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In Kenya, at national policy level to the individual household level, food security is synonymous to 
maize productivity and availability. However, the productivity of maize is affected majorly by maize 
lethal necrosis disease (MLND) that was first reported in Kenya in 2011. MLND results from co-infection 
between maize chlorotic mottle virus (MCMV) and any cereal-infecting viruses in Potyviridae family 
particularly sugarcane mosaic virus (SCMV). Majority of maize germplasm are susceptible to MLND. 
This study was therefore carried out to identify potential germplasm for breeding for MLND resistance. 
A total of 38 maize germplasm (5 temperate lines with inherent resistance to maize-infecting viral 
diseases, 32 assorted tropical lines and one Kenyan hybrid) were artificially inoculated with MCMV and 
SCMV in the green house at the University of Nairobi Field Station and screened for two seasons 
between April 2020 and October 2021. Based on the Area Under Disease Progress Curve (AUDPC) and 
final severity score, germplasm KS23-6, 18, KS23-5 and 19 were identified as the most promising 
sources of MCMV resistance with disease severity scores of 2, 2.3, 2.3 and 3, respectively while 
germplasm 50, 19, and 22 were identified as source of SCMV resistance with scores of 2.0, 2.3 and 3, 
respectively. These germplasms could serve as potential donors for introgression of the resistance 
genes into locally adapted maize background to combat yield losses due to MLND. 
 

Key words: Maize lethal necrosis disease, sugarcane mosaic virus, maize chlorotic mottle virus, resistance, 
maize germplasm. 

 
 

INTRODUCTION 
 

Maize (Zea mays) contributes significantly to food 
security in Kenya; with 90% of the country population 
depending on maize as the main staple food and source 
of income (Eunice  et  al., 2021). Per capita  consumption 

of maize in Kenya is between 98 to 100 kg (Onono et al., 
2013). Maize occupies 2.1 million ha which is 40% of the 
total crop area and the annual yield was 3.39 million tons 
in 2016 (Mwatuni et al., 2020) and 3.8 million tons in 2021 
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(FAOSTAT, 2022). Maize production suffers from abiotic 
and biotic stress. Abiotic stresses include low rainfall and 
infertile soils (Simtowe et al., 2020) while biotic stress 
include diseases and insect pest such as aphids, thrips 
and fall armyworm (De Groote et al., 2020). Diseases 
such as Gray leaf spot, Common smut, Northern leaf 
blight, Maize streak virus and Head smut are endemic in 
major maize growing regions (Charles et al., 2019). 
Emergence of maize lethal necrosis disease (MLND) in 
2011 saw the most devastating effect on maize 
production in Kenya (Wangai et al., 2011; Marenya et al., 
2018; Jafari et al., 2020; Redinbaugh and Stewart, 2018; 
Wamaitha et al., 2018). MLND is commonly caused by 
synergistic interaction between maize chlorotic mottle 

virus (MCMV) and sugarcane mosaic virus (SCMV) 
(Adams et al., 2014; Mwatuni et al., 2020). In addition, 
other potyviruses such as maize dwarf mosaic virus 
(MDMV), wheat streak mosaic virus (WSMV) (Mahuku et 
al., 2015; Masanga et al., 2020), and Johnson grass 
mosaic virus (JGMV) (Stewart et al., 2017) can associate 

with MCMV to induce MLND. Symptoms associated with 
MLND and its causative viruses include chlorotic specks 
on young leaves, leave necrosis, shortening of 
internodes, premature dying of the husks and few grains 
filling at maturity stage (Mahuku et al., 2015). 

MCMV is the only member in genus Machlomovirus of 
the family Tombusviridae (Zhang et al., 2011). It has 
been reported in Peru (Nault et al., 1978), USA, 
Argentina, Brazil (Braidwood et al., 2018), and China 
(Wang et al., 2017). In Kenya, MCMV was first reported 
in Bomet (Wangai et al., 2012) and later in all maize 
growing regions of the country.  Presence of MCMV in 
the region resulted in the outbreak of devastating MLND 
leading to almost 100% yield losses of maize (Lukanda et 
al., 2014; Adams et al., 2012). MCMV is transmitted by 
onion thrips (Thrips tabaci), maize thrips (Frankliniella 
williamsi) (Mwando et al., 2018), and at least six beetle 
species (Isabirye and Rwomushana, 2016) and through 
seed but at very low rate (Kimani et al., 2021; Jensen, 
1991).  

