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Natural language processing tasks includes summarization, machine translation, question 
understanding, part of speech tagging, etc. In order to achieve those tasks, a proper language 
representation must be defined. Roots and stems are considered as representations for some of those 
systems. A word needs to be processed to extract its root or stem. This paper presents a new 
technique that extracts word weights, by stripping of prefixes and suffixes from a given word. This 
technique is based on Hidden Markov Model (HMM). A path from a start state to the end state 
represents a word, each state constitute letters of a word. States are prefixes, weights, and suffixes. 
The best selected path should have the highest likelihood of a word. The approach results in a 
promising 95% performance.  
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INTRODUCTION 
 
The Arabic word is characterized by a well defined letters 
organization. Words are originated from sections of 3 
letters called tri-root, or 4 letters called quad-root, which 
is the basic block of a word.  Furthermore, different forms 
of words with possibly different meanings are generated 
from those roots based on well established morphological 
rules, which are called weights. Thus, by detecting those 
weights, a word can be reversed into its original root. 
Over 300 weights represent all forms of an Arabic word, 
but adding prefixes and suffixes complicate the detection 
of a word root.  

Features are the basis of a text processing system, and 
in our case, those features are words in a given text. The 
word by itself does not provide a good representation of a 
text due to its inflation. Therefore, segmentation of a 
surface word - word which appears in a text- is a must in 
order to assure a more efficient text processing system. 
Thus, further processing of a word is needed to produce 
better features. One way is to use a stem, which is a 
result of stripping  prefixes,  suffixes,  and  infixes  from  a  
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word and thus provides better representation. Stem, 
sometimes referred to as the root, has a drawback of 
grouping words with possibly different meaning under 
one root that will affect the accuracy of the outcome of 
such a system. Another way of presenting a word is the 
words’ weight, which is extracted by stripping prefixes 
and affixes. The process will minimize the number of 
features and, preserve the meaning of the word. 

In this paper, a new statistical approach is presented 
based on Hidden Markov Model to extract words’ weights 
and roots. This approach identifies three segments of a 
given surface word - word in a text. A word is represented 
by different states. States in the model are divided into 
three segments. The first segment represents prefixes, 
the second segment represents the weights that the word 
belongs to, and the third segment represents the suffixes 
which a word might be attached to. Word may or may not 
have a prefix or a suffix.  A set of states (path) represents 
a word, where each letter of the input word is represented 
by a single state. Furthermore, the extraction of Arabic 
word weights may lead to word type (noun, verb) 
detection. Weights may represent nouns, verbs, or both. 
It will be shown that our approach will detect over 90% of 
word type, and 95% for weight extraction. 

As far as we know, there were  no  works  done  on  the 



 

 
 
 
 
extraction of a word weight. Most of the research focuses 
on the root, and stem detection. Deferent techniques 
were used to extract roots, or stems. Most are rule 
based, and few are statistical based. The presented 
technique is considered as a morphological analyzer, 
which will serve as a weight extractor, a root and stem 
extractor, a word type identifier. It can also be used to 
convert a word into its singular state by weights 
conversion rules (for example,  ت����� to  ����� ). 

The next section presents some of the previous works 
about other morphological systems developed. Following 
this, we describe the Hidden Markov Model for weight 
extraction. Finally, we present the results of our system 
and conclude with a list of future improvements identified 
as a result of the evaluation. 
 
 
PREVIOUS WORK 
 
Various morphological systems were developed in 
literatures. Almost all the system focused on extracting 
roots or stems. Morphological systems are categorized 
as statistical driven methods (Al-Sahmsi and Guessoum, 
2006; Mohamed et al., 2009; Ahmed and Nürnberger, 
2007; Sinane et al., 2008),    machine translation driven 
methods (Chen and Gey, 2002) and rule based methods 
(El-Hajar et al., 2010; Larkey et al., 2002, 2005;  
Buckwalter, 2002; Al-Ameed et al., 2005; Khoja and 
Garside,1999; Darwish, 2002).  

