

Vol.5(2), pp. 9-16, October, 2014

DOI: 10.5897/IJCER2013.0202

Article Number: 195D6A948207
ISSN 2141-6494

Copyright © 2014

Author(s) retain the copyright of this article

http://www.academicjournals.org/IJCER

International Journal of Computer Engineering
Research

Full Length Research Paper

Real-time operating system (RTOS) with application to
play models

Hiba Shahid1*, Wadee Alhalabi2 and John Reif3

1
Department of Electrical and Computer Engineering, Effat University, Jeddah, Saudi Arabia.

2
Faculty of Computing and Information Technology (FCIT), King Abdulaziz University (KAU), Jeddah,

Kingdom of Saudi Arabia.
3
Department of Computer Science, Duke University, Durham, NC 27707 USA and Adjunct Faculty of Computing and

Information Technology (FCIT), King Abdulaziz University (KAU), Jeddah, Kingdom of Saudi Arabia.

Received 18 October, 2013; Accepted 7 October, 2014

It is very important to improve the design of the real-time operating system (RTOS) especially if we
want to use it in some special devices. Numerous researches have accepted conventional RTOS as
being the customary approach for designing devices used by children. This is because these are able
to facilitate the implementation different criteria such as clustering, stability and alternate programs.
In this paper, numerous publications have been analyzed to observe the performance of the RTOS
when it is subjected to varied constraints. The study focuses on a review of RTOS in relation to play
models to analyze their capabilities on various computing platforms and OSs. The publications which
we have collected have been sorted out to comprehensively review thereby leading to the configuration
of several factors affecting the features within the system. Likewise, statistics and results have
facilitated adoption of a more focused approach towards the development of RTOS. While this
program ranks clustering and performance as being the highest RTOS criteria for all applications,
alternate programs considered this to be the least important. Thus, criteria choice becomes an
important issue to address.

Key words: Operating system (OS), play model, real-time, real-time operating system (RTOS) performance,
RTOS criteria.

INTRODUCTION

In 1984, a book was published on a reviewing
operating system (OS) design, and dealing with OS
interface, processes and services along with various
important topics (Watson, 1983). An overview on the
anomalies frequently experienced by OSs along with
proposal for self- management strategies at OS level
was presented by Momeni et al. (2008). A survey was

conducted on by Romman (2009) to establish a reliable
OS for multimedia files and applications and compare it
with three of its existing counterparts. Nevertheless,
a systematic review on real-time operating system
(RTOS) with play model for children as being one of its
applications has never been published at least to our
knowledge. Owing to this, it has become essential to

*Corresponding author. E-mail: hshahid@effat.edu.sa

 Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution

License 4.0 International License

http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

10 J. Comput. Engr. Res.

observe previous and ongoing research results on
optimal OS for play models.

The aim of this paper is to investigate the tradeoffs
that occur between certain factors that impact the
functionality of the OSs. Since the intention underlying
this review is to delicately delve into the possibility of
finding a suitable OS for children, it would surely pave
the way for development of more reliable and
sophisticated RTOS.

LITERATURE REVIEW

An OS is the necessary part of every technical arena
because it enables the user to access documents and
files and also governs the functioning of all other
programs within the system. Examples of some well-
known OSs are Mac OS, Unix, Microsoft Windows
and Linux all of which have been tested and certified on
the basis of various factors throughout their areas of
functionality. Therefore, maintaining an acute vigilance is
a necessity, while deciding on an apposite resource for
technical utility and this in turn is based on several
factors compiled bearing in mind the existing market
conditions. Once the answer to selecting the best criteria
has been identified, it would be easier to judge whether
the OSs found in children's toys provide inevitable
support within as claimed. Numerous techniques for the
selection of an OS have been devised and subsequently
categorized in general under the areas of hardware,
software, interface, security and virtualization.

A RTOS is an OS that serves real-time application
requests, with the ability to process data as it is input,
without significant buffering delays. Examples of RTOS
are OS for scientific instruments, for machinery control,
and industrial control systems.

The jitter of a RTOS is the variability in the time
required by the OS to accept and process an application
request. A RTOS with low jitter is termed a hard RTOS,
and a RTOS with high jitter is termed a soft RTOS.

