
Eudesmane-type sesquiterpenoids and their biological 
activities have been the focus of numerous 
phytochemical, pharmacological and synthetic studies. 
Since sesquiterpenes exhibit a wide range of biological 
activities, and include compounds that are plant growth 
regulators, insect antifeedants, antifungals, anti-tumour 
compounds and antibacterials, much efforts has been 
directed at relating their structures to function (Wu et al., 
2006). 

A GRNN  is   based   on   kernel   regression   networks 

 
 
 
 
(Celikoglu and Cigizoglu, 2007; Cigizoglu and Alp, 2005; 
Kim et al., 2004; Hannan et al., 2010). A GRNN does not 
require an iterative training procedure. It approximates 
any arbitrary function between input and output vectors, 
drawing the function estimate directly from the training 
data. In addition, it is consistent that as the training set 
size becomes large, the estimation error approaches 
zero, with only mild restrictions on the function (Kim et al., 
2004; Hannan et al., 2010). 

A GRNN consists of four layers: input layer, pattern 
layer, summation layer and output layer as shown in 
Figure 2. The number of input units in input layer 
depends on the total number of the observation 
parameters. The first layer is connected to the pattern 
layer and in this layer each neuron presents a training 
pattern and its output. The pattern layer is connected to 
the summation layer. The summation layer has two 
different types of summation, which are a single division 
unit and summation units. The summation and output 
layer together perform a normalization of output set. In 
training of network, radial basis and linear activation 
functions are used in hidden and output layers. Each 
pattern layer unit is connected to the two neurons in the 
summation layer, S and D summation neurons. S-
summation neuron computes the sum of weighted 
responses of the pattern layer. On the other hand, D-
summation neuron is used to calculate un-weighted 
outputs of pattern neurons. The output layer merely 
divides the output of each S-summation neuron by that of 
each D-summation neuron, yielding the predicted value 

 

 

𝑌𝑖
′   to an unknown input vector x as (Jang et al., 1997; 

Hannan et al., 2010): 
 

 

 

𝑌𝑖
′ =  

 𝑦𝑖 . 𝑒𝑥𝑝 − 𝐷(𝑥, 𝑥𝑖)
𝑛
𝑖=1

 𝑒𝑥𝑝 − 𝐷(𝑥, 𝑥𝑖)
𝑛
𝑖=1

 
 

 

 

 

𝐷 𝑥, 𝑥𝑖 =   (
𝑥𝑖 − 𝑥𝑖𝑘

𝜎
)2

𝑚

𝑘=1

 

 
 

where yi is the weight connection between the 

 

 

𝑖𝑡ℎ    
neuron in the pattern layer and the S-summation neuron, 
n is the number of the training patterns, D is the 
Gaussian function, m is the number of elements of an 

input vector, 

 

 

𝑥𝑘   and 

 

𝑥𝑖𝑘   are the 

 

 

𝑗𝑡ℎ   element of x and , 

respectively, and 

 

 

𝜎  is the spread parameter, whose 
optimal value is determined experimentally. 

Compared to other ANN models such as the 
backpropagation (BP) neural network model, the GRNN 
needs only a fraction of the training samples a BP neural 
network would need. Therefore, it has the advantage that 
it is able to converge to the underlying function of the 
data with only few training samples available (Specht, 
1991). Furthermore, since the task of determining the 
best values for the several network parameters is difficult 
and  often  involves  some trial and error methods, GRNN  
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Figure 2. General structure of GRNN. 

 
 
 

 
 
Figure 3. The eudesmane skeleton. 

 
 

 

models require only one parameter (the spread constant) 
to be adjusted experimentally. This makes GRNN a very 
useful tool to perform predictions and comparisons of 
system performance in practice. Previous works relating 
the predictive capability of GRNN to BP neural network 
and other nonlinear regression techniques highlighted the 
advantages of GRNN to include excellent approximation 
ability, fast training time, and exceptional stability during 
the prediction stage (Sun et al., 2008; Mahesh et al., 
2014). 
 