A Hidden Markov Model Based part of speech 
approach was introduced in the works of Al-Sahmsi and 
Guessoum (2006). It uses HMM to resolve Arabic text 
POS (Part of Speech) tagging ambiguity through the use 
of a statistical language model developed from Arabic 
corpus. The paper presents the characteristics of the 
Arabic language and the POS tag set that has been 
selected. It then introduces the methodology followed to 
develop the HMM for Arabic. For the POS-tagging 
problem, observation sequence is a sequence of words. 
The transition probabilities are obtained from the trigram 
model and the emission probabilities are obtained from 
the lexical trigram model. The states of the HMM model 
are the POS tags. A training corpus of Arabic news 
articles has first been stemmed using the Buckwalter's 
stemmer, and then, tagged manually with proposed tag 
set. Then, a trigram language model was built for the 
tagged training corpus. The trigram language model 
computes lexical probabilities. Then, the POS tag 
sequences was obtained from the training corpus and 
created a trigram Arabic language model based on the 
POS tag corpus. Next, lexical and contextual probabilities 
were used to determine the HMM model’s parameters as 
follows: contextual probabilities were transition 
probabilities and lexical probabilities were the emission 
probabilities. Once matrices A and B were computed, 
search needs to be performed to find the POS tag 
sequence that maximizes the product of the lexical and  
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contextual probabilities. The proposed HMM POS tagger 
achieved a performance of 97%. 

El Hajar et al. (2010) combine morphological analysis 
with Hidden Markov Model (HMM) and rely on the Arabic 
sentence structure to produce Arabic Part-Of-Speech 
Tagging. The morphological analysis is used to reduce 
the size of the tags lexicon by segmenting Arabic words 
in their prefixes, stems, and suffixes due to the fact that 
Arabic is a derivational language. HMM is used to 
represent the Arabic sentence structure in a hierarchical 
manner. Each tag in this system is used to represent a 
possible state of HMM and the transitions between tags 
(states) are governed by the syntax of the sentence. A 
corpus is manually tagged and then used for training and 
testing this system. Experiments conducted on the data 
set have given a recognition rate of 96%. 

Arabic stemming algorithms can be classified, 
according to the desired level of analysis (El-Hajar et al., 
2010), as either stem-based or root-based algorithms. 
Stem-based algorithms, remove prefixes and suffixes 
from Arabic words, while root-based algorithms reduce 
stems to roots. Light stemming refers to the process of 
stripping off a small set of prefixes and/or suffixes without 
trying to deal with infixes. 

One light stemmer is Larkey et al. (2002), who used a 
predefined list of prefixes and suffixes to produce a 
prefix/stem/suffix form. The maximum number of prefixes 
it can remove is 3, and the maximum number of letters in 
a suffix is 2. Thus, it fails to remove prefixes that have 
more than three letters long and suffixes that have more 
than two letters long. Larkey et al. (2005) revisited the 
light stemmers and developed another one called light10 
that exploits the possibility of having more prefixes and 
suffixes in the list.  

Another light stemmer introduced in Buckwalter (2002), 
returns all valid segmentations based on the fact that an 
Arabic prefix length can go from zero to four letters, and 
the stem can consist of one or more letters, and the suffix 
can consist of zero to six letters. It returns stems rather 
than roots. It is based on a set of lexicons of Arabic 
stems, prefixes, and suffixes, with truth tables indicating 
their legal combinations. The three dictionaries list 
possible prefixes, Arabic stems, and possible suffixes. 
The three compatibility tables indicate compatible prefix/ 
stem category pairs, compatible prefix/suffix category 
pairs, and compatible stem/suffix category pairs. 

Al-Ameed et al. (2005) is based on the elimination of 
the Arabic character “و” if it is the beginning of the word, 
of specific list of prefixes and the suffixes. This stemmer 
is not dictionary driven, so it cannot apply a criterion that 
an affix can be removed only if what remains is an 
existing Arabic word. The stemmers work blindly on 
words even if they are not found in a word list. It attempts 
to remove strings which would be found reliably as affixes 
far more often than they would be found as the beginning 
or end of an Arabic stem without affixes. The light 
stemmers   do   not  remove  any  string   that   would   be     
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considered Arabic prefixes by itself. 