In addition to time to process data and jitter, there are
a number of key potential properties of OS which
include:

1) Reliability and Stability: The likelihood that the OS
is not in failure or crash mode.
2) Scalability: This is the ability of the OS to improve
in performance as further resources are added.
3) Availability: This is the likelihood that OS is
actively processing requests, and not either in crash-
mode or being updated.
4) Usability: This is the degree the OS has been
demonstrated in the market.
5) Security: This is the degree that the OS is not
susceptible to external attack.
6) Portability and clustering: This is the ability of the
OS to migrate and/or distribute is operations among

cluster of computers.
7) User-Interface: The ability of the OS to interact with
the user.
8) Certification: Whether the OS has been demonstrated
to provide certain properties.

A RTOS generally has high reliability, availability, but
often has limited user-interface. Other OS have different
combinations of properties.

Studies undertaken by Swift et al. (2004) described
the importance of reliability of any system and hence
seek to enhance this factor by isolating the system
from driver failures. Reliability factor has been taken
into account courtesy of numerous incidences of driver-
caused crashes within the system where there has been
little or no change in existing driver or system code. It is
due to this that system reliability has been described as
an important but impenetrable area under discussion
(Patterson et al., 2002; Segal and Frieder, 1989).
Another fact that has also been noted is that whilst the
outlay of high-end computing continues to decline, the
failure outlay has been rising ever since. These failures
include the unnecessary lay-offs on e-commerce server
which result in delay of numerous activities that are
performed by the work force for help desk overhaul
within the working environment. Furthermore, the
emerging segment of daily-use technical appliances
based on hardware and software augments the need for
reliability since efforts are underway to make these
appliances as diminutive, user friendly and automotive
as possible (Lin and Chang, 2013).

According to Baier et al. (2012), a particularly crucial
development has been the construction of scalable OSs
so that the existing system is more robust and shows an
improvement in performance when new hardware
resources have been added. Basically, this calls for
improving the resources of computer system in order to
accommodate the rising functionality demand, while at
the same time economizing the cost. Some of the
factors on which these dimensions depend on are size
of processor, memory, software and heterogeneity.
Software scalability assumes importance as subject of
inspection particularly when one node is shared
between a system featuring multiple processor
connections and a symmetric multiprocessor with single
memory location from where availability plays a vital role
in terms of system performance.

Availability is a crucial criterion when choosing an OS
since it is an important determinant of all ongoing
activities including the execution of instructions by the
processor. In such a situation, it is important to have an
OS that would allow application of software updates and
patches without any downtime or loss of service
(Baumann and Appavoo, 2005). Even rebooting or
restarting could be deferred without losing the ability to
apply security fixes or enhance functionality through
software updates provided the system is available at all

times. The resolve for availability has been strengthened
even more due to the fact that computing infrastructures
have been targets of unplanned down-time which has
even caused the potential overlay of scheduled down-
time to increase significantly. For instance, the
processing system for Visa transaction goes through a
routine update of approximately 20,000 times per year,
however, it tolerates down-time of less than 0.5% (Gillen
and Kusnetzky, 2002). Quite a few techniques to
minimize down-times and increase availability have been
devised such as dynamic update (Tushman and
Newman, 2004) which could enable the running of
software update application without interrupting service
which in turn amplifies the usability of the system.

According to Zhu et al. (2001), usability or market
proven factor is one of the most reliable criteria for
selecting an OS. OSs which have been in market for
more than 10 to 15 years have been employed in many
safety-critical applications and tested (or used) by
customers for a long time. Over the years, users have
stumbled upon numerous inaccuracies within the
framework which have been rectified by formulating
updated versions. These avatars of OSs include
pSOSystem, VxWorks and VRTX. According to a survey
published by StaCounter covering the time period from
January, 2009 to January, 2013 on the market share
held by OSs in the United States, the usability of
Windows 7 was 44.02% in March 2012 and dramatically
increased to over 50% to gain the top spot in January,
2013. This is chiefly attributed to the efficient usage of
Windows Vista alongside the effective marketing
strategies of Windows 7 (Swift et al., 2007) and system
security.

Yang (2001) addressed one of the fundamental
subjects of concern namely security of OSs. This is
the foremost cause of apprehension amongst end-
users since OS is the core software which executes
instructions from configured devices, servers, desktop
and other parts. Thus, lack of security could result in
unwanted attacks or break-in from one application to the
next. According to "DOD Trusted Computer System
Evaluation Criteria" (1985), of US government, most
OSs available for purchase have C2 level of security
which requires Discretionary Access Control (DAC)
protection that is particularly supportive of and protects
environment in which multiple applications are running
simultaneously. Numerous endeavours have been made
to develop OS model with utmost security. Studies
conducted by Spencer et al. (1999) were made available
along with HP-LX (Dalton and Choo, 2001) and Trusted
Solaris and these might be an indication that the
underlying security of OSs is responsible for the overall
security of applications.
Other factors dwell upon portability and clustering.
Clustering is basically used to distribute the load over
a number of machines. If one machine fails, it could
be sent for maintenance without interrupting the running

