

African Journal of Plant Science

Full Length Research Paper

Correlations and path Analysis of some quantitative characters in barley (*Hordeum vulgareum* L.) landraces in western Oromia, Ethiopia

Geleta Negash^{1*}, Dagnachew Lule² and Zerihun Jalata³

¹Oromia Agricultural Research Institute(OARI), HaroSebu Agricultural Research Center, P. O. Box 10, HaroSebu, Ethiopia.

²Oromia Agricultural Research Institute, P.O. Box 81256, Addis Ababa, Ethiopia. ³Faculty of Agriculture Department of Plant Sciences, Wollega University, Nekemte, Ethiopia.

Received 25 November, 2018; Accepted 2 January, 2019

Barley is recognized as one of the oldest cereal crop in Ethiopia grown for various uses. The knowledge of the association between various yield components and yield is paramount important for effective selection in crop improvement. The present study was to determine the interrelationship and direct and indirect effects of yield component traits on grain yield of Ethiopian landraces barley for further breeding activities of yield improvement. One hundred barley landraces were laid out in 10 x 10 simple lattice design with two replications in 2017 main cropping season at Mata sub site of Haro-Sabu Agricultural Research Center (HSARC). The analysis of variance revealed highly significant ($p \le 0.01$) to low significant ($p \le 0.05$) difference for all the characters. Sixteen parameters were evaluated to assess the inter relationship among yield and yield-related agronomic characters and their effect on grain yield. Grain yield showed positive and significant genotypic correlations with grain weight per spike (r_{g =} 0.36), spike weight per plant (r_{g} = 0.38), 1000-seed weight (r_{g} = 0.66), biological yield (r_{g} = 0.83), awn length (r_{g} = 0.34) and plant height ($r_{a=}$ 0.23). The result revealed that biological yield, 1000-seed weight, productive tillers per plant and grain weight per spike were the most important yield components as they exerted positive direct effect on grain yield as well as positive genetic association with each other explaining the existence of significant correlation. This suggests that simultaneous improvement in these characters might be possible.

Keywords: Barley, phenotypic association, genotypic association, direct and indirect effects.

INTRODUCTION

Barley has a long history as a domesticated crop, as one of the first to be adopted for cultivation. In Ethiopia, barley is 5th major crop after maize, tef, sorghum and wheat in production (CSA, 2016/2017). It has been cultivated in

different regions of Ethiopia and produced twice annually, during the main season (Meher) and during the short rainy season (Belg). Moreover, Oromia, Amara, South Nation and Nationality of People (SNNP) and Tigray are

*Corresponding author. Email: geleta2017@gmail.com.

Author(s) agree that this article remain permanently open access under the terms of the <u>Creative Commons Attribution</u> <u>License 4.0 International License</u> the major barley growing regions which account more than 85% of the total production (Chilot et al., 2008). It is used for human consumption, food and feed (Harlan, 2008). It is prepared in different forms of indigenous food and homemade beverages (Fekadu et al., 2005). Additionally, barley has health benefits, such as barley βglucans used to reduce blood cholesterol, glucose and weight loss by increased satiety, controls heart disease and type-2 diabetes (Behall et al., 2004; Ripple et al., 2009).

Selection of desired genotypes increased diversity and is used for modem plant breeding (Von Bothmer et al., 2003). In Ethiopia, barley landraces show high diversity mainly due to cultivation under variable climatic, farming systems, ecological and human management. Ethiopian barley landraces are important source of genes for several traits like barley yellow dwarf virus resistance, powdery mildew, high lysine content, good vegetative vigor, drought resistance and resistance to several barley diseases (Qualset, 1975; IBC, 2008). Furthermore, Ethiopian barley landraces have useful characteristics such as high tillering capacity; tolerance to marginal soil conditions, barley shoot fly, aphids and frost resistance; vigorous seedling establishment; and quick grain filling period (Birhanu et al., 2005).

Yield is a complex quantitative trait controlled by a large number of genes with small cumulative effect which, is highly influenced by environment (Dyulgerova, 2012). Hence, selection of barley lines based on direct selection for yield would not be effective. For better and successful yield improvement, selection has to be made for the component traits of yield. This requires understanding of interrelationship between component characters that help in determining which character to select when improvement of the related complex character is desired. Correlation between different traits is generally due to the presence of linkage disequilibrium, pleiotropic gene actions and epistatic effect of different genes (Falconer, 1985). A knowledge of correlations that exists between desirable characters can facilitate the interpretation of results obtained and provide the basis for planning more efficient program for the future (Martintell et al., 2005).

Genotypic correlation coefficient offers a measure of the genetic association between characteristics and may provide an important criterion of the selection procedures (Can and Yoshida, 1999). Although correlation coefficient is very important to determine traits that directly affect grain yield, it is insufficient to determine indirect effect of these traits on grain yields. Thus, path-coefficient analysis is one of the reliable statistical techniques which, allow quantifying the interrelations of different components and their direct and indirect effects on grain yield through correlation estimates (Dyulgerova, 2012). Path coefficient analysis is simply a standardized partial regression coefficient that, measures the direct and indirect effects for one variable upon another. And also permits the separation of the correlation coefficient into components of direct and indirect effect (Dewey and Lu, 1959). Using path coefficient analysis, it is easy to determine which yield component/s is/are influencing the yield substantially and so that selection can then be based on that criterion thus making possible great progress through selection (Garcia et al., 2003; Kashif, et al., 2004).

The magnitude of association between yield and its component as well as their utilization in the selection has reported in barley by many researchers been (Dyulgerova, 2012; Tofiq et al., 2015; Hailu et al., 2016; Amardeep et al., 2017). Breeding for grain yield improvement is dependent on the presence of genetic diversity which is an important factor in any successful hybridization program. Quantitative characters like as grain yield is a complex character influenced directly or indirectly by several genes present in the plant (Bhutta et al., 2005) that making difficult for direct selection. In most breedina programs. the strategy is based on simultaneous selection for several traits and therefore the knowledge on the genetic association between traits is very useful for the establishment of selection criteria.

Therefore, the main objective of the study was to examine the prevailing genetic variability, the effects and the association among agronomic characters in Ethiopia landraces barley for further breeding activities of yield improvement. The specific objectives were to assess the variability and associations among yield and yield-related agro-morphological characters of barley landraces and to assess the direct and indirect effects of yield components on yield of barley landraces.

MATERIALS AND METHODS

Study area

The experiment was conducted during the main cropping season in 2017 at HSARC, Mata research sub-site, Western Oromia, Ethiopia. The area is located at 8°53'33"N latitude and 34°80'11"E longitude at the Mata research sub-site found with an elevation of 1900 m.a.s.l. Soil types is classified as about 90% loam, 6% sand and 4% clay soil. The nine years (2009- 2017) mean annual rainfall of the area was 1219.15 mm. The relative humidity was 67.5%. The nine years (2009- 2017) mean minimum and maximum annual temperatures were 16.21 and 27.77°C, respectively (Appendix 1 and 2) (Sayo Agriculture and Natural Resource office, Dembi Dollo, Unpublished).

Breeding materials and experimental design

A total of 100 food barley, of which 97 were landraces and two released varieties as standard checks (HB 1307 and Abdane) and one local check were evaluated (Table 1). Materials were sown in the second week of August 2017 in Mata sub site in 10 x 10 simple lattice design with two replications. Seed was drilled on 20 cm row spacing, 1.65 m row length and 1 m spacing between each block. Seed rate of 85 kg ha⁻¹ and recommended dose of fertilizer (41:57:00, NPK kg per ha) were applied (50 kg/ha Urea and 100 kg/ ha DAP). Other crop management practices were undertaken as

 Table 1. Passport description of the test barley landraces.