 
MATERIALS AND METHODS 
 

The structure of any natural product is conventionally divisible into 
three sub-units: (i) the skeletal atoms; (ii) heteroatoms directly 
bonded to the skeletal atoms or unsaturations between them; and 
(iii) secondary carbon chains, usually bound to a skeletal atom 
through an ester or ether linkage (Rodrigues et al., 1997). For 
identification purposes and for structural elucidation of new 

compounds, it is necessary to have access to extensive list of their 
structural data. In the present study, we made use of structural 
(skeletal) 

13
C  data,  substituents  and stereochemical information of 

325 (out of the total 350) eudesmane compounds published by 
Olievera et al. (2000). This information can be extracted from data 
of eudesmane sesquiterpenes published in literature by isolating 
13

C values of the skeletal (carbon) from those of the substituents. 
The compounds left out were those whose substituents were not 
stated explicitly due to structural complexity. ANNs work through 
learning method, their training must, therefore, be done with the use 

of well detailed and correct data to avoid an erroneous learning 
process. Of the 325 compounds used, 34 were reserved for use as 
test cases (these were not used in training the neural network). The 
structure of the eudesmane skeleton with the numbering of each 
carbon atom is shown in Figure 3. 

Three Excel worksheets containing coded information on the 
input and target data for the training and test compounds were 
prepared. On the first row of the first sheet, the compounds were 
assigned codes 1-291. In the first column of the same sheet, the 
positions of each carbon atoms on the skeleton (as shown in Figure 
3) were coded as 1-15. The 

13
C chemical shift data for each Carbon 

at each of the 15 positions was recorded for each compound. 
These represent the input data subsequently used in training of the 
net. Another Excel sheet in the format just described was prepared 
except that it contained 

13
C chemical shift data for the test 

compounds (coded 1-34). The 
13

C chemical shift data for skeletons 
of the test compounds are presented in Table 1. Since ANNs learn 

through examples, the test compounds were selected based on the 
representativeness of their substitution patterns in the table of 
structural information published by Oliveira et al. (2000). This was 
done largely by visual inspection. These represent the input data for 
the test compounds. 

In preparing the target data, each substituent type (on first 
encounter) was assigned 3 number codes. These codes serve to 
identify the substituent, while also taking into account its possible 
stereochemistry (α or β) in various positions of the skeletons in 

other compounds. Carbon positions without substituents were 
assigned a code of 0 while α and β positions without substituent(s) 
were assigned codes of 1 and 2, respectively. For example, OH 
group was given a code of 3, an α-OH is given a code of 4 while a 
β-OH was assigned a code of 5.  

After the construction of the worksheets, the data were 
transferred into the neural network toolbox of MATLAB 7.8.0 
(MATLAB and Statistics Toolbox Release, 2009a). From the 
command window, the ‘nntool’ command was used to designate the 
imported data appropriately as ‘input’ or ‘target’ and to select the 
appropriate  network  for  training. The  network  types  employed in  
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Table 1. 

13
C NMR chemical shift data for test compounds. 

 