Shahid et. al. 11

of other services. This is basically determined by the
number of machines connected together (Bekman and
Cholet, 2003). As per Zhu et al. (2001), some of the
criteria entail selecting OS based on certification and OSs
which have been developed from scratch using a formally
defined semantic specification and were subjected to a
rigorous method of testing. Equally, difficult is the
proposition of acquiring alternate programs and interface
support as also of getting a device driver for a non-
supported device while working with an OS (Smith,
2000).

METHODOLOGY

Categorizing OS

OSs can be categorized into distinct categories by the clustering
OSs by the various properties we have listed above.

The problem of clustering OSs by the various properties can be

reduced to the problem of clustering a set of data, consisting of n
distinct d dimensional vectors, into m clusters, so that the
Euclidian distance of each element of each cluster from the
median of each cluster is minimized. There are a number of
algorithms for efficiently determining a near-optimal clustering of
multidimensional vectors (Shore and Gray, 1982), for example
vector quantization (Gray, 1984; Gersho and Gray, 1992). In our
case, the number n of OSs is very large, but the intended
number of OS clusters is just 6, so our work was manageable.

OSs is partitioned into six categories in order to estimate the
number of devices under each OS so that some estimate of
efficiency and usability of each O. This categorization was done
particularly for play models. Linux OS comprised of publications
related to disability that has been well-known since an early age
(Huber et al., 2008), RC products for children cars experiment
using the Internet (Aoto et al., 2005) and Bluetooth toy car control
(Cai et al., 2011) were found as examples of devices using
Linux as well. For variants of Windows, toy plane (Tanguay,
2000), musical computer games (Hämäläinen et al., 2004) and
controllers for simulated car racing (Togelius and Lucas, 1906-
1919) were found. Many robot toys were found for assisting and
playing with severely disabled children featured an underlying core
of Unix OS (Kronreif, 2005) and hence pertaining to specific
disabilities, certain special purpose OSs were built which limited
system’s portability.

There were special purpose OSs built specifically for particular

applications that included interactive C, the core of certain low
cost vehicles for simple reactive behaviours (Capozzo, 1999),
Robot C was the OS for a monoball robot based on LEGO
Mindstorms which focused on educating children in elementary
school (Prieto et al., 2012). Strifeshadow Fantasy OS was used
for a multi-player online game (Chan and Chang, 2004). Designing
of UAV helicopter also required special purpose OS (Cai et al.,
2005) along with a personalized R-Learning system which

operated on Robot Software Platform (Ko et al., 2010). Another
multiplayer computer game named Amaze used V-System,
Distributed OS (Berglund and Cheriton, 1985). Publications related
to embedded systems were also reviewed which included LEGO
Mindstorms NXT concepts aimed at developing technical
skills in students (Sharad, 2007). CELL processor was used in
scientific computing on PlayStation 3 (Buttari et al., 2007) and
Intel Microcontroller was found at the core of ESoccer Robot Toy
developed as an educational play model (Vial et al., 2007).

It was observed that Windows OS was used for several devices
as compared to other OSs. This raised the question as to what

12 J. Comput. Engr. Res.

Figure 1. Criteria in RTOS used in play models publication.

could be the reason behind its popularity and hence journal
articles known to discuss appropriate criteria for choosing an OS
were reviewed in depth.

Some of the most commonly used parameters that were
selected as forming the basis on which an OS should be chosen
are reliability, scalability, availability, usability, security, portability,
clustering and performance, stability and certification, alternate
programs and interface. The reason behind the presence of each
criteria within publications reviewed were determined and the
findings were numerically analyzed. In order to carry out
numerical analysis, literatures in agreement to achieving
particular criteria were selected. It must be noted that numerical
values to show the concurrence were not mentioned as far as the

studies related to criteria are concerned and hence the criteria
tends to agree as a whole numerically. However, data were given
in few literatures which presented the percentage of criteria with
respect to percentage of limitations within RTOS. Hence, the given
data was summed up with the rest of literatures in agreement to
criteria from which the percentage was discerned. Accordingly,
the graph depicting the percentage of criteria present in literature
related to play model for children reviewed was plotted as shown

in Figure 1. It was observed that clustering and performance
measure of OS is the highest that is, 93.75% in all the devices
except one. Likewise, it was also revealed that the OS run on
various devices could not appropriately run applications from other
OSs that is, 18.75%.

