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The study focused on soil macroarthropods, exploring their characteristics, environmental interactions, 
and role in soil nutrient dynamics—a subject that has been relatively understudied. To fill this gap, 
research was conducted in a temperate forest of Darma Valley, District Pithoragarh, Kumaun Himalaya, 
India. The forest was divided into two segments: A (disturbed) and B (undisturbed), based on 
anthropogenic pressure related to tree felling and lopping. The study spanned three months (July to 
September) over two consecutive years, 2020 and 2021. Soil properties, including soil organic carbon 
(SOC), total nitrogen (TN), available nitrogen (AN), available phosphorus (AP), soil moisture content 
(SMC), and pH, were analyzed. Data analysis employed techniques such as analysis of variance, total 
abundance, relative abundance, and correlation. The findings revealed significant differences in SMC, 
SOC, pH and AP between the two forest segments. A total of 2871 soil macroarthropods were sampled, 
representing 5 classes and 14 orders, with higher abundance found in the undisturbed forest segment 
B. While the species richness of soil macroarthropods remained relatively consistent, noticeable 
variations were observed in terms of total abundance and relative abundance across different orders. 
The relative abundance of soil macroarthropods was primarily influenced by soil pH and soil 
temperature.  
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INTRODUCTION 
 
The soil-litter system, considered a major biodiversity 
pool (André et al., 1994; Lee, 1994), serves as a crucial 
pathway for nutrient exchange between soil and plants 
(Swift et al., 1979; Vitousek and Sanford, 1986). The 
release of nutrients from decaying plant matter is 
influenced by the abundance and  diversity  of  soil  biota, 

including soil macroarthropods (Ghilarov, 1977; Pimm, 
1994), which is essential for maintaining ecosystem 
function (Cuevas and Medina, 1986; Jordan, 1985). Soil 
macrofauna, including macroarthropods, are sensitive to 
habitat changes, and human-induced disturbances can 
significantly  impact  their diversity and functioning (Beare 
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et al., 1995; Jones et al., 1994; Lavelle et al., 1997; 
Matson et al., 1997). Selective removal of vegetation, as 
reported by Martin and Sommer (2004), has shown 
changes in macroarthropod diversity and community 
structure. 

Soil macroarthropods are a critical component of soil 
biodiversity, playing a fundamental role in regulating 
ecosystem functioning (Brown et al., 2001). They 
contribute significantly to soil biomass and influence 
various soil processes (Lavelle and Spain, 2001; Susilo 
et al., 2004), including organic matter decomposition, 
mineralization, and nutrient cycling. Their activities also 
influence carbon flux from the soil (Ganjegunte et al., 
2004; Wardle et al., 2003). Furthermore, soil and litter 
arthropods contribute to physical soil rearrangement, 
improving water and nutrient infiltration, and gaseous 
emissions (Lavelle and Spain, 2001; Paoletti and 
Bressan, 1996; Susilo et al., 2004). Soil biota encompass 
a diverse array of organisms, fulfilling various functional 
roles such as decomposers, microbial regulators, soil 
engineers, and predators (Chapuis-Lardy et al., 2011; 
Lavelle et al., 2006). The biological functioning of soils, 
crucial for providing ecosystem goods and services, 
involves a wide range of biological processes carried out 
by soil organisms in conjunction with the physical and 
chemical components of the soil (Chapuis-Lardy et al., 
2011). 

A review of the literature highlights a predominant focus 
on soil microarthropods rather than macroarthropods, 
particularly examining aspects such as spatial or vertical 
distribution and abundance (Price, 1975; Sarkar, 1991). 
Studies on soil macroarthropods are often limited to 
specific insect groups, primarily collembolans and acarine 
(Alfred et al., 1991; Edwards and Lofty, 1974; Janetschek 
et al., 1976; Mukharji and Singh, 1970; Steinberger and 
Whitford, 1984). Despite their significance in natural and 
man-made habitats (Gillison et al., 2003), soil 
macroarthropods remain a poorly understood component 
of terrestrial ecosystems (Ruiz et al., 2008). 