Site 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

C-1 78.9 84.5 76.1 79 70.7 72.6 71.6 75 70 76.2 73.4 75.3 68.4 41.6 40.5 41.4 76.7 76.8 

C-2 26.7 23.4 71.3 23.4 71.3 67.7 70.4 67.3 67.9 70.7 24 25.1 68.2 19.2 20.8 20.1 32.1 26.7 

C-3 45.2 43 32.4 26.7 30.9 44.1 31.5 41.1 42.2 31.7 38.1 37.9 41.9 41.6 39.5 44.5 121.2 32.1 

C-4 75.4 82.5 33.5 39.9 39.2 70.2 39.8 72.1 69.6 34.2 70.4 70.5 69.6 71.9 71.8 77 133.5 139.2 

C-5 55.3 57.4 91.4 88.5 87 91.7 87.6 91.5 91.2 92.4 92.6 92.1 91.1 51 53 48.5 50.8 136.4 

C-6 69.7 69.4 75.1 32 35.9 69.2 36.1 76.9 78.1 75.5 78.1 72.6 71.7 77.9 70.9 20.5 71.4 206.8 

C-7 49.9 49.8 53 48 43.7 54.1 44 53.6 49.2 65.8 52.1 53.2 49 44.4 49.8 41.7 49.3 57.5 

C-8 21.2 23.8 72 70 31.1 77.3 31.3 73.8 34.5 198.7 77.2 78.1 34.6 23.2 26.7 21.3 20.3 21.7 

C-9 41 33.1 75.7 74.3 74.3 72.3 73.8 75.3 69.8 80.4 76.5 70.3 78.1 39.1 80.5 41.5 35.4 37 

C-10 34.8 48.5 49 49 47 50.1 47.4 50.6 55.1 52.7 47.9 52.4 55.2 37.3 39.4 34.2 37.7 43 

C-11 28.9 29.6 81.3 80.5 82.3 84.8 82.6 84.4 84.6 84.1 84.1 82.7 84.5 24 28.7 74.6 28.6 25.8 

C-12 21.2 21.8 24.1 22.9 24 26.7 19.3 30 25.7 25.6 29.7 24.3 25.5 22.3 21.3 29.9 22.2 18.2 

C-13 20.8 21 30.7 29.9 30.2 30.3 20.1 26.7 29.4 31.2 25.5 29.5 25.1 25.3 20.4 29.5 20.1 21 

C-14 21.6 17.8 18.7 16.1 19.4 25.5 24.5 24.2 25.1 18.6 23.7 22.7 29.2 23.4 29.7 21.8 20.7 20.7 

C-15 15.3 22.8 13.3 61.2 20 20.7 30.4 61.7 65.9 61 13.3 60.5 65.2 19.5 13.7 18.4 12.2 18.3 
 
 
 

Table 1. Contd. 

 

Site 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

C-1 37.4 79.2 80.7 31.9 36.5 81.5 78.7 33.4 76.1 75.5 42.9 40.9 44.3 37.8 30.7 41.9 

C-2 33.8 32.5 28 25.1 25.6 40.6 30 23.1 29.6 27.8 19.5 22.7 75.3 23 18.5 26.7 

C-3 199 35.2 33.8 73.4 72.9 39.4 39.7 72.3 39.1 35.6 43.6 39.7 121.6 121.1 32.2 37.8 

C-4 128.9 146.4 148.2 75.4 85.7 70.9 71 83.4 65.9 81.3 73.5 79.7 139 134.8 143.4 143 

C-5 162.6 56.2 48.7 48.9 48.6 46.8 47.6 45.6 60.6 56.7 57.9 47.3 47.2 46.9 129 57.9 

C-6 28.8 67.2 24.2 143.2 140.1 23.5 26.8 26.1 66.3 71.7 73.3 19.6 28.9 29.4 32.9 69.3 

C-7 49.7 49.6 47.6 145.4 145.1 142.1 129.9 130.5 56.3 50.7 50.3 39.4 40.1 40.1 37.1 48.1 

C-8 22.6 18.5 21.9 201.3 200.3 116.1 202 210.7 67.5 25.2 26.8 23.3 26.7 27.4 35.7 23.9 

C-9 42 36.5 36.6 57.7 57.6 23.1 55.4 60.4 44.5 39.9 42.6 40.6 39.8 40.1 79.9 40.4 

C-10 35.9 41.8 39.1 39.2 40 36.9 40.3 36 42.4 40.8 36.3 35 35.2 32.3 39.1 37.4 

C-11 72.4 26.3 72.7 72 71.7 35.1 146.4 146.1 137.7 143.7 142.3 146.6 145.1 145.3 131.6 147.3 

C-12 26.8 21.1 27 29.3 28.9 21.9 23.1 23.7 128.8 125.2 125.8 110.8 125.1 172.4 125.5 124.6 

C-13 27.5 16.4 27.2 28.8 29.1 21.3 23.8 23.1 167.4 167.9 168.3 22.7 172.3 125 170.8 168.1 

C-14 10.9 107.9 107.2 22.4 18.7 29.9 25.9 19.3 63.7 74.8 23.8 18.1 21 21.1 19.8 106.9 

C-15 22.6 11.7 11.2 17.7 18.5 12.9 12.7 18.3 12.9 15.3 19.7 18.8 16.4 15.7 19 17.6 
 
 
 

the training of test data include perceptron, feed-forward BP and 
GRNNs. Several network parameters including number of layers, 
training function, adaptation learning function, performance 
function, number of neurons, were varied for feed-forward BP and 
perceptron neural networks while for GRNN, only the spread 
constant was varied. The effectiveness of each training was 
assessed by simulation with the test data (not previously used for 
training and therefore unknown to the network). The aim was to 
ascertain whether the neural network would be able to predict 
correctly the substituents and their positions on the eudesmane 
skeleton. After trying several neural network types and network 
parameters, the GRNN at a spread constant of 1.0 was found to 
give the best results. 
 
 

RESULTS AND DISCUSSION 
 

Eudesmanes    may    or    may    not    be     oxygenated.  

Oxygenated eudesmanes may be alcohols, ethers, 
epoxides, peroxides, aldehydes, ketones, carboxylic 
acids and lactones. These different functional group 
substituents are important in determining the individual 
biological activities of the various sesquiterpenoids, 
hence the need to correctly predict the substituent types 
and their positions on the skeleton. 