These findings were compared with RTOS for other applications
which included medicine, supercomputing, natural disaster
recovery scheme, cloud computing, automobile, manufacturing
industry and underwater devices. The objective was to compare
the performance of OSs within toys with the performance of the
same OS within other applications.

Similar behaviour is observed in Figure 3 which shows the
percentage of criteria present in each publication in relation with
all applications except play models in which the clustering and
performance criteria was highest that is, 96%. However, the criteria
pertaining to alternate programs was the lowest that is, 8% which
implies the applications built ranging from medicine to underwater

devices are mostly specific to certain OS and hence could not
operate on different OSs. Hence, it could be sufficiently concluded
that the performance of OSs within toys and the performance of

the same OS within other applications is almost similar.

DISCUSSION

Outcomes with respect to applications

Play models with respect to criteria and vice versa were
analyzed and their values were recorded based on
numerical facts provided within publications. These
data were plotted in Figure 2 in order to individually
observe the performance of each application with respect
to OS and vice versa.

Outcomes with respect to criteria

It is highly deemed for the system to be reliable in the
context of operating large parallel jobs successfully over
long period of time. It basically aims at reducing the mean
time between job failures thus affecting reliability and
usually aims at improving resiliency of the system thus
enhancing the security feature which responded to 95%
alongside reliability. Hence, this application displays high
response for clustering and performance criteria
alongside usability that is, 97%, as shown in Figure 4
which has been improved with the newly proposed high
performance computing option which provides
accelerated data processing of large orders of magnitude
over single-processor systems and few others.
Availability and scalability criteria were fairly stable to
about 77 and 67% on average, while portability and
interface were below average that is, 33% which reflects
the size for most RTOS used for this application. The
graph took hit the lowest for alternate programs criteria

Shahid et. al. 13

Figure 2. Criteria in RTOS used in manufacturing industry.

Figure 3. Criteria in RTOS used in other applications.

that is, 13% which implies that the built applications are
specific to particular OS and hence could not run on
different platform most of the time without making major
modifications. On the other hand, manufacturing industry
showed relatively stable response of all criteria where the
least score was 50% pertaining to reliability,
performance, interface, portability, security and usability.
Literatures analyzed related to manufacturing industry
implied the use of basic OS design over various
production lines that is, the load of machine has to be
shared by multiple production lines in most frequent
cases. Even more specific scenario has been presented
by Lin and Chang in case of tile manufacturing system
were a similar product has been generated by two
different production lines in which the functionality of the
machines are the same. However, one generated
compact product type with certain machines, while the

other produces regular product types with all machines
and hence the load of machine is common to both the
production types (Lin and Chang, 2013). Without going
much into details of performance of machine with respect
to each production line, several other literatures have
been assessed which shows fairly similar pattern for most
of the criteria related to manufacturing industries.
Security and usability responded to 65% which was much
closer to former criteria, while alternate programs
responded to 87%. This pattern implies that the
application could easily run from one OS to the next
which was expected given a common platform for all the
production lines. However, stability and certification
peaked up to 91% which was the highest thus reflecting
the overall behavioural pattern and compatibility.

Figure 5 displays criteria performance with respect to
different applications in which supercomputing and

14 J. Comput. Engr. Res.

Figure 4. Criteria in RTOS used in supercomputing.

Figure 5. Clustering and performance in different applications.

automobile reaches the highest point that is, 97%.
Performance of the system is of critical concern of
automotive manufacturers in designing increasingly
complex software. Furthermore, the issue of security
could be seen in two folds within the design of
automobile as well as supercomputers, while reliability
and usability are traditional key concerns in the context
of mechanical, electrical and software systems (Broy et
al., 2007). Play models for children responded to 94% in
which the software design for most of the learning
systems was separated for the purpose of enhancing the
performance and security. For instance, UAV helicopter
was based on special purpose OS which was highly
clustered into different technical sub areas which in turn
reduces the load of all operations on one area thus
enhancing the security feature thereby escalating its
performance. Disaster recovery schemes and cloud
computing displayed fairly stable response of 92% in

terms of performance. Quite differently, cloud computing
reaches high performance measure by replacing
clustering since they are geographically distributed
unlike clusters which are tightly coupled connections
within small-scale. This is followed by medicine which
includes the medical equipment controllers that has
responded to 89% on average, while manufacturing
industry has reached a response of 50%, underwater
devices were quite closer to it that is, 41%. This has
been followed by the reason that, in general, the mean
time between job failures escalates as the devices goes
deeper at lower levels of the ocean. Numerous
techniques have been developed to enhance the
operation of these devices which has been successful in
terms of their performance but this area has not been
able to escalate its performance as compared to the rest
of applications. Alternate programs were observed to be
the least satisfying criteria within applications. As shown