Entry code	Acc. N <u>o</u>	Genus name	species name	Region	Zone	Woreda	Latitude	Longitude	Altitude (m.a.s.l)
1	64197	Hordeum	Sp.	Amara	MirabGojam	Merawi	12-24-00-N	37-05-00-E	2090
2	3239	Hordeum	vulgare	Amara	Semen Gondar	Dembia	12-23-00-N	37-17-00-E	1830
3	3240	Hordeum	vulgare	Amara	Semen Gondar	Dembia	12-18-00-N	37-10-00-E	1830
4	4560	Hordeum	vulgare	Oromiya	MirabWellega	Gimbi	09-10-00-N	35-42-00-E	1900
5	3465	Hordeum	vulgare	Oromiya	MirabShewa	Ambo	08-57-00-N	37-46-00-E	1800
6	3583	Hordeum	vulgare	SNNP	Semen Omo	Damot Gale	07-00-00-N	37-53-00-E	2140
7	3612	Hordeum	vulgare	Oromiya	Jimma	TiroAfeta	07-14-00-N	36-55-00-E	1810
8	3617	Hordeum	vulgare	Oromiya	Jimma	Sokoru	07-55-00-N	37-24-00-E	1890
9	3632	Hordeum	vulgare	Oromiya	MirabWellega	Jarso	09-32-00-N	35-28-00-E	1800
10	3638	Hordeum	vulgare	Amara	Debub Gondar	Fogera	11-49-00-N	37-37-00-E	1780
11	3763	Hordeum	vulgare	Amara	Semen Gonder	Chilga	12-31-00-N	37-10-00-E	1870
12	3940	Hordeum	vulgare	Oromiya	MirabHarerge	Chiro	08-54-00-N	40-46-00-E	1830
13	3941	Hordeum	vulgare	Oromiya	MirabHarerge	Habro	08-54-00-N	40-46-00-E	1890
14	3943	Hordeum	vulgare	Oromiya	MirabHarerge	Habro	09-05-00-N	40-50-00-E	1870
15	235286	Hordeum	vulgare	Tigray	Debubawi	Enderta	13-38-00-N	39-17-00-E	1780
16	4193	Hordeum	vulgare	Oromiya	MirabHarerge	Chiro	09-02-00-N	40-44-00-E	1870
17	4194	Hordeum	vulgare	Oromiya	MirabHarerge	Chiro	09-03-00-N	40-44-00-E	1840
18	4195	Hordeum	vulgare	Oromiya	MirabHarerge	Doba	09-26-00-N	41-02-00-E	1800
19	202561	Hordeum	vulgare	Oromiya	Bale	Gololcha	07-32-00-N	40-42-00-E	2090
20	239513	Hordeum	Sp.	Oromiya	Bale	Ginir	07-04-77-N	40-31-71-E	2050
21	64022	Hordeum	sp.	SNNP	Semen Omo	Damot Gale	06-53-00-N	37-48-00-E	2140
22	64053	Hordeum	sp.	SNNP	Semen Omo	Chencha	06-12-00-N	37-35-00-E	2150
23	64248	Hordeum	sp.	SNNP	Semen Omo	SodoZuria	07-02-00-N	37-54-00-E	1900
24	64260	Hordeum	sp.	Oromiya	Arssi	Digelunatuo	07-29-00-N	39-15-00-E	1910
25	237021	Hordeum	vulgare	Amara	Semen Shewa	Shenkora	08-50-00-N	39-20-00-E	1750
26	64344	Hordeum	vulgare	Oromiya	Jimma	LimuSeka	07-33-00-N	36-36-00-E	1880
27	64345	Hordeum	vulgare	SNNP	KefichoShekicho	Decha	07-10-00-N	36-21-00-E	2140
28	202536	Hordeum	vulgare	Amara	Semen Gondar	Wegera	12-47-00-N	37-40-00-E	1750
29	202537	Hordeum	vulgare	Amara	Semen Gondar	Wegera	12-47-00-N	37-40-00-E	1750
30	202538	Hordeum	vulgare	Amara	Semen Gondar	Wegera	12-47-00-N	37-40-00-E	1750
31	202539	Hordeum	vulgare	Amara	Semen Gondar	Dabat	13-03-00-N	37-47-00-E	1810
32	202540	Hordeum	vulgare	Amara	Semen Gondar	Dabat	13-03-00-N	37-47-00-E	1810
33	202541	Hordeum	vulgare	Amara	Semen Gondar	Dembia	12-23-00-N	37-17-00-E	1830
34	202542	Hordeum	vulgare	Amara	Semen Gondar	Dembia	12-18-00-N	37-10-00-E	1830
35	202660	Hordeum	vulgare	Oromiya	Jimma	TiroAfeta	07-41-00-N	36-58-00-E	1810
36	202661	Hordeum	vulgare	Oromiya	Jimma	TiroAfeta	07-41-00-N	36-58-00-E	1810

Table 1. Contd.

37	202670	Hordeum	vulgare	Oromiya	Jimma	Sokoru	07-55-00-N	37-24-00-E	1890
38	202676	Hordeum	vulgare	Amara	Debub Gondar	Fogera	11-49-00-N	37-37-00-E	1780
39	202820	Hordeum	vulgare	Oromiya	MirabHarerge	Tulo	09-09-00-N	41-07-00-E	1910
40	202536	Hordeum	vulgare	Amara	Semen Gonder	Wegera	12-47-00-N	37-40-00-E	1750
41	12970	Hordeum	sp.	SNNP	Semen Omo	Chencha	37-36-00-N	06-09-00-E	2150
42	212972	Hordeum	sp.	Oromiya	Borena	Yabelo	37-44-00-N	05-01-00-E	1850
43	217010	Hordeum	vulgare	Amara	Semen Gonder	Chilga	12-38-00-N	37-06-00-E	2090
44	217173	Hordeum	vulgare	Oromiya	Jimma	LimuSeka	07-33-00-N	36-36-00-E	1880
45	217175	Hordeum	vulgare	Oromiya	Jimma	LimuSeka	07-33-00-N	36-36-00-E	1880
46	217176	Hordeum	vulgare	SNNP	KefichoShekicho	Decha	07-10-00-N	36-21-00-E	2140
47	219151	Hordeum	vulgare	Oromiya	MirabHarerge	Doba	09-19-00-N	41-03-00-E	2020
48	219152	Hordeum	vulgare	Oromiya	MirabHarerge	Doba	09-11-00-N	41-03-00-E	2100
49	219148	Hordeum	vulgare	Oromiya	MirabHarerge	Habro	08-49-00-N	40-28-00-E	1800
50	219307	Hordeum	vulgare	Oromiya	Borena	Hagermariam	05-39-00-N	38-13-00-E	1880
51	219311	Hordeum	vulgare	Oromiya	Borena	Yabelo	04-52-00-N	38-05-00-E	1870
52	219316	Hordeum	vulgare	Oromiya	Borena	AdolanaWadera	05-53-00-N	39-11-00-E	1820
53	219317	Hordeum	vulgare	Oromiya	Borena	AdolanaWadera	05-44-00-N	39-20-00-E	1800
54	220677	Hordeum	sp.	Amara	Semen Shewa	Shenkora	08-48-00-N	39-21-00-E	2000
55	221312	Hordeum	sp.	SNNP	Hadiya	Soro	07-13-00-N	37-46-00-E	2130
56	221313	Hordeum	sp.	SNNP	Hadiya	Soro	07-13-00-N	37-46-00-E	2130
57	221324	Hordeum	sp.	SNNP	Semen Omo	Chencha	06-09-00-N	37-36-00-E	2150
58	223192	Hordeum	sp.	Tigray	Misrakawi	Wukro	13-43-00-N	39-28-00-E	1930
59	223194	Hordeum	sp.	Tigray	Misrakawi	Wukro	12-42-00-N	39-31-00-E	1940
60	225179	Hordeum	vulgare	SNNP	Semen Omo	Damot Gale	06-57-00-N	37-51-00-E	2100
61	225992	Hordeum	vulgare	Amara	Semen Gondar	Dembia	12-22-00-N	37-17-00-E	1830
62	229997	Hordeum	sp.	Oromiya	Bale	Nensebo	06-64-00-N	39-01-00-E	1940
63	230614	Hordeum	vulgare	Oromiya	Bale	Goro	07-01-00-N	40-29-00-E	1870
64	230620	Hordeum	vulgare	Oromiya	Bale	Ginir	07-05-00-N	40-36-00-E	1800
65	219307	Hordeum	vulgare	Oromiya	Borana	Hagermariam	05-39-00-N	38-13-00-E	1880
66	230622	Hordeum	vulgare	Oromiya	Bale	Ginir	07-05-00-N	40-36-00-E	1820
67	225176	Hordeum	vulgare	SNNP	Semen Omo	Damot Gale	06-57-00-N	37-51-00-E	2100
68	230624	Hordeum	vulgare	Oromiya	Bale	Ginir	07-08-00-N	40-42-00-E	1800
69	230628	Hordeum	vulgare	Oromiya	Bale	Ginir	07-11-00-N	40-44-00-E	1790
70	232372	Hordeum	vulgare	Oromiya	MisrakHararge	Meta	09-22-00-N	41-47-00-E	2020
71	231223	Hordeum	vulgare	Oromiya	Arssi	Merti	08-35-00-N	39-53-00-E	1780
72	232373	Hordeum	vulgare	Oromiya	MisrakHarerge	Meta	09-22-00-N	41-47-00-E	2020
73	233028	Hordeum	vulgare	SNNP	Semen Omo	Bonke	05-55-00-N	37-20-00-E	2050

Table 1. Contd.