The results obtained after training of the neural network 
and simulating with the test data using GRNN are 
presented in Table 2. Percentage (%) recognition of the 
compounds was calculated from the number of correctly 
predicted points relative to the total number of positions 
on each compound (15). This ranged between 73.33 and 
100% except for test compounds 8 and 12 where 33.33 
and 40%, respectively were obtained. 
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Table 2. Expected (Exp.) and predicted (Pred.) substituents on eudesmane skeleton. 

 

Site 
1  2  3  4  5  6  7 

Exp. Pred.  Exp. Pred.  Exp. Pred.  Exp. Pred.  Exp. Pred.  Exp. Pred.  Exp. Pred. 

C-1 β-OH β-OH  β-Oxy α -Oxy  β-OH α-OGly  OAc OBzt  OAc OAc  β -OAc α -OAc  β -OAc β –Oac 

C-2 - -  - -  β-OH α-OGly  - -  OBzt OBzt  β-OH OEpcin  β-OiBu α-OBut 

C-3 - -  - -  - -  - -  - -  - -  - - 

C-4 α-OH β-OH  β-Oxy α -Oxy  - -  - -  - -  α-OH α-OH  - - 

C-5 - -  - -  α -Oxy α -Oxy  α -Oxy α-Oxy  α-Oxy α-Oxy  α-Oxy α-Oxy  α-Oxy α-Oxy 

C-6 OCin α- OCin  β-OCin α-OGly (OAc)4  α-OAc α-OAc  - -  - -  α-OAc α-OAc  - - 

C-7 - -  - -  - -  - -  - -  - -  - - 

C-8 - -  - -  β-OBzt α -OBzt  β -OAc α-OAc  - -  α-OBzt α-OBzt  - - 

C-9 - -  - -  β-OBzt β-OBzt  OBzt OBzt  α-OEpcin α-OEpcin  α-OBzt α-OBzt  α- OCin α-O-trans(3’-OAc-2-butenoate) 

C-10 - -  - -  - -  - -  - -  - -  - - 

C-11 β β  β β  Oxy, α Oxy, α  Oxy, α Oxy, α  Oxy, α Oxy, α  Oxy, α Oxy, α  Oxy, α Oxy, α 

C-12 - -  - -  - -  - -  - -  - -  - - 

C-13 - -  - -  - -  - -  - -  - -  - - 

C-14 β α  α β  β β  β β  β β  β β  β β 

C-15 β β  β β  β β  OAc OAc  β β  β β  β β 

                     

% Recognition 80  73.33  80  86.67  100  86.67  86.67 

 
 
 
Table 2. Contd. 

 

Site 
8  9  11  12  13  20  21  22  23 

Exp. Pred.  Exp. Pred.  Exp. Pred.  Exp. Pred.  Exp. Pred.  Exp. Pred.  Exp. Pred.  Exp. Pred.  Exp. Pred. 

C-1 α-OAc OAc  β-OBut β-OBut  α-OBzt α-OBzt  β-OCin β-OCin  α-ONic α-ONic  β -OH β -OH  β -OAc β -OH  - -  - - 

C-2 α-OAc OiBu  β-OBut β-OBut  - -  - -  α-OAc α-OAc  - -  - -  - -  - - 

C-3 - -  - -  - -  - -  - -  - -  - -  α-OH α-OH  β-OAng ∆1 

C-4 β-OH α-OH  α-OH α-OH  β-OH β-OH  α-OH β -OH  β -OH β -OH  ∆4(14) ∆4(14)  ∆4(14) ∆4(14)  α-OH β -OH  β -OAc β -OAc 

C-5 β-Oxy α-Oxy  α-Oxy α-Oxy  β-Oxy β-Oxy  α-Oxy β -Oxy  Oxy Oxy  - -  - -  - -  - - 

C-6 β-OH α-OH  α-OAc α-OAc  β -OAc β-OAc  α-OAc β -OAc  OAc OAc  α-OH α-OH  - -  ∆6 ∆6  ∆6 ∆6 

C-7 - -  - -  - -  - -  - -  - -  - -  - -  - - 

C-8 β-OiBu α -OAc  - -  β -OAc β-OH  β -OAc O-Cis-(3’-OAc-2-butenoate)  - -  - -  - -  Oxo Oxo  Oxo Oxo 

C-9 α-OBzt OBzt  α-OBzt α-OFur  α-OAc α-OAc  β-OBzt α-OBzt  OFur α-OEpcin  - -  - -  - -  - - 