This study delves into the impacts of changes in the 
abundance of all soil macroarthropods on soil 
physicochemical characteristics across two forest 
segments of a temperate forest, differing in anthropogenic 
pressure magnitude. The investigation aims to 
understand the resultant effects on soil nutrient dynamics. 
Unfortunately, due to a lack of expertise, macroarthropods 
were identified only up to the order level. The 
identification of specimens down to the species level 
would have provided a more comprehensive assessment 
of the variation in abundance and richness across the two 
forest segments.  
 
 
MATERIAL AND METHODS 
 
Description of the study site 
 

The study site is situated above Baling village in Darma Valley, 
District Pithoragarh, Kumaun Himalaya,  India.  It  encompasses  an  

 
 
 
 
old-growth forest spanning 4,527.585 km2, located between 
30°12'37" N latitude and 80°32'5" E longitude, within an altitudinal 
range of 3200 to 3400 meters (Figure 1). The current study was 
conducted over three months, from July to September, for two 
consecutive years in 2020 and 2021. The present forest is 
dominated by West Himalayan blue fir (Abies spectabilis), which is 
represented by thick litter, characteristic of a temperate coniferous 
forest. The forest was divided into two segments; that is, disturbed 
(forest segment A) and undisturbed (forest segment B), based on 
the magnitude of the anthropogenic pressure, primarily in terms of 
tree felling, lopping, and relative exploitation of the fuelwood (Figure 
2). A bridle path effectively demarcates the two forest segments. To 
minimize other environmental variables, apart from tree felling, 
lopping and exploitation of fuelwood in the two forest segments, 
care was taken so that other features were commonly shared 
between the two segments. For instance, distinctive characteristics 
of the forest segments include the absence of atypical tree species, 
a near homogeneous vegetation cover, and the prevalence of 
common dominant tree species, particularly Abies spectabilis. The 
extent of anthropogenic disturbance, identified through visual 
observation, can be attributed to the fact that the disturbed forest 
segment is in close proximity to and above the village. Therefore, it 
experiences relatively higher human activities compared to the far-
flung and relatively undisturbed forest segment. The latter is 
situated above the temple, surrounding the water source, and is 
considered 'sacred,' resulting in enrichment with leaf litter content. 

Throughout the study period, ambient temperatures ranged 
between 10 and 21°C, with recorded relative humidity ranging from 
72 to 92%. The minimum and maximum soil temperatures in forest 
segment A were 13 and 20°C, respectively, while in forest segment 
B, these values were 11 and 17.3°C. These findings highlight 
distinct temperature profiles within the two forest segments. The 
average soil temperature was 16.87 and 14.59°C, and the average 
humidity was 80.5 and 83.67% in forest segments A and B, 
respectively (Table 1). 
 
 
Experimental design and soil sampling 
 
Soil analysis was done by using quadrat methods (Kent and Coker, 
1992). Within each forest segment, 4 randomly chosen rectangular 
plots measuring 5m x 10m were established. Within each large plot, 
5 sub-plots measuring 1m x 1m were established for soil sampling. 
Soil samples taken from five sub-plots were clumped together into 
one lot. In other words, 4 soil samples constituted the total number 
per forest segment per visit. Since the study was carried out 
fortnightly (every 2nd week, twice a month), the total number of soil 
samples would translate into 24 per forest segment, or collectively 
48 soil samples (24 samples x 2 segments) from both the forest 
segments, for the duration of the 3-month study. Soil sampling was 
conducted by collecting soil samples from a depth of 0-10 cm after 
removing above-ground debris, using sickles, shovels, digging 
hoes, and bucket auger. Soil samples were then stored in airtight 
plastic bags and labeled. The soil samples were then air-dried and 
subsequently homogenized by passing through a 2 mm sieved filter 
to eliminate any visible roots or plant remains. Soil temperatures 
were recorded by a steel-tipped digital soil thermometer at 10 cm 
depth. 
 
 
Soil physical-chemical analysis 
 
The following soil parameters were investigated: 
 
(i) Soil texture using the hydrometer method (Gee and Bauder, 
1986). 
(ii) Soil pH determined according to Black (1973). 
(iii) Soil  moisture  content  (SMC)   assessed   via   the   gravimetric  
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Figure 1. Map of the study site. 

