academic Journals

Vol. 7(3), pp. 140-147, April, 2015 DOI: 10.5897/IJBC2015.0813 Article Number: 085320351833 ISSN 2141-243X Copyright © 2015 Author(s) retain the copyright of this article http://www.academicjournals.org/IJBC

International Journal of Biodiversity and Conservation

Full Length Research Paper

Enumeration of lichen diversity in Manaslu Conservation Area and Sagarmatha National Park of Nepal

Bikash Baral

Nepal Academy of Science and Technology (NAST), GPO Box: 3323, Kathmandu, Nepal.

Received 7 January, 2015; Accepted 24 February, 2015

An extensive research on deciphering lichen diversity in the high Nepalese Himalaya was undertaken in two subsequent years in Manaslu Conservation Area (MCA) and Sagarmatha National Park (SNP). Altogether, 621 specimens were collected from these two regions, viz., 173 from MCA and 448 from SNP, which resulted in the occurrence of a total of 13 species of lichens from MCA (belonging to 4 families) and 69 species belonging to 15 different families from SNP. Among the lichen families reported from these two study sites, family Parmeliaceae (7 and 29 species from MCA and SNP, respectively) was the dominant one followed by Physciaceae (12 species from SNP) and Cladoniaceae (4 and 8 from MCA and SNP, respectively). Thus, this research work, to some extent, reveals the lichens enrichment in the study region, furnishing much new insights that can be used as a composite signal of environmental quality and future bio-monitoring studies.

Key words: Bio-indicators, endemism, geographical gradients, speciation.

INTRODUCTION

Lichens, frequently called 'Jhyau' or 'Tare' in Nepal are classified as a cluster of lower life-form of fungi (dual organisms assumed as a single one) and are formed by an intricate and mutualistic combination of both fungal (mycobiont) and algal (phycobiont/cyanobiont) partners (Sharma, 1995; Shah, 2014). Approximately, about 771 species belonging to 167 genera are known to Nepal as of now, of which more than 50 species are endemic (Baniya et al., 2010). However, current estimation of over 2,000 lichen species belonging to Nepal has now been made (Bhuju et al., 2007), but, lack of adequate knowledge continues to keep them undocumented. Though, the Nepalese Himalaya possess enormous pristine glories enriched with higher diversity and a very wide range of eco-climatic zones (Dobremez, 1976), most of its regions remained still unexplored. As it is well known that scientific discourse on ecological and biogeographical patterns and theories of species richness may prove an excellent system in bio-monitoring (Körner, 2002), this contemporary study was designed to abridge the existing gap in understanding and elucidating the diversity of lichens in Nepal.

E-mail: bikubaral@yahoo.com.

Author(s) agree that this article remain permanently open access under the terms of the <u>Creative Commons Attribution License 4.0</u> International License

Figure 1. Pictures depicting the sampling area. A. Manaslu Conservation Area, B. Sagarmatha National Park, C. Map of Nepal.

MATERIALS AND METHODS

Topography of the sampling areas

The Manaslu Conservation Area (MCA) lying on the lap of Manaslu Himalaya (Figure 1A), is spread in an area of 1,663 km² and has an elevation gradient ranging from 1,400-8,163 m asl. It is bordered by Tibet autonomous region of China to the north and east, while Manang district to the west and Gorkha district to the south. The Sagarmatha National Park (Figure 1B) stretched in an area of 1,148 km² lies in the Solukhumbu district and has an elevation gradient ranging from 2,845-8,848 m asl. The dominant tree vegetation in both the study area comprises of species of *Rhododendron, Betula, Quercus* and *Juniperus.*

Lichen sampling

The field trips were executed during 2010 (September-October) in Manaslu Conservation Area (MCA; coordinates Table 1), and in 2012 (April-May) in Sagarmatha National Park (SNP; Mount Everest Region; coordinates Table 2). Lichens growing on different substrata were sampled at an elevation above 2,350 m asl. With the special focus made on higher elevations, the sampling of lichens below 2,300 m asl was not incorporated in the present study. All species of lichens found in the sampling areas were harvested and species that tightly adhered to bark or soil were uprooted with the help of iron scalpels. Immediately after collection, samples were cleansed to eliminate the bark residues and other extraneous materials for their proper identification, followed by storage in air tight zip-lock plastic bags. All specimens were shade dried and the herbaria prepared according to method devised by Nash et al. (1993), was lodged in Nepal Academy of Science and Technology (NAST). All specimens collected were also coded with the British Lichen Society recording code numbers (Coppins, 2002).