74 234337 Hordeum vulgare Tigray Mehakelegnaw Adwa 14-05-00-N 38-57-00-E 1810 75 235264 Hordeum sp. Tigray Debubawi HintalWajirat 12-58-00-N 39-34-00-E 1850 76 235274 Hordeum sp. Tigray Debubawi Enderta 13-31-00-N 39-17-00-E 1620 77 235284 Hordeum vulgare Tigray Debubawi Enderta 13-340-0N-N 39-15-00-E 1840 79 233030 Hordeum vulgare Tigray Debubawi Enderta 13-40-00-N 39-15-00-E 1840 80 235299 Hordeum vulgare Tigray Debubawi Samre 13-23-00-N 39-14-00-E 1860 81 235635 Hordeum sp. SINP Bench Maji Dirashe Special 05-17-00-N 37-39-00-E 2150 84 235651 Hordeum sp. Oromiya Borena Yabelo										
75 235264 Hordeum sp. Tigray Debubawi HintaloWajirat 12.58-00-N 39-34-00-E 1850 76 235274 Hordeum sp. Tigray Debubawi Enderta 13.38-00-N 39-37-00-E 1620 77 235283 Hordeum vulgare Tigray Debubawi Enderta 13.48-00-N 39-15-00-E 1800 78 235284 Hordeum vulgare Tigray Debubawi Enderta 13.40-00-N 39-15-00-E 1840 79 233030 Hordeum vulgare Tigray Debubawi Samre 13.23-00-N 39-17-00-E 2030 80 235635 Hordeum sp. SNNP Bench Maji Dirashe Special 05-17-00-N 37-39-00-E 2150 81 235651 Hordeum sp. Oromiya Borena Yabelo 04-56-00-N 38-11-00-E 1780 84 235652 Hordeum sp. Oromiya Borena Yabelo 04-	74	234337	Hordeum	vulgare	Tigray	Mehakelegnaw	Adwa	14-05-00-N	38-57-00-E	1810
76 235274 Hordeum sp. Tigray Mehakelegnaw Abergele 13-31-00-N 39-07-00-E 1620 77 235283 Hordeum vulgare Tigray Debubawi Enderta 13-38-00-N 39-15-00-E 1900 78 235284 Hordeum vulgare Tigray Debubawi Enderta 13-40-00-N 39-15-00-E 1840 79 235284 Hordeum vulgare SNNP Semen Omo Bonke 05-58-00-N 37-17-00-E 2030 80 235299 Hordeum sp. SNNP Bench Maji Dirashe Special 05-17-00-N 37-39-00-E 2150 81 235637 Hordeum sp. SNNP Bench Maji Dirashe Special 05-17-00-N 37-39-00-E 2150 84 235651 Hordeum sp. Oromiya Borena Yabelo 04-56-00-N 38-11-00-E 1780 85 235652 Hordeum sp. Oromiya Borena Yabelo <t< td=""><td>75</td><td>235264</td><td>Hordeum</td><td>sp.</td><td>Tigray</td><td>Debubawi</td><td>HintaloWajirat</td><td>12-58-00-N</td><td>39-34-00-E</td><td>1850</td></t<>	75	235264	Hordeum	sp.	Tigray	Debubawi	HintaloWajirat	12-58-00-N	39-34-00-E	1850
77 235283 Hordeum vulgare Tigray Debubawi Enderta 13-38-00-N 39-15-00-E 1900 78 235284 Hordeum vulgare Tigray Debubawi Enderta 13-40-00-N 39-15-00-E 1840 79 233030 Hordeum vulgare Tigray Debubawi Samre 13-23-00-N 39-15-00-E 1860 80 235299 Hordeum vulgare Tigray Debubawi Samre 13-23-00-N 39-21-00-E 1860 81 235635 Hordeum sp. SNNP Bench Maji Dirashe Special 05-17-00-N 37-39-00-E 2150 82 235637 Hordeum sp. SNNP Bench Maji Dirashe Special 05-17-00-N 37-39-00-E 2150 84 235651 Hordeum sp. Oromiya Borena Yabelo 04-56-00-N 38-11-00-E 1780 85 235652 Hordeum sp. Oromiya Borena Hagermariam 05-28-00-N 38-15-00-E 1880 87 235746 Hordeum <td>76</td> <td>235274</td> <td>Hordeum</td> <td>sp.</td> <td>Tigray</td> <td>Mehakelegnaw</td> <td>Abergele</td> <td>13-31-00-N</td> <td>39-07-00-E</td> <td>1620</td>	76	235274	Hordeum	sp.	Tigray	Mehakelegnaw	Abergele	13-31-00-N	39-07-00-E	1620
78 235284 Hordeum vulgare Tigray Debubawi Enderta 13-40-00-N 39-15-00-E 1840 79 233030 Hordeum vulgare SNNP Semen Omo Bonke 05-58-00-N 37-17-00-E 2030 80 235299 Hordeum vulgare Tigray Debubawi Samre 13-23-00-N 39-21-00-E 1860 81 235635 Hordeum sp. SNNP Bench Maji Dirashe Special 05-17-00-N 37-39-00-E 2150 82 235635 Hordeum sp. SNNP Bench Maji Dirashe Special 05-17-00-N 37-39-00-E 2150 84 235651 Hordeum sp. Oromiya Borena Yabelo 04-56-00-N 38-11-00-E 1780 86 235654 Hordeum sp. Oromiya Borena Hagermariam 05-28-00-N 38-15-00-E 1880 87 235746 Hordeum sp. Oromiya Borena Mapermariam <	77	235283	Hordeum	vulgare	Tigray	Debubawi	Enderta	13-38-00-N	39-15-00-E	1900
79 233030 Hordeum vulgare SNNP Semen Omo Bonke 05-58-00-N 37-17-00-E 2030 80 235299 Hordeum vulgare Tigray Debubawi Samre 13-23-00-N 39-21-00-E 1860 81 235635 Hordeum sp. SNNP Bench Maji Dirashe Special 05-17-00-N 37-39-00-E 2150 82 235637 Hordeum sp. SNNP Bench Maji Dirashe Special 05-17-00-N 37-39-00-E 2150 83 235637 Hordeum sp. SNNP Bench Maji Dirashe Special 05-17-00-N 37-39-00-E 2150 84 235651 Hordeum sp. Oromiya Borena Yabelo 04-56-00-N 38-11-00-E 1780 85 235654 Hordeum sp. Oromiya Borena Hagermariam 05-28-00-N 38-11-00-E 1880 87 235746 Hordeum sp. Amara Semen Gonder Chilga 12-24-00-N 37-07-00-E 1750 89 237021 Hordeum </td <td>78</td> <td>235284</td> <td>Hordeum</td> <td>vulgare</td> <td>Tigray</td> <td>Debubawi</td> <td>Enderta</td> <td>13-40-00-N</td> <td>39-15-00-E</td> <td>1840</td>	78	235284	Hordeum	vulgare	Tigray	Debubawi	Enderta	13-40-00-N	39-15-00-E	1840
80 235299 Hordeum vulgare Tigray Debubawi Samre 13-23-00-N 39-21-00-E 1860 81 235635 Hordeum sp. SNNP Bench Maji Dirashe Special 05-17-00-N 37-39-00-E 2150 82 235636 Hordeum sp. SNNP Bench Maji Dirashe Special 05-17-00-N 37-39-00-E 2150 83 235637 Hordeum sp. SNNP Bench Maji Dirashe Special 05-17-00-N 37-39-00-E 2150 84 235651 Hordeum sp. Oromiya Borena Yabelo 04-56-00-N 38-11-00-E 1780 85 235654 Hordeum sp. Oromiya Borena Hagermariam 05-28-00-N 38-11-00-E 1780 86 237021 Hordeum sp. Oromiya Borena Mager MisjarnaShenkora 08-50-00-N 39-00-00-E 1800 90 239514 Hordeum vulgare Oromiya Bale	79	233030	Hordeum	vulgare	SNNP	Semen Omo	Bonke	05-58-00-N	37-17-00-E	2030
81 235635 Hordeum sp. SNNP Bench Maji Dirashe Special 05-17-00-N 37-39-00-E 2150 82 235636 Hordeum sp. SNNP Bench Maji Dirashe Special 05-17-00-N 37-39-00-E 2150 83 235637 Hordeum sp. SNNP Bench Maji Dirashe Special 05-17-00-N 37-39-00-E 2150 84 235651 Hordeum sp. Oromiya Borena Yabelo 04-56-00-N 38-11-00-E 1780 85 235652 Hordeum sp. Oromiya Borena Hagermariam 05-28-00-N 38-11-00-E 1780 86 235654 Hordeum sp. Oromiya Borena Hagermariam 05-28-00-N 38-15-00-E 1920 88 237021 Hordeum sp. Amara Semen Gonder Chilga 12-24-00-N 39-20-00-E 1750 89 237022 Hordeum vulgare Oromiya MirsakShewa Ada'aChukala 08-50-00-N 39-20-00-E 1800 90 239514	80	235299	Hordeum	vulgare	Tigray	Debubawi	Samre	13-23-00-N	39-21-00-E	1860
82 235636 Hordeum sp. SNNP Bench Maji Dirashe Special 05-17-00-N 37-39-00-E 2150 83 235637 Hordeum sp. SNNP Bench Maji Dirashe Special 05-17-00-N 37-39-00-E 2150 84 235651 Hordeum sp. Oromiya Borena Yabelo 04-56-00-N 38-11-00-E 1780 85 235652 Hordeum sp. Oromiya Borena Yabelo 04-56-00-N 38-11-00-E 1780 86 235654 Hordeum sp. Oromiya Borena Hagermariam 05-28-00-N 38-11-00-E 1780 87 235746 Hordeum sp. Amara Semen Gonder Chilga 12-24-00-N 37-07-0E 1920 88 237022 Hordeum vulgare Oromiya MisrakShewa Ada'aChukala 08-50-00-N 39-00-00-E 1800 90 239514 Hordeum sp. Oromiya Bale Ginir 0	81	235635	Hordeum	sp.	SNNP	Bench Maji	Dirashe Special	05-17-00-N	37-39-00-E	2150
83 235637 Hordeum sp. SNNP Bench Maji Dirashe Special 05-17-00-N 37-39-00-E 2150 84 235651 Hordeum sp. Oromiya Borena Yabelo 04-56-00-N 38-11-00-E 1780 85 235652 Hordeum sp. Oromiya Borena Yabelo 04-56-00-N 38-11-00-E 1780 86 235654 Hordeum sp. Oromiya Borena Hagermariam 05-28-00-N 38-15-00-E 1880 87 235746 Hordeum sp. Amara Semen Ghorder Chilga 12-24-00-N 37-07-00-E 1920 88 237021 Hordeum vulgare Amara Semen Shewa MiapahShenkora 08-50-00-N 39-00-00-E 1800 90 239514 Hordeum vulgare Oromiya MirabHarerge Mieso 07-17-36-N 38-22-98-E 1720 91 241675 Hordeum vulgare Tigray Debubawi HintaloWajirat<	82	235636	Hordeum	sp.	SNNP	Bench Maji	Dirashe Special	05-17-00-N	37-39-00-E	2150
84235651Hordeumsp.OromiyaBorenaYabelo04-56-00-N38-11-00-E178085235652Hordeumsp.OromiyaBorenaYabelo04-56-00-N38-11-00-E178086235654Hordeumsp.OromiyaBorenaHagermariam05-28-00-N38-15-00-E188087235746Hordeumsp.AmaraSemen GonderChilga12-24-00-N37-07-00-E192088237021HordeumvulgareAmaraSemen ShewaMinjarnaShenkora08-50-00-N39-20-00-E175089237022HordeumvulgareOromiyaBaleGinir07-09-00-N40-40-88-E205090239514Hordeumsp.OromiyaBaleGinir07-09-00-N40-40-88-E205091241675HordeumvulgareOromiyaMirabHarergeMieso07-17-36-N38-22-98-E172092242098HordeumvulgareTigrayDebubawiKalu11-06-0N39-47-00-E188094242581HordeumvulgareOromiyaBaleGoro07-00-0N40-27-40-E182895243182HordeumvulgareOromiyaBaleGoro06-59-44-N40-28-04-E183095243184HordeumvulgareOromiyaBaleGoro06-59-44-N40-28-04-E183096243184HordeumvulgareOromiyaBale	83	235637	Hordeum	sp.	SNNP	Bench Maji	Dirashe Special	05-17-00-N	37-39-00-E	2150