 
 
 
method (Allen et al., 1974). 
(iv) Available phosphorus (AP) measured by the colorimetric 
method (Bray and Kurtz, 1945). 
(v) Soil organic carbon (SOC) determined using the chromic acid 
titration method (Walkley and Black, 1934). 
(vi) Total nitrogen (TN) analyzed through the Kjeldahl method 
(Parkinson and Allen, 1975). 
(vii) Available nitrogen (AN) assessed by the alkaline permanganate 
method (Subbiah and Asija, 1956). 
 
 
Sampling of arthropods, identification, and classification 
 
As with soil samples, within each 4 larger plots (5 x 10 m), 5 sub-
plots measuring 1m x 1m were established. While soil samples 
taken from five sub-plots were clumped together into one lot; 
macroarthropods were studied separately using a quadrat method 
(Kent and Coker, 1992). In other words, altogether 20 separate 
plots were sampled per forest segment per visit. Again, since the 
study was carried out fortnightly, the total number of soil 
macroarthropod samples would translate into 120 soil 
macroarthropod samples (40 sample plots x 3 months) per forest 
segment, or collectively 240 macroarthropods samples (120 x 2 
segments) from both of the forests, for the duration of the 3-month 
study. The soil macroarthropods were collected using the hand 
sorting method. To clear above-ground vegetation, sickles,  shovels, 

and/or digging hoes were resorted to. The macroarthropod 
specimens were photographed in their natural habitat and 
subsequently preserved in 70% alcohol. Identification of the 
collected specimens was chiefly carried out through a literature 
review, while still unidentified samples were referred to the experts. 
Arthropods were classified using identification keys, as outlined by 
Duyar (2014). To ascertain the dominant soil macroarthropods, an 
evaluation was conducted on abundance, relative abundance, and 
abundance per meter square. While abundance refers to the total 
number of individuals in the sample or population, relative 
abundance represents the proportion of individuals 
(macroarthropods) of each species/taxon relative to the total 
number of all species or taxa (x 100). Abundance per square meter 
refers to the average number of individuals per square meter based 
on the total number of individuals sampled in both forest segments 
A and B.  
 

 
Statistical analyses 
 
All the statistical analyses were carried out using IBM SPSS 23 
software. Soil parameters and macroarthropods abundance data 
were log-transformed, where necessary. Soil samples were 
averaged within each plot to obtain representative data. The least 
significant difference (LSD) test with a significance level of (p < 
0.05)  was  used  to  compare  the means among soil variables. For  
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Figure 2. Tree felling combined with extensive lopping has resulted in lesser canopy cover in forest segment 
A (left), in contrast to dense cover in forest segment B (right). 

 
 
 

Table 1. The average value of soil characteristics in the study sites (mean ± 
S.E.; N = 24). 
 

Soil parameters Forest segment A Forest segment B 

pH 4.95± 0.04a** 6.27 ± 0.08b** 

SMC (%) 42.20 ± 1.88a** 62.05 ± 3.25b** 

SOC (%) 7.52 ±0.17a** 9.61 ± 0.37b** 

TN (g/kg) 0.36 ± 0.03a 0.39 ± 0.04a 

AN (kg ha-1) 151.06 ± 9.51a 159.87 ± 16a 

AP (mg/kg) 11.82 ± 0.83a** 18.85 ± 1.51b** 

Gravel (%) 8.06 ± 0.85a 8.77 ± 0.71a 

Sand (%) 18.18 ± 0.90 a 17.85 ± 1.28a 

Silt (%) 70.76 ± 1.65a 70.43 ± 1.83a 

Clay (%) 2.63 ± 0.33a 2.65 ± 0.23a 

Soil temperature (oC) 16.87 ± 1.41a* 14.59 ± 1.36b* 

Humidity (%) 80.5 ± 3.97a* 83.67 ± 4.18b* 
 

*and** significant at 0.05 and 0.0001 levels. Similar letters show no significant 
difference, while different letters show significant difference. SMC: Soil moisture 
content; SOC: Soil organic carbon; TN: Total nitrogen; AN; Available nitrogen; AP: 
Available phosphorus. 

 
 
 
assessing relationships between soil macroarthropods and different 
soil parameters, sample t-tests and correlation analyses were 
conducted.  
 