Khoja and Garside (1999) presented a simple 
morphological analyzer, where layers of prefixes and 
suffixes are removed, then a list of patterns and roots are 
checked to determine whether the remainder could be a 
known root with a known pattern applied. If so, it returns 
the root. Otherwise, it returns the original word, 
unmodified. This system also removes terms that are 
found on a list of 168 Arabic stop words.  

Taghva et al. (2005) introduced a stemmer without a 
root dictionary. It uses a similar approach to extract roots 
as Khoja's approach, but without using a root dictionary 
or lexicon, and performs as well as a light stemmer. This 
method is based on the elimination of several sets of 
affixes, and on the application of several patterns. This 
method does not use any dictionary to extract the Arabic 
root. To implement this algorithm, they have defined 
several sets of the affixes, D diacritic. P3 P2 P1 prefix of 
three, two, and one letter. And S3 S2 S1, suffix of three, 
two, one letter, and several sets of pattern models of four, 
five and six letters. Furthermore, a three, four, five letters 
roots Models were defined. 

Chen and Gey (2002) developed two Arabic stemmers 
and an Arabic stop list at TREC 2001. The two 
researchers created a machine translation (MT) based 
stemmer and a light stemmer. The stemmer based on 
translation was relied on the idea of translating the Arabic 
word to the English, after removing English stop words, 
then, extract the base word in English, then translate this 
word in Arabic to the root for example: �
 our) أ
��ل
children), remove "our" is a word, �
 is apparent that in أ
��ل
relation to "child". So  �

�� is related to أ
��ل. The light 
stemmer (Chen and Gey, 2002) was called Berkeley 
which shares many of prefixes and suffixes that should 
be removed with the light stemmers developed by Larkey 
et al. (2002) and the one developed by Darwish (2002). 
They identified other sets of prefixes and suffixes. They 
start by counting the words that begin with a given prefix, 
and the number of words ending with the given suffixes. 
At the end, the prefixes that must be removed are 
identified: 19 three-letters, 14 two-letters, and 3 one 
letter, and the suffixes: 18 two-letters, 4 one letter. To 
remove the prefixes and suffixes in the predefined sets, 
each algorithm proposes their own rules.  

A statistical method which belongs to the "N-gram" 
class was developed by Ahmed and Nürnberger (2007) 
and Sinane et al. (2008). An n-gram is a subsequence of 
n letters from a given word to predict the next letter in 
such a sequence. It is based on the concept of words 
similarity or dissimilarity. Two words are considered 
similar if they have several common substrings of N 
letters. Two words are considered dissimilar if they do not 
have common different substrings of N characters. N-
gram was implemented with bi-gram N=2 and tri-gram 
N=3. Similarity or dissimilarity statistical coefficients are 
calculated between the processing word and a list of 
roots are extracted from a dictionary to extract the root of 
a word. The roots that have the highest for similar  or  lowest  

 
 
 
 
for dissimilar coefficient are named as probable roots.  
 
 
THE PROPOSED APPROACH 

 
Hidden Markov Model is one of the most important machine 
learning models in speech and language processing (Jurafsky and 
Martin, 2000). HMM is a probabilistic sequence classifier, given a 
sequence of units (in our case letters) and its job is to compute the 
probability distribution over possible labels and choose the best 
label sequence. 

The Hidden Markov Model is a finite set of states, and a set of 
transitions between states that are taken based on the input 
observations. Each of which is associated with a probability 
distribution (Lawrence, 1989). Weights are augmented; where each 
transition is associated with a probability of how likely state a transit 
to state b. Transitions among the states are governed by a set of 
probabilities called transition probabilities. In a particular state, an 
outcome or observation can be generated, according to the 
associated probability distribution. It is only the outcome, not the 
state visible to an external observer and therefore, states are 
``hidden'' to the outside; hence the name Hidden Markov Model 
(Lawrence, 1989). 

A Markov chain is a special case of a weighted auto-maton in 
which the input sequence uniquely determines which states, 
sequence will go through. In our case the sequence represents a 
word. 