85 235652 Hordeum sp. Oromiya Borena Yabelo 04-56-00-N 38-11-00-E 1780 86 235654 Hordeum sp. Oromiya Borena Hagermariam 05-28-00-N 38-15-00-E 1880 87 235746 Hordeum sp. Amara Semen Gonder Chilga 12-24-00-N 37-07-00-E 1920 88 237021 Hordeum vulgare Amara Semen Shewa MinjarnaShenkora 08-50-00-N 39-20-00-E 1750 89 237022 Hordeum vulgare Oromiya MisrakShewa Ada'aChukala 08-50-00-N 39-00-00-E 1800 90 239514 Hordeum sp. Oromiya MisrakShewa Ada'aChukala 08-50-00-N 39-07-00-E 1750 91 241675 Hordeum vulgare Oromiya MirabHarerge Mieso 07-17-36-N 38-22-98-E 1720 92 242098 Hordeum vulgare Tigray DebubWello	84	235651	Hordeum	sp.	Oromiya	Borena	Yabelo	04-56-00-N	38-11-00-E	1780
86 235654 Hordeum sp. Oromiya Borena Hagermariam 05-28-00-N 38-15-00-E 1880 87 235746 Hordeum sp. Amara Semen Gonder Chilga 12-24-00-N 37-07-00-E 1920 88 237021 Hordeum vulgare Amara Semen Shewa MinjarnaShenkora 08-50-00-N 39-20-00-E 1750 89 237022 Hordeum vulgare Oromiya MisrakShewa Ada'aChukala 08-50-00-N 39-00-00-E 1800 90 239514 Hordeum sp. Oromiya Bale Ginir 07-09-00-N 40-40-88-E 2050 91 241675 Hordeum vulgare Oromiya MirabHarerge Mieso 07-17-36-N 38-22-98-E 1720 92 242098 Hordeum vulgare Tigray DebubWello Kalu 11-06-00-N 39-47-00-E 1820 93 242574 Hordeum vulgare Oromiya Bale Goro	85	235652	Hordeum	sp.	Oromiya	Borena	Yabelo	04-56-00-N	38-11-00-E	1780
87235746Hordeumsp.AmaraSemen GonderChilga12-24-00-N37-07-00-E192088237021HordeumvulgareAmaraSemen ShewaMinjarnaShenkora08-50-00-N39-20-00-E175089237022HordeumvulgareOromiyaMisrakShewaAda'aChukala08-50-00-N39-00-00-E180090239514Hordeumsp.OromiyaBaleGinir07-09-00-N40-40-88-E205091241675HordeumvulgareOromiyaMirabHarergeMieso07-17-36-N38-22-98-E172092242098HordeumvulgareAmaraDebubWelloKalu11-06-00-N39-47-00-E176093242574HordeumvulgareTigrayDebubawiHintaloWajirat13-52-10-N39-35-24-E182094242581HordeumvulgareOromiyaBaleGoro07-00-0N-N40-27-40-E182895243182HordeumvulgareOromiyaBaleGoro06-59-44-N40-28-04-E183096243184HordeumvulgareAmaraAgewawiGuangua10-39-00-N36-38-00-E181598HB1307HordeumvulgareOromiyaIsaleGuangua10-39-00-N36-38-00-E181598HB1307HordeumvulgareOromiyaIsaleIsaleIsaleIsaleIsaleIsale99AbdaneHordeum <td>86</td> <td>235654</td> <td>Hordeum</td> <td>sp.</td> <td>Oromiya</td> <td>Borena</td> <td>Hagermariam</td> <td>05-28-00-N</td> <td>38-15-00-E</td> <td>1880</td>	86	235654	Hordeum	sp.	Oromiya	Borena	Hagermariam	05-28-00-N	38-15-00-E	1880
88237021HordeumvulgareAmaraSemen ShewaMinjarnaShenkora08-50-00-N39-20-00-E175089237022HordeumvulgareOromiyaMisrakShewaAda'aChukala08-50-00-N39-00-00-E180090239514Hordeumsp.OromiyaBaleGinir07-09-00-N40-40-88-E205091241675HordeumvulgareOromiyaMirabHarergeMieso07-17-36-N38-22-98-E172092242098HordeumvulgareAmaraDebubWelloKalu11-06-00-N39-47-00-E176093242574HordeumvulgareTigrayDebubwelloKalu13-52-10-N39-35-24-E182094242581HordeumvulgareOromiyaBaleGoro07-00-00-N40-27-40-E182895243182HordeumvulgareOromiyaBaleGoro07-00-00-N40-27-40-E182896243184HordeumvulgareOromiyaBaleGoro06-59-44-N40-28-04-E183097243614HordeumvulgareAmaraAgewawiGuangua10-39-00-N36-38-00-E181598HB1307HordeumvulgareOromiyaMirae110-39-00-N36-38-00-E181599AbdaneHordeumvulgareOromiyaK.WollegaSayo (Mata)08-53-33-N34-80-11-E1700	87	235746	Hordeum	sp.	Amara	Semen Gonder	Chilga	12-24-00-N	37-07-00-E	1920
89237022HordeumvulgareOromiyaMisrakShewaAda'aChukala08-50-00-N39-00-00-E180090239514Hordeumsp.OromiyaBaleGinir07-09-00-N40-40-88-E205091241675HordeumvulgareOromiyaMirabHarergeMieso07-17-36-N38-22-98-E172092242098HordeumvulgareAmaraDebubWelloKalu11-06-00-N39-47-00-E176093242574HordeumvulgareTigrayDebubawiHintaloWajirat13-52-10-N39-35-24-E182094242581HordeumvulgareOromiyaBaleGoro07-00-00-N40-27-40-E182895243182HordeumvulgareOromiyaBaleGoro07-00-00-N40-27-40-E182896243184HordeumvulgareOromiyaBaleGoro06-59-44-N40-28-04-E183097243614HordeumvulgareOromiyaBaleGuangua10-39-00-N36-38-00-E181598HB1307HordeumvulgareOromiyaK.WollegaSayo (Mata)08-53-33-N34-80-11-E1700100LocalHordeumvulgareOromiyaK.WollegaSayo (Mata)08-53-33-N34-80-11-E1700	88	237021	Hordeum	vulgare	Amara	Semen Shewa	MinjarnaShenkora	08-50-00-N	39-20-00-E	1750
90239514Hordeumsp.OromiyaBaleGinir07-09-00-N40-40-88-E205091241675HordeumvulgareOromiyaMirabHarergeMieso07-17-36-N38-22-98-E172092242098HordeumvulgareAmaraDebubWelloKalu11-06-00-N39-47-00-E176093242574HordeumvulgareTigrayDebubawiHintaloWajirat13-52-10-N39-35-24-E182094242581HordeumvulgareOromiyaBaleGoro07-00-00-N40-27-40-E182895243182HordeumvulgareOromiyaBaleGoro07-00-00-N40-27-40-E182896243184HordeumvulgareOromiyaBaleGoro06-59-44-N40-28-04-E183097243614HordeumvulgareOromiyaBaleGuangua10-39-00-N36-38-00-E181598HB1307HordeumvulgareOromiyaK.WollegaSayo (Mata)08-53-33-N34-80-11-E1700100LocalHordeumvulgareOromiyaK.WollegaSayo (Mata)08-53-33-N34-80-11-E1700	89	237022	Hordeum	vulgare	Oromiya	MisrakShewa	Ada'aChukala	08-50-00-N	39-00-00-E	1800
91241675HordeumvulgareOromiyaMirabHarergeMieso07-17-36-N38-22-98-E172092242098HordeumvulgareAmaraDebubWelloKalu11-06-00-N39-47-00-E176093242574HordeumvulgareTigrayDebubawiHintaloWajirat13-52-10-N39-35-24-E182094242581HordeumvulgareOromiyaBaleGoro07-00-00-N40-27-40-E182895243182HordeumvulgareOromiyaBaleGoro06-59-44-N40-28-04-E183096243184HordeumvulgareOromiyaBaleGoro06-59-44-N40-28-04-E183097243614HordeumvulgareAmaraAgewawiGuangua10-39-00-N36-38-00-E181598HB1307HordeumvulgareOromiyaK.WollegaSayo (Mata)08-53-33-N34-80-11-E1700100LocalHordeumvulgareOromiyaK.WollegaSayo (Mata)08-53-33-N34-80-11-E1700	90	239514	Hordeum	sp.	Oromiya	Bale	Ginir	07-09-00-N	40-40-88-E	2050
92242098HordeumvulgareAmaraDebubWelloKalu11-06-00-N39-47-00-E176093242574HordeumvulgareTigrayDebubawiHintaloWajirat13-52-10-N39-35-24-E182094242581HordeumvulgareOromiyaBaleGoro07-00-00-N40-27-40-E182895243182HordeumvulgareOromiyaBaleGoro07-00-00-N40-27-40-E182896243184HordeumvulgareOromiyaBaleGoro06-59-44-N40-28-04-E183097243614HordeumvulgareAmaraAgewawiGuangua10-39-00-N36-38-00-E181598HB1307HordeumvulgareOromiyaOromiyaSayo (Mata)08-53-33-N34-80-11-E1700100LocalHordeumvulgareOromiyaK.WollegaSayo (Mata)08-53-33-N34-80-11-E1700	91	241675	Hordeum	vulgare	Oromiya	MirabHarerge	Mieso	07-17-36-N	38-22-98-E	1720
93242574HordeumvulgareTigrayDebubawiHintaloWajirat13-52-10-N39-35-24-E182094242581HordeumvulgareOromiyaBaleGoro07-00-00-N40-27-40-E182895243182HordeumvulgareOromiyaBaleGoro07-00-00-N40-27-40-E182896243184HordeumvulgareOromiyaBaleGoro06-59-44-N40-28-04-E183097243614HordeumvulgareAmaraAgewawiGuangua10-39-00-N36-38-00-E181598HB1307HordeumvulgareOromiyaOromiyaSayo (Mata)08-53-33-N34-80-11-E1700100LocalHordeumvulgareOromiyaK.WollegaSayo (Mata)08-53-33-N34-80-11-E1700	92	242098	Hordeum	vulgare	Amara	DebubWello	Kalu	11-06-00-N	39-47-00-E	1760
94242581HordeumvulgareOromiyaBaleGoro07-00-00-N40-27-40-E182895243182HordeumvulgareOromiyaBaleGoro07-00-00-N40-27-40-E182896243184HordeumvulgareOromiyaBaleGoro06-59-44-N40-28-04-E183097243614HordeumvulgareAmaraAgewawiGuangua10-39-00-N36-38-00-E181598HB1307HordeumvulgareOromiyaCromiyaVerticeVerticeVerticeVertice99AbdaneHordeumvulgareOromiyaK.WollegaSayo (Mata)08-53-33-N34-80-11-E1700	93	242574	Hordeum	vulgare	Tigray	Debubawi	HintaloWajirat	13-52-10-N	39-35-24-E	1820
95243182HordeumvulgareOromiyaBaleGoro07-00-00-N40-27-40-E182896243184HordeumvulgareOromiyaBaleGoro06-59-44-N40-28-04-E183097243614HordeumvulgareAmaraAgewawiGuangua10-39-00-N36-38-00-E181598HB1307HordeumvulgareOromiyaCromiyaCromiyaCromiyaCromiyaCromiyaCromiyaCromiya99AbdaneHordeumvulgareOromiyaK.WollegaSayo (Mata)08-53-33-N34-80-11-E1700	94	242581	Hordeum	vulgare	Oromiya	Bale	Goro	07-00-00-N	40-27-40-E	1828
96243184HordeumvulgareOromiyaBaleGoro06-59-44-N40-28-04-E183097243614HordeumvulgareAmaraAgewawiGuangua10-39-00-N36-38-00-E181598HB1307HordeumvulgareOromiya99AbdaneHordeumvulgareOromiyaK.WollegaSayo (Mata)08-53-33-N34-80-11-E1700	95	243182	Hordeum	vulgare	Oromiya	Bale	Goro	07-00-00-N	40-27-40-E	1828
97243614HordeumvulgareAmaraAgewawiGuangua10-39-00-N36-38-00-E181598HB1307HordeumvulgareOromiya10-39-00-N36-38-00-E181599AbdaneHordeumvulgareOromiya10-39-00-N36-38-00-E1815100LocalHordeumvulgareOromiyaK.WollegaSayo (Mata)08-53-33-N34-80-11-E1700	96	243184	Hordeum	vulgare	Oromiya	Bale	Goro	06-59-44-N	40-28-04-E	1830
98 HB1307 Hordeum vulgare Oromiya 99 Abdane Hordeum vulgare Oromiya 100 Local Hordeum vulgare Oromiya K.Wollega Sayo (Mata) 08-53-33-N 34-80-11-E 1700	97	243614	Hordeum	vulgare	Amara	Agewawi	Guangua	10-39-00-N	36-38-00-E	1815
99 Abdane Hordeum vulgare Oromiya 100 Local Hordeum vulgare Oromiya K.Wollega Sayo (Mata) 08-53-33-N 34-80-11-E 1700	98	HB1307	Hordeum	vulgare	Oromiya					
100 Local Hordeum vulgare Oromiya K.Wollega Sayo (Mata) 08-53-33-N 34-80-11-E 1700	99	Abdane	Hordeum	vulgare	Oromiya					
	100	Local	Hordeum	vulgare	Oromiya	K.Wollega	Sayo (Mata)	08-53-33-N	34-80-11-E	1700