 
RESULTS 
 

Soil characteristics 
 

Forest segments, A and B demonstrated comparable soil 
texture, with silt being the prevailing component, 
accounting for 70.76 and 70.43%, respectively, and thus 
could be defined as loam soil (Table 1). The disturbed 
forest segment A, exhibited SMC ranging from 37.23 to 
51.26% while B showed a variation from 53.15% to 
72.78%.     Statistical     analysis      revealed    significant 

differences in soil moisture content between the two 
forest segments (p < 0.0001), (Table 1). 

A notable difference (p < 0.05) was observed in soil 
temperature between the two forest segments (Table 1). 
Segment A exhibited soil temperature within the range of 
14.23 to 19.05 °C, while in forest segment B, the values 
varied from 12.2 to 14.67°C. Additionally, a significant 
difference at (p < 0.05) was observed in humidity levels 
across the two forest segments (Table 1). In segment A, 
humidity values ranged from 74.5 to 88%, whereas in 
segment B, the values ranged from 79 to 92%.  

The disturbed forest segment A displays a soil pH 
ranging from 4.8 to 5.1, while in forest segment B, the pH 
varies from 6.2 to 6.3. The difference in soil pH between 
the two forest segments was significant (p < 0.05). These 
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Figure 3. Variation in abundance of different orders of soil macroarthropods between disturbed (Forest segment A) and 
undisturbed (Forest segment B) that were sampled from July to September; error bars indicate the standard error. 

 
 
 
findings underscore the distinct soil acidity levels in the 
respective forest segments (Table 1). 

The soil organic carbon (SOC) content within forest 
segment A fluctuates between 7.11% and 8.06%, while in 
forest segment B, it ranges from 8.08% to 11.40% (Table 
1). A significant difference in soil organic carbon content 
exists between the two forest segments (p < 0.0001) 
(Table 1). 

The soil total nitrogen (TN) values within forest 
segment A, exhibit a range from 0.31 to 0.35 g kg-1, while 
in forest segment B, they vary from 0.35 to 0.46 g kg-1. 
No significant variation in soil TN was observed between 
the two forest segments (p > 0.05) (Table 1). These 
findings indicate comparable levels of total nitrogen in the 
soils of both forest segments. 

The soil available nitrogen (AN) values within forest 
segment A range from 85.52 to 207.95 kg ha-1 while in 
forest segment B, the values range between 103.14 and 
192.61 kg ha-1. The observed differences in soil AN value 
between the two forest segments is statistically not 
significant (p > 0.05), (Table 1).  

The available phosphorus (AP) values within forest 
segment A, exhibit a range from 8.56 to 15.51 mg kg-1, 
while in forest segment B, they vary from 14.17 to 22.99 
mg kg-1. The observed variation in AP values across the 
two forest segments is statistically significant (p < 0.05), 
(Table 1).  

Macroarthropod abundance 
 
During the study period, a total of 2871 soil 
macroarthropods were collected, comprising 5 different 
classes and 14 orders. The abundance m-2 for disturbed 
forest segment A and forest segment B, was 47.95 ind. 
m-2, and 95.6 ind. m-2, respectively. Notably, the disturbed 
site (forest segment A) exhibited a lower number of 
macroarthropods compared to the undisturbed forest 
segment B (Figure 3). In forest segment A, Diptera (17%) 
and Hemiptera (16%) were more abundant. Conversely, 
in forest segment B, Araneae (28%) and Coleopterans 
(15%) were more prevalent. However, some 
macroarthropod taxa, such as Geophilomorpha, 
Lithobiomorpha, Opiliones, Trichoptera, and 
Scutigeromorpha, showed low abundance in both forest 
segments (Figure 3). 
 
 
Correlation between soil macroarthropods and 
different soil parameters  
 
In forest segment A, the relative abundance (RA) of soil 
macroarthropods exhibited a significant negative 
correlation with soil organic carbon (SOC) (r = -0.97, p < 
0.01) and soil temperature (r = -0.99, p < 0.01). However, 
it   showed    a   significant  positive  correlation  with  soil  
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Table 2. Pearson’s correlation coefficient of soil macroarthropods’ relative abundance and different soil 
parameters between two forest segments (disturbed A and undisturbed B). 
 