The lichen cohort richness patterns in the studied areas were performed at different altitudinal ranges. Random-samplings were performed according to the availability of the lichens and the lichens found were harvested and the geographical co-ordinates and substratum were recorded. The specimens were identified through examination of their morphology, anatomy and habitation as per published floras (Awasthi, 2007).

RESULTS AND DISCUSSION

The two studied areas (Figure 1) possess an ample

Table 1. Diversity of lichens in MCA.

F ii	Latin name	Outle a fina fauna	Co-ord	Elevation	
Family		Substratum	Latitude	Longitude	(m asl)
Parmeliaceae	Hypogymnia physodes (L.) Nyl.	Rhododendron sp.	$27^{\circ}39'15.7"$ N	85°18'43.4" E	2,859
	<i>Everniastrum nepalense</i> (Taylor) Hale ex Sipman	Malus domestica	27°39'15.7" N	85°18'43.4" E	2,353
	<i>Parmotrema reticulatum</i> (Taylor) M. Choisy	R. campanulatum	27°39'15.7" N	85°18'43.4" E	2,727
	Usnea aciculifera Vain.	Quercus sp.	27°39'15.7" N	85°18'43.4" E	3,115
	Usnea arizonica Mot.	Rhododendron sp.	27°39'15.7" N	85°18'43.4" E	2,829
	<i>Usnea longissima</i> Ach.	Quercus sp.	27°39'15.7" N	85°18'43.4" E	3,079
	Usnea rubicunda Stirt.	R. campanulatum	27°39'15.7" N	85°18'43.4" E	2,927
Cladoniaceae	Cladonia cristatella Tuck.	Quercus sp.	27°39'15.7" N	85°18'43.4" E	3,086
	<i>Cladonia cariosa var. cariosa</i> (Ach.) Spreng.	Usually on rocks but sometimes on the trees bark	27°39'15.7" N	85°18'43.4" E	3,115
	Cladonia chlorophaea (Flörke ex Sommerf.) Spreng.	R. campanulatum	27°39'15.7" N	85°18'43.4" E	2,833
	<i>Cladonia ramulosa</i> (With.) Laundon	Rocks along with mosses	27°39'15.7" N	85°18'43.4" E	2,829
Coccocarpiaceae	Coccocarpia sp.	Malus domestica	27°39'15.7" N	85°18'43.4" E	2,727
Lobariaceae	Lobaria pindarensis Räsänen	Rocks along with mosses	27°39'15.7" N	85°18'43.4" E	2,829

amount of lichens diversity, which are summarized in Tables 1 and 2. Through this discourse, we traced a total of 621 lichens specimen from the studied areas, viz., 173 from MCA and 448 from SNP. Altogether, 13 species of lichens from MCA (lying on 4 families) and 69 different species lying on 15 different families from SNP were identified, among which family Parmeliaceae (7 and 29 species from MCA and SNP, respectively) was largest followed by Physciaceae (12 species from SNP) and Cladoniaceae (4 and 8 from MCA and SNP, respectively) (Figure 2). From the study, the high altitudinal lichens located on the studied areas were Leptogium indicum (3,900 m asl) and Cladonia coniocraea (3,803 m asl). Lichens enrichment was found to be maximum in the range of 2,800 m asl in MCA, while the species richness were found to be maximum at an elevation of 2,700 m asl in SNP.

Most of the lichen species traced in the present study have previously been reported from the adjacent regions, such as India, Pakistan and Bhutan (Kumar et al., 2011) and also other parts of Nepal (Baniya et al., 2010). Thirtythree percentage of the total lichens reported in the present study were found above the tree line (> 4,300 m asl) of which 53% were endemic. This number seems to be enormous which suggests that the environmental conditions are quite favorable for the luxuriant growth of lichens and the topography and varied altitude somehow contribute towards rich lichen diversity and endemism in the study sites. But, it would be too early to predict that the results of the present study are somewhat similar to that of Baniya et al. (2010) who traced altogether 525 species of Nepalese lichen distributed between elevations of 200-7,400 m asl and documented 55 species endemic to Nepal, because, in the present study, lichens sampling was done up to the elevation of 4,200 m asl. The members of the Parmelioid clade belonging to lichen family Parmeliaceae were dominant in the study sites and are followed by the Usneoid clade of the same family. This study corresponds to the findings of Thell et al. (2012) who mentions that the Parmeliaceae is the largest family across the globe and till date includes 79 genera and ca. 2,726 spp. belonging to 5-main clades, viz., Parmelioid, Cetrarioid, Usneoid, Alectorioid and Hypogymnioid.