per the recommendation.

plant based data were collected from these sampled plants.

plant (g), number of spikelets per spike, productive and total tillers per plant, flag leaf length (cm) and awn length (cm).

Plant-based

These were peduncle length (cm), grain weight per spike (gm), plant height (cm), spike length (cm), spike weight per

Plot based

These were days to heading (days), days to physiological

Method of data collection

Ten plants were selected randomly before heading from each row and tagged with thread and all the necessary

maturity(days), thousand seed weight(g), grain yield (g), biological yield(g) and harvest index (%).

Statistical analysis

ANOVA of the tested genotypes was conducted both for the simple lattice and randomized complete block design (RCBD) for the quantitative data. Associations between all possible pairs of quantitative traits were evaluated for their significance using SAS software version 9.2 (SAS, 2008). Phenotypic and genotypic correlations between yield and yield related traits were estimated using the method described by Miller et al. (1958) and Kashiani and Saleh (2010) from the corresponding variance and covariance components as follows:

Phenotypic correlation coefficient:

$$rpxy = \frac{pcov x. y}{\sqrt{\delta^2 px * \delta^2 py}}$$

Genotypic correlation coefficient:

$$rgxy = \frac{gcov x. y}{\sqrt{\delta^2 gx * \delta^2 gy}}$$

Where, rpxy= Phenotypic correlation coefficient between characters X and Y, rgxy= genotypic correlation coefficients between characters X and Y, pcovx.y and gcovx.y are phenotypic and genotypic covariance between variables x and y, respectively, $\sigma^2 p$ =Phenotypic Variance between characters X and Y, $\sigma^2 g$ =Genotypic Variance between characters X and Y.

The calculated phenotypic correlation value was tested for its significance using t-test according to Sharma (1998):

$$t = \frac{r_p}{SE(r_p)}$$

Where, r_p = Phenotypic correlation; SE ($_p^r$) = Standard error of phenotypic correlation obtained using in the following procedure (Sharma, 1998).

SE (r_p) =
$$\sqrt{\frac{(1 - r_p^2)}{(n-2)}}$$

Where, n is the number of genotypes tested, and r_p is phenotypic correlation coefficient.

The coefficients of correlations at genotypic levels were tested for their significance using the formula described by Robertson (1959) as indicated below:

$$t = \frac{r_{gxy}}{SEr_{gxy}}$$

The calculated "t" value was compared with the tabulated "t" value at (n-2) degree of freedom at 5% and 1% level of significance. Where, n = number of genotypes:

$$SEr_{gxy} = \sqrt{\frac{1 - r^2_{gxy}}{2Hx.Hy}}$$

Where, H_x^2 = Heritability of trait x and H_y^2 = Heritability of trait y.

Path coefficient analysis

Path coefficient analysis was computed by Dewey and Lu (1959) using the phenotypic and genotypic correlation coefficients as:rij = Pij + Σ rik * Pkj

Where, rij = mutual association between the independent character i (yield-related trait) and dependent character, j (grain yield) as measured by the genotypic correlation coefficients; Pij = components of direct effects of the independent character (i) on the dependent character (j) as measured by the path coefficients; and \sum rikpkj = summation of components of indirect effects of a given independent character (i) on a given dependent character (j) via all other independent characters (k). The residual factor (P_R), was calculated as:

$$\mathsf{P}_{\mathsf{R}} = \sqrt{(1 - \sum pijrij)}$$

Where, i=any trait in the model, j=dependent variable (grain yield) and r=correlation coefficient between any trait i and the dependent variable j. Residual (R) is the square root of non-determination; the magnitude of P_R indicates how best the causal factors account for the variability of the dependent factor (Singh and Chaudhary, 1999).

RESULTS AND DISCUSSION

Analysis of variance

The result of relative efficiency of the design showed that, for most characters' (more than 68%), simple lattice design was more efficient than randomized complete block design (RCBD) (Table 2). However, for traits like YLD, GWS, SWPP, BYLD and HI, the error variance of the blocks within replications were smaller than or equal to the intra-block error (Table 2), which, was decided to partition various source of variation by RCBD analysis of variance (Appendix 3). Analysis of variance (ANOVA) exhibited that significant (P<0.05 and P<0.01) differences were obtained for all traits evaluated (Table 2). Significant differences were recorded for parameters like days to heading, days to maturity, plant height, peduncle length, spike length, awn length, flag leaf length, productive tillers per plant, grain yield, grain weight per spike, spike weight per plant, number of spikeletes per spike, 1000seed weight and biological yield at (P≤0.01) probability level. Whereas, total tillers per plant and harvest index were recorded at P≤0.05. The significant differences of the parameters indicated that, there is considerable amount of genetic variation among the studied landraces (Table 2). This variation would offer scope of selection for development of desirable genotypes which, could also be attributed to the diverse composition of the populations

	-	Sourc								
Traits	Replication	Blocks within Replications	Genotypes	Error	R ² (%)	CV%	Mean	SE(±)	LSD (5%)	Efficiency Relative to RCBD (%)
	DF=1	DF=18	DF=99	DF=81						
DH	33.62*	11.04 ^{ns}	50.62**	7.83	89.79	4.63	60.36	0.52	5.75	102.07
DM	206.04**	13.15**	50.15**	8.21	90.04	3.12	91.8	0.53	5.99	103.85
PH	2288.26**	37.37**	134.18**	35.83	86.02	7.17	83.54	0.87	11.92	100.03
PDL	34.53*	6.03**	27.98**	5.77	87.2	16.92	14.19	0.39	4.78	103.04
SL	19.16**	1.19*	1.51**	0.64	80.6	9.52	8.43	0.09	1.71	106.56
AL	4.65*	1.3 ^{ns}	7.02**	1.21	88.54	8.81	12.46	0.19	2.19	100.1
FLL	62.16**	7.38*	7.69**	3.73	76.86	12.99	14.87	0.2	4.16	108.07
PTPP	27.16**	1.01*	1.29**	0.58	79.77	16.88	4.51	0.08	1.61	105.33
TTPP	27.23**	1.05 ^{ns}	1.09*	0.68	74.81	16.45	5.02	0.08	1.72	103.23
YLD	16.3**	0.36 ^{ns}	1.25**	0.5	78.17	19.67	3.58	0.08	1.37	94.63
GWPS	0.37**	0.03 ^{ns}	0.07**	0.03	77.74	16.73	1.06	0.02	0.35	99.11
SWPP	1.48**	0.04 ^{ns}	0.13**	0.04	82.37	14.82	1.39	0.03	0.41	99.41
NSTPS	54.71*	10.82 ^{ns}	72.90**	7.34	93.34	15.26	17.76	0.64	5.6	102.62
TSW	2751.34**	57.4 ^{ns}	110.10**	54.24	76.9	23.8	30.94	0.74	14.69	100.06
BYLD	60.72**	1.4 ^{ns}	8.37**	1.86	87.03	15.27	8.93	0.22	2.64	95.48
HI	10.95*	42.02*	58.47.*	45.81	60.82	18.61	41.21	0.58	14.82	94.81

Table 2. Mean squares, degrees of freedom and some of statistical parameters of all studied traits of barley landraces evaluated in 2017 season using simple lattice design.