Variable pH SOC (%) TN (g kg-1) AN (kg ha-1) AP (mg kg-1) SMC (%) Soil temp. (oC) 

Segment A 0.64* -0.97** -0.38 0.58* 0.38 0.85* -0.99** 

Segment B 0.86* 0.14 -0.99** -0.42 -0.86* 0.17 -0.85* 
 

*and**Correlation coefficient significant at 0.05 and 0.01 levels. 
 
 
 

moisture content (SMC) (r = 0.85, p < 0.05) and soil pH (r 
= 0.64, p < 0.05) and available phosphorus (AP) (r = 
0.61, p < 0.05) (Table 2). In forest segment B, the relative 
abundance of soil macroarthropods exhibited a significant 
negative correlation with soil temperature (r = -0.85, p < 
0.05), soil total nitrogen (TN) (r = -0.99, p < 0.01) and soil 
available phosphorus (r = -0.86, p < 0.05). While 
significant positive correlations were found with soil pH (r  
= 0.86, p < 0.05) (Table 2). 
 
 

DISCUSSION 
 

Soil texture and soil moisture content 
 
The soil texture observed in both the forest segments can 
be described as loam. Since the soil texture is similar 
across the two segments of the forest (Table 1), it can be 
inferred that the differences in soil moisture content were 
not influenced by soil texture. However, soil moisture 
content varies significantly, across the two forest 
segments A and B (Table 1). The higher soil moisture 
content in forest segment B could be attributed to intact 
vegetation cover, its sacredness, and consequent 
relatively more moisture content. Conversely, forest 
segment A, experiencing anthropogenic pressure led to 
variable air and soil temperatures, elevated 
evapotranspiration rates, and greater vapour pressure 
deficits caused by increased solar radiation and wind, all 
these factors may contribute to a relatively lower soil 
moisture content in forest segment A, as indicated by 
various studies (Chen et al., 1995; Didham and Lawton, 
1999; Herbst et al., 2007). 
 
 

Soil physicochemical properties 
 

The measurement of soil pH, which indicates its acidity or 
alkalinity, is associated with various soil characteristics 
such as ion hydrolysis equilibrium (Tyler and Olsson, 
2001), microbial populations (Kooijman and Cammeraat, 
2010), and the amount of organic matter (Lambkin et al., 
2011). The current study highlights a significant 
distinction in soil pH between the two forest segments, A 
and B (Table 1). Forest segment A, experiencing greater 
anthropogenic disturbance (tree felling, lopping), leads to 
relatively less vegetation cover, higher temperature, and 
relatively more compact soil, exhibiting more acidic soil, 
due to the faster decomposition of the organic matter that 

is known to release acids (de Hann, 1977; Gairola et al., 
2012; Groffman et al., 2009; Gupta and Sharma, 2008) 
(Table 1).  

Soil organic matter is the most widely used indicator of 
soil quality (Wander and Drinkwater, 2000). Soil carbon 
plays a crucial role as both a source and a sink for 
carbon dioxide in the atmosphere (Fisher and Binkley, 
2000; Froberg, 2004; Hogberg et al., 2002), acting as a 
biogeochemical connection between major carbon 
reservoirs, such as the biosphere, atmosphere, and 
hydrosphere (Wilding et al., 2001).  Comparing the soil 
organic carbon content in the current forest segments, A 
and B, a significant difference was observed (Table 1). In 
the present study, the undisturbed forest B, treated 
sacred and characterized by relatively more vegetation 
cover, and a higher litter mass, exhibited relatively more 
storage of carbon in the soil (Sheikh et al., 2009). 
Consequently, lower temperature and a higher moisture 
content may in turn affect the soil organic carbon values, 
as compared to the disturbed forest segment A, as SOC 
is known to be positively influenced by humidity, and 
precipitation, and negatively influenced by the 
temperature (Post et al., 1982), vegetation and the soil 
environment (Ravindranath and Ostwald, 2008; Baldock 
and Nelson, 2000).  