At high elevation, lichens of either in foliose or fructicose forms are found and they exhibit maximum species diversity value (Sipman, 1989), while crustose forms of lichens prevail greatly in lower altitude. The ubiquitous lichen species tend to establish and colonize early on every microhabitat occupying a larger chunk of area (Rose and Wolseley, 1984). The diversity of the epiphytic lichens may vary with tree species, age of the tree, bark pH and tree health status (Herk, 2001; Hauck and Runge, 2002; Nascimbene et al., 2013). However, actual

Table 2. Diversity of lichens in SNP.

Fomily	Letin nome	Cubatratum	Legelity	Co-ordinates		Elevation
Family	Latin name	Substratum	Locality	Latitude	Longitude	(m asl)
	Leptogium trichophorum Müll. Arg.	Rock	Chhuthawa	27°44'32.6" N	86°42'47.8" E	2,672
	Leptogium delavayi Hue	<i>R. campylocarpum</i> and other trees	Phakding	27°45'20.4" N	86°42'37.1" E	2,729
Collemataceae	Leptogium adpressum Nyl.	Trees bark	Chhuthawa	27°44'05.8" N	86°42'43.6" E	2,566
Family Collemataceae Cladoniaceae Parmeliaceae	Leptogium indicum D.D. Awasthi & Akhatar	Rhododendron sp.	Near Khunde	27°48'56.4" N	86°42'36.6" E	3,900
	<i>Leptogium lacerum</i> (Sw.) Gray	<i>Malus</i> sp.	Ghat	27°43'59.8" N	86°42'46.3" E	2,750
	<i>Cladonia cariosa</i> var. cariosa (Ach.) Spreng.	Usually in rocks, but sometimes on the trees bark	Kyanjuma	27°48'58.3" N	86°43'50.6" E	3,583
	<i>Cladonia chlorophaea</i> (Flörke ex Sommerf.) Spreng.	Rocks	Near Larza	27°47'09.7" N	86°43'17" E	2,860
	<i>Cladonia portentosa</i> (Dufour) Coem.	<i>Quercus</i> sp.	Jorsalle	27°46'50.4" N	86°43'19" E	2,994
Cladoniaceae	<i>Cladonia coniocraea</i> (Flörke) Spreng.	On roots of woods and tree bases, rarely on bare soil	Syanboche	27 [°] 48'45.2" N	86°42'38.9" E	3,803
	Cladonia cristatella Tuck.	Malus sp., Rhododendron sp.	Larza bridge	27 [°] 47'24" N	86°43'03.8" E	2,910
	<i>Cladonia ramulosa</i> (With.) J.R. Laundon	Rocks along with mosses	Phakding	27°45'20.4" N	86°42'37.1" E	2,728
	<i>Cladonia rangiferina</i> (L.) Weber ex F.H. Wigg.	Rhododendron sp.	Toktok	27 [°] 45'21.3" N	86°42'36.3" E	2,710
	<i>Cladonia rangiformis</i> Hoffm.	Rocks	Jorsalle	27°46'28.7" N	86°43'19" E	2,812
	<i>Anzia colpodes</i> (Ach.) Stizenb.	Trees bark	Toktok	27°45'20.4" N	86 [°] 42'37.1" E	2,729
	Bulbothrix sp.	Trees bark	Near Phakding	27°44'05.8" N	86°42'46.6" E	2,566
	<i>Canoparmelia texana</i> (Tuck.) Elix & Hale	Rocks and barely on barks	Chhuthawa	27°44'56.2" N	86°42'44.6" E	2,687
	Cetraria sp.	Rocks	Syanboche to Khunde	27°48'57" N	86°42'36" E	3,850
	<i>Everniastrum nepalense</i> (Taylor) Hale ex Shipman	<i>R. arboretum</i> and other trees	Kyanjuma	27°48'58.3" N	86°43'50.6" E	3,583
Parmeliaceae	<i>Flavoparmelia caperata</i> (L.) Hale	Trees bark	Ghat	27°42'49.7" N	86°42'50.9" E	2,614
	Flavoparmelia soredians (Nyl.) Hale	Rocks	Larza bridge	27°47'22.9" N	86°43'07.1" E	3,123
	<i>Hypogymnia</i> sp.	Trees bark	Phakding	27°44'05.8" N	86°42'46.6" E	2,566
	Parmelaria thomsonii (Stirt.) D.D. Awasthi.	Malus domestica	Manjo	27°46'10.9" N	86°43'25.7" E	2,810
	<i>Parmelia nepalensis</i> Taylor	Trees bark	Manjo	27°44'03.5" N	86°42'42.6" E	2,860
	Parmelia nilgherrensis Nyl.	Quercus sp.	Mislung	27°47'56.8" N	86°42'47.4" E	3,340
	Parmelia reticulata Taylor	Trees bark	Khunde	27°49'09.6" N	86°42'29.2" E	4,110