^{ns} *, ** non-significant, significant at 0.05 and 0.01 probability levels, respectively. DF= degree of freedom R^2 = R- square; CV= Coefficient of variation; SE= standard error; LSD=least significant difference; DH = days to heading; DM= days to maturity; PH=plant height; PDL= peduncle length; SL= spike length; AL =awn length; FLL =flag leaf length; PTPP =productive tillers per plant; TTPP=total tillers per plant; YLD = grain yield; GWPS =grain weight spike¹; SWPP; =spike weight plant⁻¹; NSTPS = number of spikelets spike⁻¹; TSW =thousand seed weight; BYLD=biomass yield; HI=harvest index; RCBD = random complete block design.

evolved through time. Similarly, Assefa (2003) reported that, barley landraces showed significant variations for many traits like 1000 seed weight, spike length, heads per square meter, grain yield per spike, days to heading, days to maturity and plant height in Ethiopian barley landraces. Study by Oettler et al. (2009) showed significant differences among nine barley genotypes for grain yield, spikes/m², 1000 seed weight, dry matter, days to anthesis and plant height.

Genotypic and phenotypic correlation of grain yield with other traits

In the present study, the estimated values of phenotypic and genotypic correlation coefficients between all pairs of characters are presented in Table 3. The analyses revealed, genotypic correlation coefficient values were greater for most of the characters than their corresponding phenotypic correlation coefficient values, indicating inherent association of the characters so, that selection for the correlated characters could give a better yield.

Phenotypic correlations

Grain yield per plant showed positive and high significant

(p<0.01) correlation with spike length ($r_p = 0.25$), awn length ($r_p = 0.25$), plant height ($r_p = 0.32$), thousand seed weight ($r_p = 0.54$), biological yield ($r_p = 0.76$), harvest index $(r_{p} = 0.30)$ and grain weight per spike $(r_{p} = 0.32)$ (Table 3). It appears that phenotypic selection of phenotypically high values of these characters' result in increasing yield potential. Similarly, positive and highly significant phenotypic correlation of grain yield with 1000-kernel weight and biological yield in all environments was reported by Azeb et al. (2016). This finding is also in agreement with those of Acevedo et al. (1991) and Alam et al. (2007) who reported the association of grain yield with plant height in barley. At phenotypic level, grain yield per plant was positively and significantly associated with biological yield and harvest index (Amardeep et al., 2017). Moreover, grain yield showed negative and significant phenotypic correlation with days to heading (r_p $_{\pm}$ 0.36) and days to maturity ($r_{p} = -0.38$) (Table 3) which is in agreement with the finding of Bhutta et al. (2005) and Blanco et al. (2010) on barley.

Genotypic correlations

Grain yield showed positive and significant correlation with grain weight per spike ($r_g = 0.36$), spike weight per plant ($r_g = 0.38$), 1000-seed weight ($r_g = 0.66$), biological

Traits		DH	DM	PH	PDL	SL	AL	FLL	PTPP	TTPP	YLD	GWPS	SWPP	NSTPS	TSW	BYLD	HI
DH	rp	1	0.74**	0.03	-0.19*	-0.05	-0.16*	0.23**	-0.33**	-0.15*	-0.36**	-0.01	-0.16*	-0.24**	-0.32**	-0.14	-0.36**
	rg		0.81**	0.1	-0.22*	0	-0.16	0.38**	-0.42**	-0.19	-0.43**	-0.02	-0.16	-0.27**	-0.40**	-0.17	-0.43**
DM	rp		1	-0.01	-0.23**	0.02	-0.05	0.28**	-0.32**	-0.15*	-0.38**	-0.02	-0.18*	-0.15*	-0.35**	-0.18*	-0.30**
	rg			0.09	-0.25*	0.1	-0.08	0.47**	-0.38**	-0.17	-0.42**	0.02	-0.15	-0.16	-0.37**	-0.18	-0.42**
PH	rp			1	0.60**	0.41**	0.21**	0.32**	0.23**	0.22**	0.32**	0.32**	0.36**	0.02	0.27**	0.41**	-0.15*
	rg				0.60**	0.27**	0.32**	0.23*	0.1	0.07	0.23*	0.39**	0.37**	-0.02	0.18	0.36**	-0.26**
PDL	rp				1	0.21**	0.16**	0.15*	0.16*	0.13	0.31**	0.09	0.09	0.13	0.31**	0.30**	0.03
	rg					0.17	0.19	0.1	0.20*	0.17	0.35**	0.11	0.11	0.14	0.36**	0.30**	0.05
SL	rp					1	0.17*	0.37**	0.38**	0.40**	0.25**	0.11	0.12	0.32**	0.30**	0.27**	-0.06
	rg						0.23*	0.20*	0.28**	0.30**	0.18	0.08	0.01	0.37**	0.21*	0.23*	-0.12
AL	rp						1	0.11	0.13	0.09	0.25**	0.30**	0.32**	0.01	0.19**	0.22**	0.04
	rg							0.07	0.2	0.15	0.34**	0.39**	0.41**	0.02	0.27**	0.27**	0.05
FLL	rp							1	0.07	0.16*	0.13	0.20**	0.21**	-0.07	0.14	0.17*	-0.11
	rg								-0.12	-0.02	0.01	0.22*	0.17	-0.11	-0.02	0.16	-0.30**
PTPP	rp								1	0.94**	0.39**	0.11	0.14*	0.31**	0.39**	0.32**	0.11
	rg									0.93**	0.37**	0.03	0.02	0.35**	0.34**	0.26**	0.20*
TTPP	rp									1	0.31**	0.06	0.08	0.26**	0.33**	0.27**	0.06
	rg										0.25*	-0.05	-0.09	0.28**	0.27**	0.20*	0.1
YLD	rp										1	0.32**	0.36**	0.23**	0.54**	0.76**	0.30**
	rg											0.36**	0.38**	0.24*	0.66**	0.83**	0.15
GWPS	rp											1	0.82**	-0.09	0.32**	0.34**	-0.03
	rg												0.88**	-0.2	0.23*	0.40**	0.88**
SWPP	rp												1	-0.16*	0.33**	0.38**	-0.05
	rg													-0.28**	0.20*	0.41**	-0.11
NSTPS	rp													1	0.22**	0.15*	0.13
	rg														0.27**	0.15	0.15
TSW	rp														1	0.51**	0.01
	rg															0.55**	11
BYLD	rp															1	-0.37**
	rg																-0.41**
HI																	1

Table 3. Phenotypic (r_p) and genotypic (rg) correlation coefficients of studied traits of barley landraces evaluated in 2017 season.

DH = days to heading; DM= days to maturity; PH=plant height; PDL= peduncle length; SL=spike length; AL =awn length; FLL=flag leaf length; PTPP =productive tillers per plant; TTPP=total tillers per plant; YLD= grain yield; GWPS =grain weight per spike; SWPP =spike weight per plant; NSTPS=number of spikelets per spike; TSW =thousand seed weight; BYLD = biological yield and HI =harvest index; rp = phenotypic correlation coefficients; rg = genotypic correlation coefficients.

yield ($r_{g} = 0.83$), awn length ($r_{g} = 0.34$) and plant height ($r_{g} =$ 0.23). Similarly, grain yield had positive and highly significant genotypic correlation with 1000-kernel weight and biological yield in all environments (Azeb et al., 2016) and with biological yield and plant height at the genotypic level (Amardeep et al., 2017). However, days to heading $(r_{q} = -0.43)$ and days to maturity $(r_{q} = -0.42)$ had negatively significant correlation with grain yield (Table 3) which was also similarly reported by Bhutta et al. (2005). Azeb et al. (2016) also reported negative and highly significant genotypic correlation of grain yield with days to heading and days to maturity at Ofla site. This might be due to the presence of common genetic elements that controlled the characters in the same and/or in different direction. The observed significant positive correlation could be either due to the strong coupling linkage between the genes or was the result of pleiotropic genes that controlled these characters in the same direction (Kearsey and Pooni, 1996). Thus, the negative correlations of grain yield with days to heading and maturity indicates that, late varieties would produce low grain yield. Normally, inverse relationship between earliness characters and grain yield is necessary especially if stresses such as terminal heat and drought are expected. That means even if long duration of the growing period would mean that there would be more accumulation of dry matter over the extended growing period; and there should be certain compromise between earliness as a stress escape mechanism and the possible yield reduction in moisture stress areas. Previous studies have confirmed this result (Gebeyehou et al., 1982; Amin et al., 1992; Van Oosteron and Acevedo, 1992; Gashaw, 2007), which means that early heading genotypes with adequate grain filling period escape terminal moisture stress and, thus give better grain yield. The yield components exhibited varying trends of association among themselves.