As concerns total nitrogen (TN) and available nitrogen 
(AN), there was no significant difference observed 
between the two forest segments (Table 1). This could be 
attributed to the intricate processes of microbial 
immobilization, cation exchange capacity, and soil 
organic matter absorption, as highlighted by Silver et al. 
(2005) and Templer et al. (2008). However, there was a 
significant difference in soil available phosphorus (AP), 
comparatively higher in the undisturbed forest segment B 
(Table 1). This variation in AP values could be attributed 
to lower pH, as is exhibited by forest segment A (pH 
4.95), which results in the leaching of the essential 
nutrients, including phosphorus (Gairola et al., 2012; 
Larcher, 1980). 
 
 
Relationships between soil properties and soil 
macroarthropods 
 
Variations in soil physicochemical properties have a 
significant influence on the diversity of soil-inhabiting 
macroarthropods. In the present study, forest segment B 
is a  sacred  forest,  protection thus afforded, has resulted 



 
 
 
 
in relatively more intact vegetation cover, and 
consequently, lower temperature and higher humidity at 
the ground surface (Table 1). Undoubtedly, these 
differences exert a significant influence on the 
assemblages of ground-dwelling arthropods (Pinzon et 
al., 2012; Work et al., 2004). Furthermore, diversity and 
arthropod assemblages are strongly affected by 
vegetation composition and forest structure (Schowalter 
and Zhang, 2005; Work et al., 2004). In contrast, 
anthropogenic pressure in terms of tree felling, lopping, 
and mushroom harvesting, as experienced by forest 
segment A, consequently leading to less soil moisture 
content, negatively impacts the soil macroarthropods 
richness and abundance (Barros et al., 2002; Curry et al., 
2002).  

Zhao et al. (2014) observed that the abundance and 
distribution of soil and litter macroarthropods were 
significantly influenced by the physical and chemical 
characteristics of the soil and litter. These factors 
included temperature, moisture, pH, and others within 
temperate forest ecosystems. In the present study, soil 
moisture content exhibited a positive correlation with 
macroarthropod abundance in both forest segments. Soil 
moisture has been implicated in regulating diversity, 
distribution and abundance of macroarthropods 
(Abrahamsen, 1971; MacKay et al., 1986). Increased soil 
moisture creates a favourable condition for soil 
macroarthropods by providing the necessary moisture for 
their survival and reproduction (Johnson et al., 1995). 
However, it is known that certain insect orders such as 
Hymenoptera, Hemiptera, and Diptera can be negatively 
affected by both low and high soil moisture values (Adis 
and Junk, 2002; Ausden et al., 2001; Kajak, 1987; 
Tajovsky, 1999). Also, excessive moisture can sometimes 
lead to oxygen stress or waterlogging, negatively 
influencing the macroarthropod populations (Cárcamo et 
al., 2000; Hättenschwiler and Jørgensen, 2010). 
Additionally, spiders (Araneae) being predatory, are 
directly influenced by changes in the habitat structure and 
prey availability (Wise, 1993). 

The existence of arthropods was significantly affected 
by the temperature and moisture levels in the soil. 
According to Medianero et al. (2007), an elevation in 
temperature, coupled with sufficient moisture, led to an 
increased abundance of arthropods. Conversely, a 
decrease in arthropod abundance was observed when 
both litter and soil experienced water loss due to 
heightened evaporation at higher temperatures. In the 
present study, a negative correlation was observed 
between soil temperature and the abundance of soil 
macroarthropods, which correlates well with the findings 
by Medianero et al. (2007) and Sharon et al. (2001). 
Forest segment A, experienced tree felling which leads to 
higher soil temperatures, and relatively lower SMC. Thus, 
it exhibited lower macroarthropod abundance, similar to 
observations made by Peña-Peña and Irmler (2016). 