SCMV is more prevalent worldwide (Masanga et al., 
2020) and was first reported in USA in 1963 (Janson and 
Ellet, 1963). A study by Louie (1980) confirmed presence 
of SCMV in 20 of 33 districts surveyed in Kenya. It 
belongs to Potyvirus genus of Potyviridae family 
(Redinaugh and Stewart, 2018). SCMV is transmitted by 
aphids (Redinaugh and Stewart, 2018). 

Management strategies for MLND include crop nutrition, 
weed control (Fatma et al., 2016), crop rotation (Frank et 
al., 2016), and use of certified seeds (Mwatuni et al., 
2020). However, it is difficult to manage MLND using 
these strategies due to nature of its spread (Mudde et al., 
2018). Breeding for resistance is the most effective and 
sustainable method to manage MLND (Beyeni et al., 
2017;  Awata   et   al.,   2021).   This   study   focused  on  

 
 
 
 
identifying germplasm that are resistant to maize lethal 
necrosis disease causative viruses (MCMV and SCMV) 
that can be used as donor in breeding programs. 
 
 
MATERIALS AND METHODS 
 
Plant, experimental site and layout  
 
A total of 38 maize germplasm (5 temperate lines with inherent 
resistance to maize-infecting viral diseases 32 assorted tropical 
lines and 1 Kenyan hybrid) were evaluated (Table 1). The 
experiment was conducted in a net house at the University of 
Nairobi, College of Agriculture and Veterinary Sciences’ field 
station. The station is situated in Kabete, which lies at a longitude of 
36° 44" East and latitude of 1° 15" South and about 1940 m above 
the sea level. The area experiences a bimodal rainfall averaging 
1000 mm of rainfall per annum. The site’s daily maximum 
temperature ranges between 13 and 27°C (Wasonga et al., 2015). 
Maize germplasms were screened for their responses to MCMV 
and SCMV for two seasons in 2020 and 2021. Completely 
randomized design (CRD) was used to set up the experiments with 
three replications. Three maize seeds per pot were planted in black 
polythene pots measuring 30 cm diameter and 30 cm height. Di-
ammonium Phosphate (DAP) was applied at planting 5 g per pot. 
Watering was done four times a week.  
 
 
Preparation of the virus inoculum and leaf inoculation 
 
At three leave stage, maize seedlings were singly inoculated with 
MCMV and SCMV, respectively as described by Karanja et al. 
(2018) and Sitta et al. (2017). The inoculum was prepared from 
maize leaves showing classical MCMV and SCMV symptoms 
derived from virus collection at Kenya Agricultural and Livestock 
Research Organization (KALRO), Biotechnology center. Inoculation 
solution (0.1 M phosphate buffer) was constituted by dissolving 
10.8 g of potassium phosphate monobasic, 4.8 g potassium 
phosphate dibasic, 1.26 g Na2SO3  and 1 g of Carborandum in 1 L 
of sterile distilled water (Sitta et al., 2017). Reagents were from 
SIGMA

®
 Life Science. For each of the virus isolate, 200 g of 

infected leaves were obtained, homogenized and dissolved in 1 L of 
the inoculum buffer. The inoculum was applied on the leaves by 
hand rubbing. A second inoculation was done one week later 
(Tembo et al., 2021). 
 
 
Data collection/rating 
 
Data was collected on disease severity as described by 
International Maize and Wheat Improvement Center (CIMMYT). 
Disease severity was based on visual subjective five-point scale of 
1-5, where 5 represent very severe symptoms, 4 severe symptoms, 
3 moderate symptoms, 2 mild symptoms and 1 no symptoms 
(Figure 1) (Karanja et al., 2018; Sitta et al., 2017). Data was 
collected for six weeks after the first inoculation. 
 
 
Data analysis 
 

Analysis of variance was done to determine variability between 
germplasm and between different weeks using GenStat 15th edition. 
The scores obtained on disease severity from the screen house 
over the  6  weeks  were  converted  into AUDPC  values  using  the 
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Table 1. Maize germplasm used during the study. 
 