C-10 - -  - -  - -  - -  - -  - -  - -  - -  - - 

C-11 Oxy, β Oxy, α  Oxy, α Oxy, α  Oxy, β Oxy, β  Oxy, α Oxy, β  Oxy Oxy  - β  OH, β OH, β  OH OH  OH OH 

C-12 - -  - -  - -  - -  - -  - -  - -  - -  - - 

C-13 - -  - -  - -  - -  - -  - -  - -  - -  - - 

C-14 α β  β Β  Α α  β α  α Α  - -  - -  β α  α α 

C-15 β-OiBu, α OiBu  OAc, β OAc, β  Α α  OAc, β OAc, α  OAc, α OiBu, α  β β  β β  β β  β β 

                           

% Recognition 33.33  93.33  93.33  40  86.67  93.33  93.33  80  93.33 
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Table 2. Contd. 

 

Site 
24  25  26  27  28  30  33 

Exp. Pred.  Exp. Pred.  Exp. Pred.  Exp. Pred.  Exp. Pred.  Exp. Pred.  Exp. Pred. 

C-1 β-OAc β-OH  α-OH α-OH  - -  β -OH β -OH  βO(αOH-dihydroCou) βO(α-OH-iVa)  - -  - - 

C-2 - -  - -  - -  - -  - -  - -  - - 

C-3 - -  - -  β-OAng α-OEpang  - -  - -  - -  - - 

C-4 β-OH β-OH  α-OH α-OH  α-OAc α-OAc  β -OH β -OH  β -OH β -OH  β-OFuc(3’4’Oisopropylidene) β-OTig  ∆4 ∆4 

C-5 - -  - -  - -  - -  - -  - -  - - 

C-6 - -  - -  - -  α-OH α-OH  α-OH α-OH  - -  - - 

C-7 ∆7 ∆7  ∆7(11) ∆7(11)  ∆7(11) ∆7(11)  - -  - -  - -  - - 

C-8 - -  Oxo Oxo  Oxo Oxo  α-OH α-OMe Acr(4’OH)  - -  - -  - - 

C-9 - -  - -  - -  - -  - -  - -  β-OAc β-OAc 

C-10 - -  - -  - -  - -  - -  - -  - - 

C-11 - -  - -  - -  ∆11, β ∆11, β  ∆11, β ∆11, β  ∆11, β ∆11, β  ∆11 ∆11 

C-12 - -  - -  - -  - -  - -  - -  - - 

C-13 - -  - -  - -  Oxo, OMe Oxo, OMe  Oxo, OMe Oxo, OMe  - -  OH, Oxo OH, Oxo 

C-14 Α α  β β  β β  OH, α OH, α  O-Gly, α O-Gly, α  α α  - - 

C-15 Β β  α α  β β  β β  β β  α α  β β 

                     

% Recognition 93.33  100  93.33  93.33  93.33  93.33  100 

 

 
 
Results for test compounds 10, 14, 15, 16, 17, 18, 
19, 31, 32 and 34 are not shown because the 
network presented all the positions on the 
skeleton as un-substituted. This may be due to 
the non-existence of precise rules for these 
compounds. From the results presented in Table 
2, there is 100% recognition of the un-substituted 
positions (designated as ‘-’) on the eudesmane 
skeleton in all the compounds tested The results 
obtained when perceptron and feed-forward BP 
neural networks (employing varying network 
parameters) were used are not presented since 
the substituents predicted to be on the 
eudesmane skeleton for all the test compounds, 
are largely inaccurate.  

 
 
Conclusion 
 

Neural networks learn from examples and acquire  

their ‘knowledge’ by induction. They can 
generalize, provide flexible non-linear models of 
input/output relationships can cope with noisy 
data and are fault-tolerant (Schneider and Wrede, 
1998). From this study, it could be seen that the 
predictions obtained using the GRNN were in 
good agreement with the actual substituents on 
the skeletons of the test compounds. This is 
despite the large variations in the nature of 
substituents on the eudesmane skeleton of the 
various compounds used in the study. Where the 
skeleton type of a natural product has been 
ascertained by sequential comparison of unknown 
target spectrum with a set of library spectra or 
using ANNs, GRNN could be an excellent 
complimentary tool to use in predicting the nature 
of substituents attached to eudesmane skeletons. 
Moreover, it would also be possible to perform the 
training of the networks interactively, so that every 
researcher   dealing    with    the   identification   of 

substituents on skeletons of natural products 
could create a network specialized in groups of 
such complex substances. 
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