 
 
Weight extraction 
 
Hidden Markov Model is used to extract Arabic word weights. HMM 
is represented by a set of states and a set of transitions from one 
state to another. A given word is tested through the model by using 
states as the letters of the word, and the transition from start state 0 
to end state will represent the full word. The model will output the 
path which yields the highest probability. There are two probability 
matrices, the state transition probability matrix, and the emission 
probability matrix. State transition matrix will provide the probability 
of going from state i to state j. Furthermore, the emission probability 
matrix will provide the probability of emitting an observation in a 
given state i, observations are the alphabets of the Arabic language 
plus a special character called “Shadda” “ة��”, a total of 31 
observation is considered. 

Elements of the proposed Hidden Markov Model are: 

 

A set of N states 
N

sssS ...21=  representing the number of states 

of the model, each state represent one letter of a word, and a path 

from state 
i

s  to js  represent a word. N = 172 states.  

A transition probability matrix A.
nn

aaaA ...1211= , where ija  

represents the                                   probability of moving from state 

i to state j, { }
ijaA = . That is going from one letter to the next in a 

given word. 

A sequence of K observation 
k

oooO ...21=  each drawn from the 

vocabulary
V

vvvV ,..., 21= , V represents Arabic letters plus some 

special letters. The number of observation symbols in the alphabet, 
M =31.  

A sequence of emission probabilities )( ki oeE = , each sequence 

expresses the probability of an observation 
k

o  being generated 

from a state i .     
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Figure 1. Proposed model. 

 
 
 

Table 1. Example of words decoding 

 

Word Prefix Weight suffix length Weight 

Fsayakfekahma Will be Enough For them 10 FAL 

Muslim - Muslim they 6 mFAL 

Yalaabn ya play they 5 FAL 

Aljamee the all - 6 FAeL 

 
 
 

A special (start) state and a final (end) state 
F

SS ,0  which are not 

associated with observations. The proposed model has one null 
initial state and multiple end states. End state can be the last state 
of any valid weight states, or a suffix state. 

 
For example, a word “ن�����” (Muslims) has six letters, adding a null 
state, it should start with state 0 and goes up to six states 
depending on A (transition probability), and E (emission probability). 
There could be multiple correct paths for the word, but the only one 
with the highest probability will be accepted as a valid solution. In 
the case of our example, a path of states, 0, 8, 15, 16, 17, 170, 171, 
state 0, as a starting null state, state 8 will represent the letter “” 
and it is considered as a part of the prefix states group, and it only 
prefixes a noun, so the word will be identified as a noun. State 15 
up to 17 represent the weight “F3L” ( ���=�س� ) and it is also the root of 
the word. States 170, and 171 (ون) are the suffixes of the word, and 
it is special for plurals. Other words are found in the same way 
(Figure 1). 

First, we define the number of states S in the system. A total of 
172 states were identified as prefixes, weights, or suffixes. Prefixes 
are represented by 15 states. States are logically divided into three 
groups that identify the set of prefixes state group, the set of 
weights states group, and the set of suffixes states group. Weights 
are represented by 82 states, and suffixes are represented by 75 
states. We start with one initial null state, and multiple end states. 
An end state is the last state of any valid end state of a weight, or a 
suffix state. Observations are 28 Arabic letters added to it shadah 
 and we distinguish between Alef ,(ة) and Taa (ى) Alef maqsora ,(�ّ�ة)

and Hamza (أ and ا). A total of 31 observations is embedded. Figure 
1 shows the proposed model design. 

A word may or may not have a prefix. Prefixes are of length up to 
7, for example the word (و&�%س$#�ام). The word has a prefix of length 
7. A word without prefixes or suffixes could be of size 3 - 4 - 5 - 6 - 
7 with infixes. A word may or may not have a suffix. Suffixes could 
be of length up to 4. For example, the word (لّ'�ت���) has a suffix of 
length four letters. 

For example, a word (�
 ) will have one prefix, and twoا($��
suffixes, leaving 4 letters to represent the pattern (��$ا�), which is a 
verb in the past tense (as shown in Table 1). Hidden Markov Model 
is characterized by three problems, the evaluation problem, the 
decoding problem, and the learning problem. Evaluation is also 
referred to as computing the likelihood, given an HMM 

),( EA=λ  and a sequence of letters
k

oooO ,...,, 21= , find 

the pro-bability that the word letter are generated by the model, 

}|{ λOp . Forward algorithm (Jurafsky and Martin, 2000) is 

used to compute such likelihood. 
Furthermore, decoding will discover the best hidden state 

sequence (S) in the model that produces the word. Given a word is 

represented by letters koooO ,...,, 21=  and HMM ),( EA=λ . 