No. Germplasm Description  No. Germplasm Description 

1 KS23-6 Temperate line  20 39 Assorted tropical line 

2 OHVRS-C1 Temperate line  21 5 Assorted tropical line 

3 ks23-5 Temperate line  22 52 Assorted tropical line 

4 OH28 Temperate line  23 3 Assorted tropical line 

5 OH7B Temperate line  24 35 Assorted tropical line 

6 19 Assorted tropical line  25 CO80 Assorted tropical line 

7 22 Assorted tropical line  26 50 Assorted tropical line 

8 7 Assorted tropical line  27 60 Assorted tropical line 

9 24 Assorted tropical line  28 DUMA Kenyan hybrid 

10 19 Assorted tropical line  29 17 Assorted tropical line 

11 34 Assorted tropical line  30 30 Assorted tropical line 

12 CO79 Assorted tropical line  31 114 Assorted tropical line 

13 25 Assorted tropical line  32 119 Assorted tropical line 

14 36 Assorted tropical line  33 18 Assorted tropical line 

15 32 Assorted tropical line  34 112 Assorted tropical line 

16 8 Assorted tropical line  35 12 Assorted tropical line 

17 51 Assorted tropical line  36 9 Assorted tropical line 

18 122 Assorted tropical line  37 14 Assorted tropical line 

19 58 Assorted tropical line  38 16 Assorted tropical line 
 

Sources: Author 
 

 
 

 
 

Figure 1. Disease severity scale.  
Source: Karanja et al. (2018). 
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where ‘‘t’’-time in days for each reading, ‘‘y’’-Disease score using 
the disease score (1-5), and ‘‘n’’-number of readings. 

 
 
RESULTS  
 
Response of maize germplasm to infection with 
MCMV 
 
All the inoculated  germplasm  developed  symptoms  but  

disease severity differed significantly at P < 0.01 (Figure 
2 and Table 2). Susceptible germplasm showed disease 
symptoms one week after the first inoculation. Leaf 
symptoms began as chlorotic strips running parallel to the 
veins that later joined to produce elongated chlorotic 
blotches (Figure 2B and C). 

A t-test (p<0.05) confirmed there was no significant 
difference between season one and two for resistant 
germplasm and susceptible germplasm hence average of 
season one and season two was done for the resistance 
germplasm and susceptible germplasm. MCMV final 
severity scores of the 38 germplasm ranged from 2 to 
4.3, the AUDPC ranged from 52.8 to 122.8 (Table 2). 
Five  germplasm  had  a  severity  score of below 3. They  
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Figure 2. Variable MCMV disease severity observed during the trial. (A) Ks23-6 with low severity score of 1.5, (B) 19 with a 
medium severity of 3 and (C) 114 high severity score of 4.5. 
Sources: Author 

 
 
 
include germplasm Ks23-6 with a score of 2, germplasm 
18, 9, 60, and Ks23-5 with a final score of 2.3 while 19 
had a score of 3. Germplasm OH 28, 58, 14,122 and 58 
had the highest scores of 4 or above (Table 2 and Figure 
3). Germplasm 18 had the lowest AUDPC of 52.8 
followed by Ks23-6 with 58.5, while 58 had the highest 
AUDPC of 122.8 (Table 2). 
 
 
Response of maize germplasm to infection with 
SCMV 
 
Infection was observed in all the plants inoculated with 
SCMV. Germplasm differed significantly at (p< 0.001) for 
resistance to SCMV. 

Disease severity also differed over time at (P<0.01). 
The susceptible germplasm showed symptoms one week 
from the first inoculation. Final SCMV score ranged from 
2.0 to 5 (Figure 4). Only two germplasm had a score of 
<2.5, that is, germplasm 50 with a score of 2.0 and 
germplasm 19 with 2.3. The germplasm 7, 22, and 48 
had scores of 3 while germplasm 58 had the highest final 
score of 5. 

Germplasm 19 and 7 showed low scores to both 
viruses. Germplasm 19 had a final severity score of 2.3 
and AUDPC of 74.7 for SCMV trail and final severity 
score of 3.0 and AUDPC of 79.9 for MCMV trail while 
germplasm 7 had a final severity score of 3.0 and AUDPC 
of 79.9 for SCMV trail and final severity score of  2.7  and  

AUDPC of 66.7 for MCMV trail (Table 2, Figure 5). 
 