Table 2. Contd.

Family	Latin name	Substratum	Locality	Co-ordinates		Elevation
				Latitude	Longitude	(m asl)
	<i>Parmelia sancti-angelii</i> Lynge	Trees bark	Namche	27°48'45.1" N	86°42'38.7" E	3,450
	Parmelia squarrosa Hale	Tree barks	Larza bridge	27°47'22.9" N	86°43'07.1" E	3,123
	Parmelia stuppea Taylor	Trees bark	Chhuthawa	27 [°] 43'44.5" N	86°42'48.3" E	2,600
	Parmelia sulcata Taylor	Trees bark	Thamu	27°49'16.1" N	86°40'52.4" E	3,450
	<i>Parmelia wallichiana</i> Taylor	Malus domestica	These	27°48'54.5" N	86 [°] 41'11" E	3,480
	Parmotrema sp.	Trees bark	Benkar	27°45'41.6" N	86°42'45.7" E	2,757
	Parmotrema tinctorum (Delise ex Nyl.) Hale	Trees bark	Phurte	27°48'45.8" N	86°41'31.1" E	3,400
	Pseudevernia furfuracea (L.) Zopf	Trees bark	Jorsalle	27°46'50.4" N	86 [°] 43'19" E	2,993
Parmeliaceae	<i>Punctelia borreri</i> (Sm.) Krog	Trees Bark	Phakding	27°45'55.7" N	86°43'23.3" E	2,809
	<i>Punctelia subrudecta</i> (Nyl.) Krog	Tree bark	Manjo	27 [°] 46'10.9" N	86 [°] 43'25.7" E	2,810
	<i>Usnea aciculifera</i> Vain.	Quercus sp.	Toktok	27°45'20.4" N	86°42'37.1" E	2,729
	Usnea longissima Ach.	Trees bark	Phakding	27°44'05.8" N	86°42'46.6" E	2,566
	<i>Usnea orientalis</i> Motyka	Trees and sometimes on rocks	Chhuthawa	27°44'56.2" N	86°42'44.6" E	2,687
	Usnea rubicunda Stirt.	Trees bark	Benkar	27°45'41.6" N	86°42'45.7" E	2,757
	Usnea sp.	Trees bark	Manjo	27°46'10.9" N	86°43'25.7" E	2,810
	Usnea trichodeoides Motyka	<i>Betula</i> sp.	Mislung	27°47'52" N	86°42'41.5" E	3,477
	<i>Xanthoparmelia</i> s <i>tenophylla</i> (Ach.) Ahti & D. Hawksw	Tree barks and rocks	Benkar	27°45'41.6" N	86°42'45.7" E	2,757
Gyalectaceae	<i>Pachyphiale himalayensis</i> Vezda & Poelt	Malus domestica	Kyanjuma	27°48'58.3" N	86°43'50.6" E	3,583
Caliciaceae	<i>Dirinaria confluens</i> (Fr.) D.D. Awasthi	Trees bark	Kyanjuma	27°48'58.3" N	86°43'50.6" E	3,583
Coccocarpiaceae	Coccocarpia sp.	<i>Malus</i> sp.	Ghat	27°42'49.7" N	86°42'50.9" E	2,613
Lecanoraceae	Lecanora himalayae Poelt	Malus domestica	Toktok	27°45'06.4" N	86°42'37.4" E	2,743
Graphidaceae	<i>Phaeographina nepalensis</i> D.D. Awasthi & Kam. P. Singh	Moist soil and rocks	Phakding	27°45'20.4" N	86°42'37.1" E	2,728

mapping of lichens render difficulties at times. More often, the seemingly chaotic mingling of lichen species provides falsification to their actual identification and classification. Moreover, the implication of the molecular tools for their actual identification at the genomic level is needed, which decreases the falsified misinterpretations regarding the taxonomic classification. Thus, on such prevailing scenario, scare ongoing effort to document the lichen population in Nepal is below the threshold, and hence species identification via molecular studies may prove to be an effective milestone to know more about this charismatic group of organism in Himalayan