The discovery of the hidden sequence depends upon the way most 
likely state sequence is defined. It can be interpreted as a search in 
a graph whose nodes are formed by the states of the HMM in each 

of the time instant Kkk ≤≤1, .  Viterbi algorithm (Jurafsky and 

Martin, 2000) solves this problem where the whole  state  sequence  
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with the maximum likelihood is found. 

In addition to evaluation and decoding, the learning problem is 
needed to extract model parameters from a training set. Learning is 

defined as, given a model λ and a sequence of letters (a word) 

koooO ,...,, 21= , how should we adjust the model parameters in 

order to maximize }|{ λOp , that is to learn the HMM parameters 

A, and E. 
The input to the learning algorithm would be unlabeled sequence 

of observations O (letters) and a vocabulary of potential hidden 
states S which simply means the word and the correct path of 
states it should have. Standard algorithms for HMM training are 
Forward-backward, and Baum Welch algorithm. The Algorithm will 
train both the transition probabilities, A, and the Emission 
Probability, E, of the HMM. Generally, the learning problem is how 
to adjust the HMM parameters, so that the given set of observations 
(words) is represented by the model in the best way for the weight-
root extraction system. The Forward-Backward Algorithm was used 
to train our system. 

 
 
Word type detecting 

 
The proposed system can extract the word type (Verb-Noun) 
depending on different criteria. The detection of a word type (N, V) 
may depend on any of the following: Prefixes; suffixes; weights; 
word preceding the word in question (particles). 

Some prefixes are attached only to nouns (for example, ال), 
others may only precede verbs (for example, ي). The same concept 
follows the suffixes attached to nouns only (for example, ات), and 
other attached to verbs only (for example, ّن). If word type was not 
detected by prefixes and suffixes then we check for the extracted   
word’s and suffixes then we check for the extracted word’s weight. 
Weights are either belonging to nouns, or verbs, or common 
between them. For example, the word (+,$-ا) has the weight (��$ا�) 
which is a verb; whereas, the word (.0آ�) has the weight (����) 
which is a noun. An example of common weight is (�1��). Words 
preceding the word in question may detect a word type. For 
example, words like (2�) only precede nouns and words such as (� (ل
only comes before verbs. Those preceding words are considered 
as stop words in a text processing system. Over 90% of word types 
can be detected by the given method. Weights might also help in 
part-of-speech tagging. 

 
 
Bi-gram word model 
 
Hidden Markov Model will provide the most probable path for the 
given sequence of letters that represents a word. The relation 
between two consecutive letters is not preserved by the model. 
Therefore, a bi-gram model was constructed from the training words 
to preserve the letter to letter succession. This is done because of a 
problem detected upon testing the decoding phase of the HMM. A 
word which begins and ends with letters that has a high possibility 
of being a prefix or a suffix can be interpreted wrongly by the 
system. For example, the word (ن03ت) begins with a letter (ن) which 
can be a prefix and ends with the letter (ت) which can be a suffix. 
The correct path is to consider the last letter as a suffix, but the 
system may consider wrongly the first letter as a prefix. To prevent 

this, Two, 28 × 28 matrices were constructed with Arabic alphabetic 
as the rows and the columns of the matrix. The value is considered 
as the probability of going from letter A to letter B in the beginning 
of the word for the first matrix, and the probability of going from 
letter A to letter B at the end of the word for the second matrix. It 
was found that, having the sequence (5ن) as the first two letters of a 
word is more probable (14%) than having the sequence (رت) as the 
last two letters of the word (2%). 