 
DISCUSSION 
 
Maize lethal necrosis disease is as a result of combined 
effect of MCMV and SCMV leading to yield losses of up 
to 100% (Gowda et al., 2015; Xia et al., 2016). Exposing 
plants to disease has been used to test and select 
germplasm for the presence of genes for resistance 
(Gowda et al., 2015). Previous work has reported that 
most elite inbred lines and commercial hybrids are 
susceptible to MCMV and MLND (Sitonik et al., 2019). 
This study partly agree with those previous report 
because among the studied germplasm, there was none 
that was immune to infection with either SCMV or MCMV. 
However there were significant differences in severity 
among different germplasm (Table 2). Earlier reports of 
work by Sitta et al. (2018), Karanja et al. (2018); Tembo 
et al. (2021) and Awata et al. (2021) where different 
germplasm were screened for MCMV, SCMV and MLND 
also reported development of symptoms on all screened 
germplasm but with different disease severity. 

This study involved screening of 38 maize germplasm 
that are genetically diverse. Final severity/infection and 
AUDPC values were used as indicators of response of 
test germplasm to SCMV and MCMV (Tembo et al., 
2021). There was significant difference between 
germplasm and between different  scoring  time/weeks at  
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Table 2. Weekly disease severity scores and the AUDPC of the germplasm studied. 
 