Table 2. Contd.

Femily.	Letin nome	Substratum		Co-ordinates		Elevation
Family	Latin name		Locality	Latitude	Longitude	(m asl)
	<i>Heterodermia corallophora</i> (Taylor) Skorepa	Trees barks	Toktok	27°45'21.3" N	86°42'36.3" E	2,710
Physciaceae	<i>Heterodermia diademata</i> (Taylor) D.D. Awasthi	Trees bark	Chhuthawa	27 [°] 43' 44.5" N	86°42'48.3" E	2,600
	Heterodermia dissecta (Kurok.) D.D. Awasthi	Several trees	Phakding	27°45'55.7" N	86°43'23.3" E	2,809
	Heterodermia incana (Stirt.) D.D. Awasthi	Trees barks	Chhuthawa	27 [°] 44'25.8" N	86 [°] 42'43.6" E	2,566
	<i>Heterodermia leucomela</i> (L.) Poelt	Trees bark	Chhuthawa	27°44'05.8" N	86°42'43.6" E	2,567
	<i>Heterodermia pseudospeciosa</i> (Kurok) W. Culb.	Rocks	Benkar	27°45'41.6" N	86°42'45.7" E	2,757
	<i>Heterodermia punctifera</i> (Kurok.) D.D. Awasthi	<i>R. arboretum</i> and on rocks along with mosses	Jorsalle	27°46'28.7" N	86 [°] 43'19" E	2,812
	Heterodermia sp.	Barks and sometimes on rocks	Chhuthawa	27°44'25.8" N	86°42'43.6" E	2,566
	Heterodermia upretti	Rocks and barks of several trees	Jorsalle	27°46'46.6" N	86°43'17.8" E	3,111
	Phaeophyscia hispidula (Ach.) Essl.	Rhododendron sp.	Mislung	27°47'56.8" N	86°42'47.4" E	3,340
	<i>Physcia caesia</i> (Hoffm.) Fürnr.	Trees bark	Phakding	27 [°] 44'56.2" N	86 [°] 42'44.6" E	2,688
	<i>Physconia enteroxantha</i> (Nyl.) Poelt	Tree barks and on rocks	Phakding	27°44'05.8" N	86°42'46.6" E	2,566
	Ramalina fravinea (I_)					
	Ach.	Trees bark	Mislung	27°47'52" N	86°42'41.5" E	3,477
Domolinococo	Ramalina sinensis Jatta	<i>Betula</i> sp.	Jorsalle	27°46'50.4" N	86°43'19" E	2,993
Kamaimaceae	<i>Ramalina</i> sp.	Trees bark	Ghat	27 [°] 42'49.7" N	86 [°] 42'50.9" E	2,614
Ramalinaceae	<i>Ramalina usnea</i> (L.) R.H. Howe	Rocks along with some mosses	Syanboche	27°48'45.2" N	86°42'38.9" E	3,803
Peltigeraceae	<i>Peltigera polydactyla</i> (Neck.) Hoffm.	Rocks, barks and rarely on soil	Toktok	27°45'06.4" N	86°42'37.4" E	2,741
Stereocaulaceae	Stereocaulon coniophyllum Lamb	Rocks and soil	Larza bridge	27°47'22.9" N	86 [°] 43'07.1" E	3,123
Chrysothricaceae	<i>Chrysothrix chlorina</i> (Ach.) J.R. Laundon	Rocks and soil	Jorsalle	27 [°] 46'46.6" N	86 [°] 43'17.8" E	3,111
Lecideaceae	Lecidea khumbuensis Hertel	R. hogsonii	Manjo	27°47'11.3" N	86°43'13.2" E	2,960
Lobariaceae	Lobaria amplissima (Scop.) Forssell	On overhangs of siliceous rocks	Toktok	27°45'06.4" N	86°42'37.4" E	2,741
	<i>Lobaria pindarensis</i> Räsänen	R. hogsonii	Manjo	27 [°] 47'11.3" N	86 [°] 43'13.2" E	2,960

Figure 2. Frequency distribution of the lichen families in the studied areas, A. Lichens found in MCA, B. Lichens found in SNP.

ecozone.