 
 
 
 
EXPERIMENT AND RESULTS 
 
About 15 million words were used to train the model. 
Those words constitute all possible different forms that a 
word could have. Words were generated by the aid of 
Arabic dictionary (Ar-Rhazi, 1989; Al-Asmar, 2009). 
Based on word root, and possible weights for those roots, 
different forms of a word were generated. The generated 
words were attached to different prefixes and suffixes 
following Arabic morphological rules. The following are 
the procedure to produce the Hidden Markov Model 
parameters: Collect words’ roots and patterns for those 
roots from Arabic dictionaries; generate different forms of 
a word using morphological rules; add suffixes and 
prefixes to resulting words; use the final result to train the 
model using forward-Backward algorithm. 

The result is two matrices, one for state transition 
probability, and the other for observation emission proba-
bility. State transition matrix will provide the probability of 
going from state si to state sj. Emission probability matrix 
will provide the probability of emitting a letter E in state si. 
These matrices are used as inputs for the Viterbi 
algorithm to decode a given word. The algorithm was 
altered to give all possible paths, and not only the one 
with the highest probability. In order to extract the correct 
path, further rules have to be applied, which are: End 
states must not be before the last state of any valid 
weight (pattern); prefix and suffix matching table must be 
applied. For example prefix “ي” does not match suffix “ت”; 
check the Bi-Gram generated matrices probability if the 
first and the last letters of the word are probable prefix 
and suffix. 

The words were decoded using Veterbi Algorithm. 
Those words (training set) were extracted from different 
documents. The following are the processing procedure 
of a text in order to extract weights and roots: Tokenizing  
words and eliminating all punctuation; Hamza must all be 
normalized to one shape “أ”; altered veterbi algorithm is 
used to decode the words, and find all possible paths; 
apply the weights correctness rules, and prefix-suffix 
matching table; select the path with highest probability; 
states which belongs to the weights’ states are identified, 
thus, extract the root. Table 2 shows an example of the 
text decoding. 

Testing of 50, randomly selected documents from the 
internet, shows an average count of 400 words after 
tokenization. The results were compared manually 
against Arabic dictionary to compare between the correct 
and the outcome of the system. The presented approach 
achieved a promising accuracy of 95%. It was found that 
2% of error is due to spelling mistake. 
 
 
CONCLUSION 
 

Arabic is a highly inflected language. The wide range of 
word forms and the large variety of prefixes and suffixes 
complicate the extraction  of  precise  features  for  a  text  
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Table 2. Test result. 
 

Input string State transition P of emission P of state transition Expected 

She Eats 0-3-37-38-39-40-41 0.000616 0.006813 Ttfaal 

They Feel 0-5-7-8-9-102-103- 0.0001037160 0.0029909289 Yafalon 

Increase 0-2-25-26-27-28 0.000001 0.011867 Eftaal 

 
 
 
 
processing system. Therefore, a preprocessing technique 
is needed to unify similar words into a single feature 
before further processing of the text. Root is aimed at 
finding the base letters which represent a word in a 
dictionary and, stemming simply refers to stripping 
prefixes and suffixes from a word. Also, the root may 
represent a group of words that may have different 
meaning such as the word (7�$8�=community) and the 
word (7��(=Mosque) that belongs to the same root (7�(), 
but has different meaning.  

Arabic words are structured in well known patterns 
called weights thus “weights” are selected in this paper 
as a feature of an Arabic text. Weights are closer to 
stems, except some of the prefixes that belong to the 
weight which will not be removed. The presented 
approach is based on Hidden Markov Model. Each state 
in a model is considered as a letter of a word, a word is 
represented by consecutive states, from start to end. Two 
questions to be answered are; what is the likelihood of a 
path for a word, and what is the probability of emitting the 
letter of a word in a given state of the path. The model 
was trained with a collection of words extracted from 
Arabic dictionaries and, it was ensured that words 
constitute a verity of prefixes, suffixes, and weights. 
Different rules have to be applied before selecting the 
path with highest probability. States are distinguished as 
prefixes or the weight or suffixes from the selected path. 
Testing the system with different documents which 
belongs to different categories, a 95 % correctness was 
accomplished by this paper. The weights of document’s 
words were manually checked against Arabic dictionary 
to compare with the extracted result. 

In the future, we aim at studying the reduction of the 
extracted weights by grouping weights with similar 
meaning and different states (single, plural, past, present) 
into unified ones. Furthermore, the selected features will 
be tested in text processing task (for example, clustering) 
against the root features for a comparison. 
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