No.  Genotype 
SCMV Weekly Severity 

AUDPC 
 

No. Genotype 
MCMV Weekly Severity 

AUDPC 
1 2 3 4 5 6  1 2 3 4 5 6 

1 50 1.0 1.0 1.0 1.0 1.5 2.0 42.0  1 KS23-6 1.2 1.3 1.5 1.8 1.8 2.0 58.5 

2 19 1.0 1.3 2.5 2.8 2.3 2.3 74.7  2 18 1.2 1.2 1.2 1.6 1.9 2.3 52.8 

3 7 1.2 1.7 2.3 2.5 2.8 3.0 79.9  3 ks23-5 1.1 1.1 1.7 2.1 2.2 2.3 61.1 

4 22 1.0 1.2 1.3 1.7 2.5 3.0 60.7  4 9 1.3 1.3 1.5 1.5 1.8 2.3 59.8 

5 48 1.0 1.2 1.5 2.7 3.0 3.0 72.3  5 60 1.5 1.5 1.7 1.7 1.7 2.3 59.8 

6 34 1.0 1.2 2.2 2.3 2.8 3.0 73.5  6 19 1.2 1.5 2.2 2.7 3.0 3.0 60.3 

7 24 1.0 1.2 2.7 3.0 3.2 3.0 84.0  7 22 1.3 1.5 1.5 1.8 2.2 3.5 65.9 

8 25 1.0 1.5 2.8 3.0 3.2 3.2 88.1  8 7 1.7 1.5 1.7 1.8 2.3 2.7 66.5 

9 5 1.0 1.3 2.5 2.5 3.3 3.3 81.4  9 24 1.3 1.5 1.5 1.8 2.3 3.3 66.5 

10 15 1.0 1.2 2.0 2.5 3.0 3.3 75.8  10 19 1.5 1.5 1.7 1.8 2.3 3.0 67.1 

11 16 1.0 1.5 2.5 2.8 3.0 3.3 84.0  11 34 1.5 1.5 1.5 2.0 2.5 2.8 67.7 

12 OHVRS-C1 1.0 1.3 2.2 2.3 2.7 3.3 74.7  12 CO79 1.5 1.3 1.7 2.2 2.5 3.0 69.4 

13 C080 1.3 1.7 2.5 3.0 3.5 3.3 91.0  13 25 1.5 1.7 1.7 2.2 2.5 3.0 71.8 

14 3 1.0 1.3 2.7 2.7 3.2 3.5 84.6  14 36 1.5 1.5 1.5 2.2 2.8 3.2 72.3 

15 36 1.2 1.7 2.8 3.2 3.3 3.5 93.3  15 32 1.3 1.3 1.5 2.0 3.3 3.5 72.6 

16 60 1.0 1.3 2.0 2.5 2.8 3.5 76.4  16 8 1.3 1.5 1.5 2.2 3.0 3.3 73.5 

17 119 1.0 1.5 2.5 2.8 3.3 3.5 86.9  17 51 1.3 1.5 1.8 2.2 2.7 3.5 74.1 

18 KS23-6 1.0 1.0 1.8 2.2 2.7 3.5 69.4  18 39 1.5 1.5 1.7 2.2 3.0 3.2 74.7 

19 OH7B 1.0 1.3 1.3 1.8 2.0 3.5 61.3  19 5 1.5 1.5 1.7 2.0 3.2 3.5 75.8 

20 DUMA 1.0 1.2 2.7 3.2 3.5 3.5 89.3  20 52 1.3 1.5 1.5 2.0 3.5 3.5 76.4 

21 18 1.0 1.5 2.5 2.8 3.3 3.7 87.5  21 3 1.5 1.3 1.5 2.2 3.5 3.7 77.6 

22 30 1.0 1.2 1.8 2.0 3.2 3.7 73.5  22 35 1.2 1.3 1.3 2.5 3.5 3.7 77.6 

23 35 1.0 1.5 2.3 3.2 3.2 3.7 87.5  23 CO80 1.5 1.5 1.5 2.5 3.2 3.3 77.6 

24 39 1.0 1.7 2.5 2.8 3.2 3.7 87.5  24 50 1.3 1.3 1.8 2.7 3.7 3.7 84.0 

25 9 1.0 1.2 1.5 2.8 3.7 3.8 81.1  25 OH7B 1.2 1.3 1.7 2.7 3.8 3.8 84.0 

26 51 1.0 1.3 2.7 3.3 3.3 3.8 91.6  26 DUMA 1.2 1.2 1.7 3.5 3.5 3.5 85.4 

27 CO79 1.0 1.3 3.0 3.3 3.5 3.8 95.1  27 17 1.0 1.5 1.5 1.5 3.0 3.0 66.5 

28 8 1.0 1.3 2.8 3.5 4.0 4.0 99.2  28 30 1.2 1.3 1.8 3.2 3.5 4.0 86.9 

29 12 1.0 1.5 2.3 3.3 3.5 4.0 91.0  29 114 1.3 1.5 2.0 2.5 3.8 3.8 86.9 

30 14 1.0 1.8 3.0 3.8 3.5 4.0 101.5  30 119 1.5 1.5 1.5 3.2 3.7 3.8 87.5 

31 52 1.0 1.3 2.2 3.0 3.7 4.0 88.7  31 OHVRS-C1 1.2 1.3 2.0 3.0 3.7 4.0 88.1 

32 112 1.3 2.3 3.5 4.0 4.0 4.0 115.5  32 112 1.3 1.7 1.8 3.3 3.3 3.7 88.7 
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Table 2. Contd. 
 

33 114 1.0 1.8 2.3 3.2 3.7 4.0 94.5  33 12 1.5 1.5 1.8 3.0 3.8 4.0 89.3 

34 AMO-4 1.0 1.3 2.5 3.2 4.0 4.0 94.5  34 OH28 1.5 2.2 3.7 4.0 3.8 4.0 114.9 

35 OH28/AMO-5 1.2 2.7 3.7 4.0 4.0 4.0 118.4  35 14 1.3 1.7 3.2 4.0 4.0 4.0 108.2 

36 40 1.0 1.2 2.2 3.0 3.5 4.2 86.9  36 16 1.5 1.7 1.8 3.7 4.0 4.0 96.0 

37 122 1.2 1.8 3.7 4.2 4.2 4.2 115.5  37 122 1.5 2.3 3.5 4.0 3.8 4.0 114.9 

38 58 1.0 2.2 3.8 4.0 4.0 5.0 119.0  38 58 1.6 2.8 3.7 4.0 4.2 4.3 122.8 
  

Sources: Author 
 
 
 

 
 

Figure 3. MCMV disease progress for the susceptible germplasm at the top and tolerant germplasm at the bottom 
derived from plotting disease severity scores over time (6 weeks).  
Sources: Author 

 
 