Furthermore, plant height had positive significant association with peduncle length, spike length, awn length, grain weight per spike, spike weight per plant, and biological yield. Peduncle length had positive and significant correlation with productive tillers per pant, 1000-seed weight and biological yield. Spike length had positive and significant correlation with awn length, productive and total tillers per plant, number of spikelets per spike, 1000-seed weight and biological yield. The correlation of awn length with grain weight per spike, spike weight per plant, 1000-seed weight and biological yield was positive and significant. Productive tillers per plant had positive and significant correlation with total tillers per plant, number of spikelets per spike, 1000-seed weight, biological yield and harvest index (Table 3). The positive significant associations between grain yield and plant height because of these tall genotypes generally excelled in their capacity to support kernel growth by stem reserve mobilization (Blum et al., 1989). Therefore, selection for tall plants tends to increase grain yield per plant.

Path coefficient analysis

Path coefficient analysis provides more effective means of separating direct and indirect factors, permitting a critical examination of the specific forces acting to produce a given correlation and measuring the relative importance of the causal factors. Genotypic and phenotypic correlations were partitioned into direct and indirect effects using grain yield as a dependent variable. In this study, grain yield was the result of days to heading, days to maturity, plant height, peduncle length, awn length, total tillers per plant, productive tillers per plant, grain weight per spike, spike weight per plant, number of spikeletes per spike, 1000-seed weight, biological yield, harvest index and residual factor that included other factors affecting grain yield (Tables 4 and 5).

Genotypic path coefficient

Biological yield had positive and significant correlation coefficient and it showed the highest positive direct effect (0.68) on grain yield. Biological yield has also exerted large indirect effects thousand seed weight, total tillers per plant, grain weight per spike than other characters included in the analysis showing its high contribution for a better partitioning of the photosynthetic products into the grain. The direct effect of 1000-seed weight followed by productive tillers per plant, awn length, grain weight per spike, peduncle length, and number of spikelets per spike on grain yield was positive with significant correlation and so exerted positive direct effect (Table 4). Biological vield. thousand kernel weight, productive tillers per plant and grain weight per spike revealed positive direct effect and had positive genetic correlation explaining the existence of real relation between the characters and yield indicating that, indirect selection of yield via this characteristic is effective. Similarly, Getachew et al. (2007) reported positive direct effect of the number of productive tillers per plant on grain yield in Ethiopian barley landraces. Azeb et al. (2016) indicated that biological yield exerted maximum positive direct effect on grain yield across locations. In another study the highest positive direct effect on seed yield per plant was exerted by biological yield, number of productive tillers per plant, plant height, length of spike, days to maturity, harvest index (Amardeep et al., 2017). Mogghhadam et al. (2009) and Blanco et al. (2010) reported positive direct effect of 1000-seed weight on grain yield. Bhutta et al. (2005) reported positive maximum association between peduncle length and number of spikelets with grain yield in six rowed barleys.

Plant height exerted higher negative direct effects on grain yield but positive and highly significant association at genotypic levels. The indirect effects of plant height on grain yield via biological yield was however positive and

Traits	DH	DM	PH	PDL	AL	PTPP	TTPP	GWPS	SWPP	NSTPS	TSW	BYLD	rg
DH	-0.07	-0.06	-0.01	-0.02	-0.01	-0.05	0.02	-0.00	0.00	-0.01	-0.05	-0.11	-0.43**
DM	-0.05	-0.07	-0.01	-0.02	-0.01	-0.05	0.02	0.00	0.00	-0.01	-0.05	-0.12	-0.42**
PH	-0.01	-0.01	-0.13	0.04	0.03	0.01	-0.01	0.03	-0.00	-0.00	0.02	0.25	0.23**
PDL	0.01	0.02	-0.08	0.07	0.02	0.03	-0.02	0.01	-0.00	0.01	0.05	0.21	0.35**
AL	0.01	0.01	-0.04	0.01	0.09	0.03	-0.02	0.03	-0.01	0.00	0.04	0.19	0.34**
PTPP	0.03	0.03	-0.01	0.02	0.02	0.13	-0.09	0.00	0.00	0.02	0.05	0.18	0.37**
TTPP	0.01	0.01	-0.01	0.01	0.01	0.12	-0.10	-0.00	0.00	0.01	0.04	0.14	0.25*
GWPS	0.00	-0.00	-0.05	0.01	0.03	0.00	0.01	0.09	-0.01	-0.01	0.03	0.27	0.36**
SWPP	0.01	0.01	-0.05	0.01	0.04	0.00	0.01	0.08	-0.01	-0.01	0.03	0.28	0.38**
NSTPS	0.02	0.01	0.00	0.01	0.00	0.04	-0.03	-0.02	0.00	0.05	0.04	0.10	0.24**
TSW	0.03	0.03	-0.02	0.03	0.02	0.04	-0.03	0.02	-0.00	0.01	0.13	0.38	0.66**
BYLD	0.01	0.01	-0.05	0.02	0.02	0.03	-0.02	0.04	-0.01	0.01	0.07	0.68	0.83**

Table 4. Estimates of direct (bold diagonal) and indirect (off diagonal) effect of traits on grain yield on the basis of genotypic correlation.

DH = days to heading; DM= days to maturity; PH=plant height; PDL= peduncle length; AL =awn length; PTPP =productive tillers per plant; TTPP=total tillers per plant; GWPS =grain weight per spike; SWPP; =spike weight per plant; NSTPS=number of spikelets per spike; TSW =thousand seed weight; BYLD=biological yield; rg =genotypic correlation.

Traits	DH	DM	PH	PDL	SL	AL	PTPP	TTPP	GWPS	SWPP	NSTPS	TSW	BYLD	HI	rp
DH	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.01	-0.14	-0.24	-0.36**
DM	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.01	-0.18	-0.20	-0.38**
PH	0.00	0.00	0.01	-0.01	0.01	0.00	0.00	-0.01	-0.01	0.01	0.00	0.00	0.41	-0.10	0.32**
PDL	0.00	0.00	0.00	-0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.29	0.02	0.31**
SL	0.00	0.00	0.00	0.00	0.01	0.00	0.00	-0.01	0.00	0.00	0.00	0.01	0.27	-0.04	0.25**
AL	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	-0.01	0.01	0.00	0.00	0.23	0.03	0.25**
PTPP	-0.01	0.00	0.00	0.00	0.01	0.00	0.01	-0.03	0.00	0.00	0.00	0.01	0.32	0.07	0.39**
TTPP	0.00	0.00	0.00	0.00	0.01	0.00	0.01	-0.03	0.00	0.00	0.00	0.01	0.27	0.04	0.31**
GWPS	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	-0.03	0.01	0.00	0.01	0.34	-0.02	0.32**
SWPP	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	-0.03	0.02	0.00	0.00	0.38	-0.03	0.36**
NSTPS	-0.01	0.00	0.00	0.00	0.00	0.00	0.00	-0.01	0.00	0.00	0.00	0.00	0.15	0.09	0.23**
TSW	-0.01	0.00	0.00	0.00	0.00	0.00	0.00	-0.01	-0.01	0.01	0.00	0.02	0.51	0.01	0.54**
BYLD	-0.01	0.00	0.00	0.00	0.00	0.00	0.00	-0.01	-0.01	0.01	0.00	0.01	0.99	-0.25	0.76**
HI	-0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.37	0.67	0.30**

Table 5. Estimates of direct (bold diagonal) and indirect (off diagonal) effect of traits on grain yield on the basis of phenotypic correlation.

Residual effect = value (0.1731) is unexplained; 82.7% is explained; DH = days to heading; DM= days to maturity; PH=plant height; PDL= peduncle length; SL=spike length; AL =awn length; PTPP =productive tillers per plant; TTPP=total tillers per plant; GWPS =grain weight per spike; SWPP =spike weight per plant; NSTPS=number of spikelets per spike; TSW =thousand seed weight; BYLD=biomass yield; HI=harvest index; r_p =phenotypic correlation.

high. Smaller negative direct effects were also exerted by days to heading, days to maturity, total tillers per plant and spike weight per plant. However negative genotypic correlation was obtained only for days to heading and days to maturity. Days to heading, days to maturity and plant height had negative direct effect. The indirect effects of days to heading, days to maturity and plant height with other characters were mostly negatives and negligible. The total negative correlation coefficient of days to heading and maturity with grain yield were due to mainly direct effect while the positive correlation for plant height with grain yield was due to large indirect effect of biological yield (Table 4). The present study is in agreement with those of Pathak (2008) and Azeb et al. (2016) reporting negative direct effect of plant height on grain yield. The negative direct effect of days to heading, days to maturity and plant height on grain yield suggests the possibility that grain yield could be improved by focusing on early maturing genotypes with shorter or medium plant height. Shorter plant height is also responsive to high input resulting higher yield. Singh and Chaundhary (1985) suggested an indirect effect seemed to be the cause of correlation and hence, these indirect factors should be considered causal (traits) simultaneously for selection. Besides to significant, awn length, grain weight per spike, productive tillers per plant and thousand seed weight exhibited positive direct effects on grain yield indicating that, increasing in those traits could possibly to increase grain yield. The genotypic residual value (0.4326) showed that, the characters under study accounted for 56.74% of the variability with grain yield components (Table 4).

Phenotypic path coefficient analysis

Biological yield and harvest index showed positive and significant correlation (r = 0.76) and (r = 0.30) with grain yield and they had the highest direct effect (0.99) and (0.67) on grain yield respectively. The existence of negligible and positive indirect effect of biological yield and harvest index with most of the other characters determines that, the correlation of these traits with grain yield were found to be due to the direct effect (Table 5). Days to maturity has negligible positive direct effect on grain yield. The correlation of days to maturity with grain yield was because of indirect effect. Plant height, spike length, awn length, productive tillers per plant and 1000seed weight have positive and negligible direct effect on grain yield and the phenotypic correlation they had with grain yield were positive. The indirect effect of biological yield through days to heading, total tillers per plant, grain weight per spike and harvest index counter balanced the direct effect of biological yield on grain yield. The indirect effect of harvest index through biological yield (-0.37) counter balanced the direct effect of harvest index on grain yield (0.67). The residual value (0.1731) showed the characters under the study accounted 82.7% of the

variability in grain yield (Table 5).