Soil pH levels varied between the two forest types. It  is 
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known that the preferences of ground-dwelling 
arthropods for specific habitats can be directly affected by 
soil pH, as is demonstrated by certain species of carabid 
beetles (Coleoptera) (Paje and Mossakowski, 1984), or 
can be indirectly influenced by the habitat preferences of 
their prey, such as mites (Straalen and Verhoef, 1997). 
Out of the 14 macro arthropod orders, Diptera, 
Hymenoptera, Hemiptera, Geophilomorpha, Julida, and 
Tomoceridae, prefer relative lower pH, as exhibited in 
Forest segment A, while Aranea and Coleoptera show 
higher abundance in forest segment B, exhibiting 
relatively higher pH. Since different insect orders exhibit 
varying preferences for pH levels (Hyvönen and Persson, 
1990; Loranger et al., 2001; van Straalen, 1998; van 
Straalen and Verhoef, 1997), this could explain the 
variations in macroarthropod abundance observed 
between the two forest segments. Overall, a positive 
correlation was exhibited between soil pH and the relative 
abundance of soil macroarthropods, underscoring the 
significance of soil pH as a determinant of 
macroarthropod abundance (Augusto et al., 2002; 
Loranger et al., 2001). 

A positive correlation was found between 
macroarthropod abundance and SOC in the undisturbed 
forest segment B. SOC invariably remains a source of 
energy and nutrients for the soil macroarthropods, which 
in turn contribute to the decomposition of the soil organic 
matter, and thus soil nutrient cycling (Ganjegunte et al., 
2004; Kaczmarek et al., 1995; Wardle et al., 2003). This 
relationship is mutually beneficial, as SOC enhances soil 
structure, moisture retention, and nutrient availability, thus 
providing favourable conditions for the proliferation of 
macroarthropod populations (Ayuke et al., 2011; Suthar, 
2009; Tiunov and Scheu, 2004). However, the soil 
parameters, as outlined above, are sensitive to 
disturbance, inclusive of anthropogenic pressure, and 
may thus influence the abundance of the soil 
macroarthropods (Bergeron et al., 2017; Swanson et al., 
2011). For example, Apigian et al. (2006) and Sileshi and 
Mafongoya (2006),  have reported lower species richness 
and population density of annelids, chilopods, arachnids, 
and some insects in disturbed forest patches. 

Nitrogen modulates plant biomass and community 
structure, thereby influencing the dynamics of soil 
macroarthropods (Zhou et al., 2022). Several studies 
have exhibited a positive correlation between SOC, soil 
nitrogen, and the abundance of soil macroarthropods 
(Ayuke et al., 2011; Suthar, 2009). This is in contrast to 
our findings, where a negative correlation was observed 
between soil macroarthropods and soil nitrogen. 
Notwithstanding the fact, the top predator orders- 
Araneae and Coleopterans, were significantly more 
abundant in the undisturbed forest segment B. This 
relatively greater abundance of the predator 
macroarthropods remains a good indicator of ecosystem 
productivity and thus, biodiversity, since energy 
constraints are  known to impact both the abundance and 
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the diversity of the top predators (Borer et al., 2003; Arim 
et al., 2006). Similarly, Badji et al. (2007) and Maribie et 
al. (2011) highlighted that soil macro-arthropods could act 
as important bioindicators; these include ants 
(Hymenoptera), springtails (Collembola), termites 
(Blattodea), and Acari (mites) from the present study. 
Among these groups, ants and springtails were 
extensively studied due to their high abundance and 
diversity. These organisms play a crucial role in essential 
biological processes, such as catalyzing the 
decomposition of organic matter and serving as central 
figures in the soil food web.  
 
 

Conclusion 
 
In the present study, we observed significant differences 
in soil physicochemical parameters, particularly in soil 
pH, SMC, and SOC, between the two forest segments (A 
and B) that differ in the magnitude of anthropogenic 
pressure resulting from tree felling and lopping. These 
findings reinforce the observation that changes in soil 
physicochemical properties, induced by anthropogenic 
disturbance, have a substantial impact on the relative 
abundance of soil macroarthropods, and vice versa. 
Although the species richness of soil macroarthropods 
remained relatively consistent, noticeable variations were 
observed in terms of total abundance and relative 
abundance across different orders. The relative 
abundance of soil macroarthropods was primarily 
influenced by soil pH, SMC, soil total nitrogen, and soil 
temperature. In conclusion, this study underscores the 
significance of even minor and subtle changes in soil 
macroarthropod abundance, resulting from anthropogenic 
disturbance, in influencing soil nutrient dynamics and, 
consequently, forest productivity. 
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