 
P<0.01; hence, the need for scoring at different 
time interval due to virus dynamics with time. High 
severity scores were recorded among the 
susceptible germplasm as the  weeks  progressed 

leading to high AUDPC. According to Karanja et 
al. (2020) and Sitta et al. (2017), germplasm can 
be classified as susceptible with a score 4 or 
above, tolerant with a score  of  3  and  resistance  

with a score of 2.  
More than 80% of the studied germplasm were 

susceptible to SCMV and MCMV with scores of > 
3.0, this puts emphasis on risk posed by MLND on 
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Figure 4. Variable SCMV disease severity observed during the trial. (A, C) Germplasm 50 with low severity score, (B) 58 
high severity score, (D) leaves of germplasm 50 on the 6th week, (E) leaves of germplasm 58 at 6th week. 
Sources: Author 

 
 
 

 
 

Figure 5. SCMV disease progress for the susceptible germplasm at the top and tolerant germplasm at the bottom 
derived from plotting disease severity scores over time (6 weeks). 
Sources: Author 

 
 
 
maize production and food security in the country. 
Germplasm 58, 28, 14, 122 and OH28 were the most 
susceptible to MCMV with a final score of ≥ 4 across the 
two seasons. Germplasm OH28, 112, 122 and 58 were 
the most susceptible to SCMV with severity score of ≥ 4 
with the highest AUDPC of > 100. Three germplasms 

(OH28, 58, 122) were very susceptible to both viruses 
with the highest final score and AUDPC (Table 2), while 
germplasm 19 and 7 showed levels of resistance to both 
viruses. Paraschivu et al. (2013) reported a 
correspondence between germplasm AUDPC and 
susceptibility pointing that the most susceptible wheat 
germplasm  had  higher AUDPC values. This report  is  in 

agreements with the studies by Sitta et al. (2017) and 
Gowda et al. (2015) that reported high susceptibility of 
studied germplasm to MLND and causal agents. 

Five germplasm showed tolerance to MCMV with a 
final score of < 3 across the six weeks and lowest 
AUDPC ranging from 58.5 to 61.1. Ks23-6 had the lowest 
score of 2 while germplasm 18,9,60, Ks23-5 had a score 
of 2.3 and germplasm 19 had a score 3.0. Evaluation of 
germplasm in response to SCMV suggest that 
germplasm 50 and19 are resistant with scores of below 
2.5 while germplasm 7, 22 and 48 had a score of 3 
meaning they are moderately tolerant. This study found 
that germplasm 7 and 19 may be having genes resistance  
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to both SCMV and MCMV with low severity scores and 
AUDPC in both trails (Table 2). 

This study suggests that germplasm 18, 9, 60 and 19 
may be carrying genes for MCMV resistant while 
germplasm 50 and 19 may be carrying genes resistant to 
SCMV. In addition, this study has confirmed that KS23-6 
and KS23-5 are resistant to MCMV.  KS23-6 and KS23-5 
were identified as strong sources for MLND resistance 
and were developed by Kasetsart University in Thailand 
after crossing 26 inbred lines (Jones et al., 2018; Awata 
et al., 2021). Disease resistance is a mechanism 
developed by plants through evolution to survive attack 
by parasites. Quantitative trait loci (QTL) on chromosome 
six at 157 MB influences resistance to MCMV, as 
reported by Johns et al. (2018). It is inherited to the F2 
population recessively. Two major genes Scmv1 and 
Scmv2 that confer resistance to Sugar cane mosaic virus 
have been mapped in various studies (Xia et al., 1999; 
Ingvardsen et al., 2010; Leng et al., 2017; Tao et al., 
2013; Liu et al., 2009). More study on germplasm 18,9,60 
needs to be carried out to confirm the presence of QTL 
that confers resistance to MCMV and for germplasm 50, 
19, 22 and 48 to confirm presence of Scmv1 and Scmv2 
responsible for SCMV resistance. 
 
 
Conclusion 
 

The results from this study show that the germplasm 
studied here are variable in response to MCMV and 
SCMV. The germplasm identified as tolerant in this 
research study could serve as potential donors to 
improve the adapted maize to combat MLND in the 
country. This will restore maize productivity and improve 
small scale farmer livelihood. Further studies should be 
done on the mode of inheritance of SCMV and MCMV 
resistance QTLs. 
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