Conclusion

Characters that showed positive direct effect as well as positive and significant correlation coefficient with grain vield were known to affect grain yield to the favorable direction. The present study revealed that, biological yield, thousand kernel weight, productive tillers per plant and grain weight per spike were the most important yield components as they exerted positive direct effect on grain yield as well as positive genetic association with each other explaining the existence of real correlation. This suggests that, simultaneous improvement in these characters might be possible. Generally, significant differences of the characters showed that, there is substantial amount of genetic variation among the studied materials and is a strong correlation between most of the studied desirable characters that can afford basic information for further breeding activities for crop improvement.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

ACKNOWLEDGMENTS

The authors greatly acknowledge the Agricultural Growth Programme (AGP-II) and Oromia Agricultural Research Institute (OARI) for the financial support. Haro-Sebu Agricultural Research Center staff members are greatly acknowledged for the technical support. Ethiopia Biodiversity Institute (EBI) is also acknowledged for the provision of barley landraces.

REFERENCES

- Acevedo E, Craufurd PQ, Austin RB, Perez-Marco P (1991). Traits associated with high yield in barley in low-rainfall environments. The Journal of Agricultural Science116(1):23-36.
- Alam MZ, Haider SA, Pau NK (2007). Yield and Yield Components of Barley (*Hordeum vulgare* L.) cultivars in Relation to Nitrogen Fertilizer. Journal of Applied Sciences Research 3(10):1022-1026.
- Amardeep L, Singh V, Piyushmalik (2017). Studies on correlation and path coefficients analysis in barley (*Hordeum vulgare* L.). Bulletin of Environment, Pharmacology and Life Sciences 6(12):75-80.
- Assefa A (2003). "Genetic variability and Breeding Potential of Barley (*Hordeum vulgare* L.) Landraces from North Shewa in Ethiopia," PhD Thesis, Faculty of natural and agricultural sciences university of Free State, Bloemfontein, South Africa.
- Azeb H, Sentayehu A, Mandefro N, Ermias A (2016). Correlation and Path Coefficient Analysis of Yield and Yield Associated Traits in Barley (*Hordeum vulgare* L.) Germplasm. Advances in Crop Science and Technology 4:2.
- Behall KM, Scholfield DJ, Hallfrisch J (2004). Diets containing barley significantly reduce lipids in mildly hypercholesterolemic men and women. The American Journal of Clinical Nutrition 80(5):1185-1193.

- Bhutta WM, Tahira B, Ibrahim M (2005). Path-coefficient analysis of some quantitative characters in husked barley. Caderno de PesquisaSØr. Universidade de Santa Cruz do Sul 17(1):65-70.
- Birhanu B, Fekadu A, Berhane L (2005). Food barley in Ethiopia. In: Grando S, Macpherson HG (eds.), Food Barley: Importance, Uses and Local Knowledge, Proceedings of the International Workshop on Food Barley Improvement, 14-17 January 2002, Hammamet, Tunisia. ICARDA, Aleppo, Syria pp. 53-82.
- Blanco A, Rajaram S, Kronstad WE (2010). Agronomic potential of some barley genotypes. Crop Science 41:670-676.
- Blum A, Golan G, Mayer J, Sinmena B, Shpiler L, Burra J (1989). The drought response of landraces of wheat from the northern negev desert in Israel. Euphytica 4:87-96.
- Can ND, Yoshida T (1999). Genotypic and phenotypic variances and covariance's in early maturing grain sorghum in a double cropping. Plant Production Science 2(1):67-70.
- Chilot Y, Fekadu A, Woldeyesus S (2008). Barley Livestock Production System in Ethiopia: An overview. In: Chilot Y, Fekadu A, Woldeyesus S (ed.) Barley-based Farming System in the highlands of Ethiopia. Ethiopian Agriculture Research Organization, Addis Ababa, Ethiopia.
- Central Statistical Agency (CSA) (2017). The Federal Democratic Republic of Ethiopia Agricultural Sample Survey 2016/2017: Area and production of major crops, (private peasant holdings, Meher season). Addis Ababa, Ethiopia.
- Dewey DR, Lu K (1959). A Correlation and Path-Coefficient Analysis of Components of Crested Wheatgrass Seed Production. Agronomy Journal 51(9):515-518.
- Dyulgerova B (2012). Correlations between grain yield and yield related traits in barley mutant lines. Journal of Agriculture, Science and Technology 4(3):208-210.
- Falconer DS (1985). Introductions to Quantitative Genetics. Longman, London.
- Fekadu F, Lakew B, Hailu G (2005). Barley production and breeding in Ethiopia. Breeding for disease resistance with emphasis on durability Proceedings of the Regional Workshop for Eastern, Central, and Southern Africa, Njoro, Kenya, Oct. 2-6, 1994.
- Garcia LF, del M, Rharrabti Y, Villagas D, Royo C (2003). Evaluation of grain yield and its components in durum wheat under Mediterranean conditions. Anontogenic approach. Agronomy Journal 95(3):266-274.
- Gebeyehou G, Knott DR, Baker RJ (1982). Rate and duration of grain filling in durum wheat cultivars. Crop Science 22:337-340.
- Getachew B, Tesemma T, Becker HC, Merker A (2007). Variation and interrelationships of agronomic traits in Ethiopian Barley landraces Euphytica 71(3):181-188.
- Hailu A, Alamerew S, Nigussie M, Assefa E (2016). Correlation and Path Coefficient Analysis of Yield and Yield Associated Traits in Barley (*Hordeum vulgare* L.) Germplasm. Advances in Crop Science and Technology 4:216.
- Harlan JR (2008). Evolution of Crop Plants. New York, Simmonds NW (eds.), University of Illinois Urbana lii USA, Longman.
- Institute of Biodiversity Conservation (IBC) (2008). Ethiopia: Second Country Report on the State of PGRFA to FAO, January, 2008.Addis Ababa P 45.
- Kashiani P, Saleh G (2010). Estimation of genetic correlations on sweet corn inbred lines using SAS mixed model. American Journal of Agricultural and Biological Sciences 5(3):309-314.
- Kashif M, Khaliq IH (2004). Heritability, correlation and path coefficient analysis for some metric traits in wheat. International Journal of Agriculture and Biology 6(1):138-142.
- Kearsey MJ, Pooni HS (1996). The Genetic Analysis of Quantitative Traits. Chapman and Hall, London, Weinhein, New York.
- Martintell P, Delocu G, Boggini G, Odoardi M, Stanca AM (2005). Breeding progress in grain yield and selected agronomic characters of winter barley (*Hordeum vulgare* L.) over the last quarter of a century. Plant Breeding 99:289-294.
- Miller PA, Williams JC, Robinson HF, Comstock RE (1958). Estimates of Genotypic and Environmental Variances and Covariance in Upland Cotton and Their Implications in Selection 1. Agronomy Journal 50(3):126-131.

- Mogghhadam M, Ehdai B, Waines JG (2009). Genetic variation and interrelationships of agronomic characters in landraces of spring barley from south eastern Iran. Euphytica 95(5):361-369.
- Oettler GS, Wietholter S, Horst WJ (2009). Genetic variation for yield and other agronomic traits of barley grown on an acid, aluminumtoxic soil in Southern Brazil pp. 267-272.
- Pathak NN (2008). Correlation and path analysis in barley under high temperature and moisture stress conditions. Agronomy Journal 50(3):126-131.
- Qualset CO (1975). Sampling germplasm in a center of diversity: an example of disease resistance in Ethiopian barley. Frankel OH, Hawkes JG (eds), Crop Genetic Resources for Today and Tomorrow, Cambridge University Press, Cambridge pp. 81-96.
- Ripple T, William L, Mary SPC, Michael W, Craig IC (2009). The effects of barely-derived soluble fiber on serum lipids. Annals of Family Medicine 7(2):157-163.
- Robertson A (1959). The sampling variance of the genetic correlation coefficient. Biometrics 15(3):469-485.
- SAS Institute Inc (2008). Statistical analysis Software version 9.2, Cary, NC: SAS Institute.
- Sharma JR (1998). Statistical and biometrical techniques in plant breeding. New Delhi, New Age International (P) limited, publishers.
- Singh RK, Chaundhary BD (1985). Biometrical Methods in Quantitative Genetic Analysis. New Delhi, Kalyani Publishers.
- Singh RK, Chaudhary BD (1999). Biometrical methods in quantitative genetics analysis. New Delhi, Kalyani Publishers.
- Tofiq SE, Hama TN, Amin SM, Sheikh A, Abdulkhaleq DA (2015). Correlation and path coefficient analysis of grain yield and yield components in some barley genotypes created by full diallel analysis in sulaimani region for F2 generation. International Journal of Plant, Animal and Environmental Sciences 5(4):76-79.
- Von Bothmer R, Kazuhiro S, Helmut K, Theo van Hintum (2003). Barley diversity- an introduction. In: Diversity in Barley (Hordeum Vulgare). Elsevier Science P 280.

Appendix 1. Annual average rainfall (2009-2017). Source: (Sayo Agriculture and Natural Resource office, Demb Dollo)

Appendix 2. Mean min and max temperature (°C) and relative humidity (%) (2009-2017) Source: (Sayo Agriculture and Natural Resource office, Demb Dollo).

Appendix 3.	Mean	squares,	degrees	of freedom	and so	me of	statistical	parameters	of fi	ive studied	traits c	of barley	landraces	evaluated in
2017 season	using I	RCBD.												

Source of Variation	Rep	Genotypes	R ² (%)	CV(%)	Mean ±SE	LSD(5%)
	DF=1	DF= 99				
YLD	16.30**	1.25**	75	19.13	3.61±0.07	1.37
GWPS	0.37**	0.08**	73	16.66	1.06±0.02	0.35
SWPP	1.48**	0.14**	79	14.78	1.39±0.02	0.41
BYLD	60.72**	9.34**	85	14.92	8.93±0.17	2.64
HI	10.95 ^{ns}	66.94 ^{ns}	55	18.12	41.21±0.55	14.82