Shahid et. al. 15

Figure 6. Alternate programs in different application.

in Figure 6, it reached the highest point at 87% for
manufacturing industry where software design within
products belonging to distinct production lines which
includes similar basic design with few modifications
according to product requirements. The criteria goes
down to 33% for cloud computing and underwater
devices since most of time, these applications are
specific to the OS alongside disaster recovery scheme
with 34% response. Due to the nature of conditions
under which these applications are used, the complex
designs are built restricted to a single RTOS model. The
response for automobile and play models deescalates to
25 and 19%, respectively while supercomputing
responded by 13%, medicine marks the lowest point at
11%. The response rate merely reflects the competition
between various organizations in development of
applications along with the importance laid on the
application itself on nature of condition under which it is
used. In terms of OS usage, Unix OS was used the
maximum especially because it showed greater potential
for security and performance. It is also characterized with
good load balancing feature which makes it robust
against crashes.

PUBLICATION SCREENING AND INCLUSION

Publications were selected on the based on a common
point where the abstract and title reflected that the
publication deals with OS being applied effectively to
play model for children. These publications were sorted
out after carefully scanning the OSs used within the
information published. This number was condensed to
include criteria which were thoroughly reviewed as well
as their data were included for analysis. The article
sources were taken from IEEE Transactions, Elsevier

and ACM Database. Exclusion criteria included patents
since they mainly focused on hardware side of the
system and representative samples and articles were the
ones which showed a participant response rate of 50%
or more. Longitudinal study design was followed with the
units of analysis being type of OS, applications and
criteria.

Conclusions

The paper provided a review of RTOS for use for play
models, analyze their capabilities on various computing
platforms and OSs. We partitioned OSs into six
categories in order to estimate the number of devices
under each OS so that some estimate of efficiency and
usability of each OS could be formed.

Conflict of Interest

The author(s) have not declared any conflict of interest.

AKNOWLEDGEMENTS

We wish to acknowledge support to both co-authors by
King Abdulaziz University (KAU) as well as support to
John H Reif NSF CCF-1141847, NSF CCF- 1217457,
and NSF CCF-1320360.

REFERENCES

Aoto K, Inoue M, Nagshio T, Kida T (2005) Nonlinear control

experiment of RC car using internet. Control Applications.
Proceedings of IEEE Conference.

16 J. Comput. Engr. Res.

Christel B, Marcus D, Benjamin E, Hermann H, Joachim K, Sascha K,

Steffen M, Hendrik T, Marcus V (2012). Chiefly symmetric: Results on
the scalability of probabilistic model checking for operating-system

code. Systems Software Verification Conference, Sydney, Australia.
Baumann A, Appavoo J (2005). Improving dynamic update for operating

systems. In Proceedings of the 20th ACM Symposium on OS

Principles, Work-in-Progress Session, Brighton, UK. Bekman S,
Cholet E (2003). Practical Mod Perl. Beijing : Sebastopol, CA:
O'Reilly.

Berglund EJ, Cheriton DR (1985). Amaze: A Multiplayer Computer
Game. 2(3):30-39.

Broy M, Grünbauer J, Hoare T (2007). Software System Reliability and

Security, IOS Press.
Cai J, Wu J, Wu M, Huo M (2011). A bluetooth toy car control

realization by android equipment. Transportation, Mechanical, and

Electrical Engineering (TMEE), International Conference
Capozzo L, Attolico G, Cicirelli C (1999). Building low cost vehicles

for simple reactive behaviors. Systems, Man, and Cybernetics.

IEEE SMC Conference Proceedings. IEEE International
Conference, 6:675-680.

Chan HT, Chang RKC (2004). Strifeshadow Fantasy: a massive

multi-player online game. Consumer Communications and
Networking Conference. First IEEE, pp. 557-562

DOD 5200.28-STD (1985). DOD Trusted Computer System Evaluation

Criteria (Orange Book).
http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.pdf.

Dalton C, Choo TH (2001). An Operating System Approach to

Securing E-Services. Communications of the ACM, 44(2):58.
Gillen A, Kusnetzky D, McLaron S (2002). The role of Linux in

reducing the cost of enterprise computing. IDC white paper.