Conclusion

The Nepalese Himalayas still harbors clusters of lichens that are not well-identified, so this study furnishes a preliminary finding about the diversity of lichens in some new localities of Nepal which may somehow be helpful in developing a general framework on the exploration of lichens in other regions of Nepal, and also to conduct future bio-monitoring studies by utilizing this baseline data.

Conflict of interests

The author declares there is no conflict of interest whatsoever.

ACKNOWLEDGEMENTS

The author thanks Mr. Niranjan Bhakta Ranjitkar and Mr. Basant Chhetri for providing their valuable inputs in the manuscript and to anonymous reviewers for critically evaluating the manuscript.

REFERENCES

Awasthi DD (2007). A compendium of the macrolichens from India, Nepal and Sri Lanka. Bishen Singh Mahendra Pal Singh, Dehra Dun, India.

- Baniya CB, Solhoy T, Gauslaa Y, Palmer MW (2010). The elevation gradient of lichen species richness in Nepal. Lichenologist. 42: 83-96. http://dx.doi.org/10.1017/S0024282909008627
- Bhuju UK, Shakya PR, Basnet TB, Shrestha S (2007). Nepal biodiversity resource book: Protected areas, ramsar sites, and world heritage sites. ICIMOD, MOST and GoN.
- Coppins BJ (2002). Checklist of Lichens of Great Britain and Ireland, British Lichen Society, London, p. 95.
- Dobremez JF (1976). Le Nepal, ecologie et biogeographie. Centre National de la Recherche Scientifique, Paris.
- Hauck M, Runge M (2002). Stemflow chemistry and epiphytic lichen diversity in dieback-affected spruce forest of the Harz Mountains, Germany. Flora. 4:250-261. http://dx.doi.org/10.1078/0367-2530-00039
- Herk CM (2001). Bark pH and susceptibility to toxic air pollutants as induces causes of changes in epiphytic lichen composition in space and time. Lichenologist. 33: 419-441. http://dx.doi.org/10.1006/lich.2001.0337
- Nascimbene J, Thor G, Nimis PL (2013). Effects of forest management on epiphytic lichens in temperate deciduous forests of Europe- A review. Forest Ecol. Manage. 298: 27-38. http://dx.doi.org/10.1016/j.foreco.2013.03.008
- Körner C (2002). Mountain biodiversity, its causes and function: an overview. Mountain biodiversity: a global assessment (Eds. Körner C, Spehn EM), Parthenon, Boca Raton, FL. pp 3-20.
- Kumar SR, Thajuddin N, Upreti DK (2011). Diversity of lichens in Kollihills of Tamil Nadu, India. Int. J. Biodivers Conserv. 3(2):36-39.
- Nash TH, Wetmore CM, Anderson W, Brat C, Denison C, Eversman S, Murray B, Clari L (1993). Floristics, lichens as bioindicators of air quality. U.S. Department of Agriculture, Fort Collins, Colorado, General, Technical Report, RM-224:6-15.
- Rose F, Wolseley P (1984). Nettlecombe Park its history and its epiphytic lichens: an attempt at correlation. Field Stud. 6:117-148.
- Shah NC (2014). Lichens of commercial importance in India.

Scitech J. 1:32-36.

- Sharma LR (1995). Enumeration of the lichens of Nepal. (Ed. Verheught WJM) Ministry of Forest and Soil Conservation and Department of National Parks and Wildlife Conservation research report. Publ. No. 3-111.
- Sipman HJM (1989). Lichen zonation in the parque Los Nevados Transect. Stud. Trop. Andean Ecosyst. 3:461-483.
- Thell A, Crespo A, Divakar PK, Kärnefelt I, Leavitt SD, Lumbsch HT, Seaward MRD (2012). A review of the lichen family Parmeliaceae- history, phylogeny and current taxonomy. Nord. J. Bot. 30:641-664. http://dx.doi.org/10.1111/j.1756-1051.2012.00008.x