Hämäläinen P, Mäki-Patola T, Pulkki V, Airas M (2004). Musical
Computer Games Played by Singing. In Proc. of the 7th Int.
Conference on Digital Audio Effects (DAFX-04), Naples, Italy,

October 5-8.
Huber M, Rabin B, Docan C, Burdea G, Nwosu ME, AbdelBaky M,

Golomb MR (2008). PlayStation 3-based tele-rehabilitation for

children with hemiplegia, Virtual Rehabilitation.
Ko WH, Lee SM, Nam KT, Shon WH, Ji SH (2010). Design of a

personalized r-learning system for children. Intelligent Robots and

Systems (IROS), IEEE/RSJ Int. Conf. pp. 3893-3898.
Kronreif G, Prazak B, Mina S, Kornfeld M, Meindl M, Fürst M (2005).

Playrob - robot-assisted playing for children with severe physical

disabilities. Presented at IEEE, 9th International Conference on
Rehabilitation Robotics, Chicago, IL, USA.

Lin YK, Chang PC (2013). Graphical-based reliability evaluation of

multiple distinct production lines. J. Syst. Sci. Syst. Eng. 22(1):73-92.
Momeni H, Kashefi O, Sharifi H (2008). How to Realize Self-Healing

Operating Systems? Information and Communication Technologies:
From Theory to Applications. 3rd International Conference.

Patterson D, Brown A, Broadwell P, Candea G, Chen M, Cutler J,
Enriquez P, Fox A, Kıcıman E, Merzbacher M, Oppenheimer D,
Sastry N, Tetzlaff W, Traupman J, Treuhaft N (2002). Recovery

Oriented Computing (ROC): Motivation, definition, techniques, and
case studies. Technical Report CSD-02-1175, UC Berkeley
Computer Science.

Prieto SS, Navarro TA, Plaza MG, Polo OR (2012). A Monoball Robot
Based on LEGO Mindstorms. Control Systems, IEEE, 32(2):71-83.

Rumman NA (2009). Operating system support for multimedia: Survey.

Computer Science and Information Technology-Spring Conference.
International Association.

Segal ME, Frieder O (1989). Dynamic Program Updating: A

Software Maintenance Technique for Minimizing Software
Downtime. J. Software Maintenance, 1(1):59-79.

Sharad S (2007). Introducing Embedded Design Concepts to
Freshmen and Sophomore Engineering Students with LEGO
MINDSTORMS NXT. Microelectronic Systems Education.

IEEE Int. Conf. pp. 119-120.
Smith RW (2000). Linux Hardware Handbook: [selecting, Installing,

and Configuring the Right Components for Your Linux System ...].

Indianapolis, IN: Sams.
Spencer R, Smalley S, Loscocco P, Hibler M, Andersen D, Lepreau J

(1999). The Flask security architecture: System support for diverse

security policies. In Proc. of the 8th Usenix Security Symposium,
pp.123-139.

Swift MM, Bershad BN, Levy HM (2003). Improving the Reliability of

Commodity Operating Systems, in Proceedings of the 19th ACM
Symposium on Operating Systems Principles, Bolton Landing, NY.

Swift MM, Bershad BN, Levy HM (2004). Improving the Reliability of

Commodity Operating Systems, ACM Transact. Comp. Syst. 22(4).
Tanguay D (2000). Flying Toy Plane. Computer Vision and Pattern

Recognition. Proceedings. IEEE Conference, 2:231-238.

Tushman ML, Newman WH, Romanelli E (2004). Convergence and
upheaval: managing the unsteady pace of organizational evolution.
Tushman, M.L. and Anderson, P. (Eds.), Managing Strategic

Innovation and Change: A Collection of Readings, pp. 530-540. New
York: Oxford University Press.

Vial PJ, Serafini G, Raad I (2007). Soccer RoBot Toy within an

Educational Environment. The First IEEE International Workshop
on Digital Game and Intelligent Toy Enhanced Learning, Jhongli,
Taiwan, March 26-28 2007, 215-217. Copyright IEEE 2007

Watson DJ (1983). Book Review: Operating System Concepts. 3:2.
Yang CQ (2001). Operating System Security and Secure Operating

Systems. V. 1.4b, Option 1 for GSEC.

Zhu MY, Luo L, Xiong GZ (2001). A Provably Correct Operating
System. ACM SIGOPS Operating Systems Review 35(1):17-33.
Print.

http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.pdf
http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.pdf

