

International Journal of Computer Engineering Research Vol. 2(2), pp. 28-33, March 2011
Available online at http://www.academicjournals.org/IJCER
ISSN 2141- 6494 ©2011 Academic Journals

Full Length Research Paper

Hidden markov model based Arabic morphological
analyzer

A. F. Alajmi*, E. M. Saad and M. H. Awadalla

Communication and Electronics Department, Faculty of Engineering, Helwan University, Egypt.

Accepted 24 February, 2011

Natural language processing tasks includes summarization, machine translation, question
understanding, part of speech tagging, etc. In order to achieve those tasks, a proper language
representation must be defined. Roots and stems are considered as representations for some of those
systems. A word needs to be processed to extract its root or stem. This paper presents a new
technique that extracts word weights, by stripping of prefixes and suffixes from a given word. This
technique is based on Hidden Markov Model (HMM). A path from a start state to the end state
represents a word, each state constitute letters of a word. States are prefixes, weights, and suffixes.
The best selected path should have the highest likelihood of a word. The approach results in a
promising 95% performance.

Key words: Natural language processing, morphology, hidden markov model, stem.

INTRODUCTION

The Arabic word is characterized by a well defined letters
organization. Words are originated from sections of 3
letters called tri-root, or 4 letters called quad-root, which
is the basic block of a word. Furthermore, different forms
of words with possibly different meanings are generated
from those roots based on well established morphological
rules, which are called weights. Thus, by detecting those
weights, a word can be reversed into its original root.
Over 300 weights represent all forms of an Arabic word,
but adding prefixes and suffixes complicate the detection
of a word root.

Features are the basis of a text processing system, and
in our case, those features are words in a given text. The
word by itself does not provide a good representation of a
text due to its inflation. Therefore, segmentation of a
surface word - word which appears in a text- is a must in
order to assure a more efficient text processing system.
Thus, further processing of a word is needed to produce
better features. One way is to use a stem, which is a
result of stripping prefixes, suffixes, and infixes from a

*Corresponding author. E-mail: om_mo3ath@yahoo.com,
alajmi@ieee.org, alajmi@acm.org. Tel: +96599203181.

word and thus provides better representation. Stem,
sometimes referred to as the root, has a drawback of
grouping words with possibly different meaning under
one root that will affect the accuracy of the outcome of
such a system. Another way of presenting a word is the
words’ weight, which is extracted by stripping prefixes
and affixes. The process will minimize the number of
features and, preserve the meaning of the word.

In this paper, a new statistical approach is presented
based on Hidden Markov Model to extract words’ weights
and roots. This approach identifies three segments of a
given surface word - word in a text. A word is represented
by different states. States in the model are divided into
three segments. The first segment represents prefixes,
the second segment represents the weights that the word
belongs to, and the third segment represents the suffixes
which a word might be attached to. Word may or may not
have a prefix or a suffix. A set of states (path) represents
a word, where each letter of the input word is represented
by a single state. Furthermore, the extraction of Arabic
word weights may lead to word type (noun, verb)
detection. Weights may represent nouns, verbs, or both.
It will be shown that our approach will detect over 90% of
word type, and 95% for weight extraction.

As far as we know, there were no works done on the

extraction of a word weight. Most of the research focuses
on the root, and stem detection. Deferent techniques
were used to extract roots, or stems. Most are rule
based, and few are statistical based. The presented
technique is considered as a morphological analyzer,
which will serve as a weight extractor, a root and stem
extractor, a word type identifier. It can also be used to
convert a word into its singular state by weights
conversion rules (for example, ت����� to �����).

The next section presents some of the previous works
about other morphological systems developed. Following
this, we describe the Hidden Markov Model for weight
extraction. Finally, we present the results of our system
and conclude with a list of future improvements identified
as a result of the evaluation.

PREVIOUS WORK

Various morphological systems were developed in
literatures. Almost all the system focused on extracting
roots or stems. Morphological systems are categorized
as statistical driven methods (Al-Sahmsi and Guessoum,
2006; Mohamed et al., 2009; Ahmed and Nürnberger,
2007; Sinane et al., 2008), machine translation driven
methods (Chen and Gey, 2002) and rule based methods
(El-Hajar et al., 2010; Larkey et al., 2002, 2005;
Buckwalter, 2002; Al-Ameed et al., 2005; Khoja and
Garside,1999; Darwish, 2002).

A Hidden Markov Model Based part of speech
approach was introduced in the works of Al-Sahmsi and
Guessoum (2006). It uses HMM to resolve Arabic text
POS (Part of Speech) tagging ambiguity through the use
of a statistical language model developed from Arabic
corpus. The paper presents the characteristics of the
Arabic language and the POS tag set that has been
selected. It then introduces the methodology followed to
develop the HMM for Arabic. For the POS-tagging
problem, observation sequence is a sequence of words.
The transition probabilities are obtained from the trigram
model and the emission probabilities are obtained from
the lexical trigram model. The states of the HMM model
are the POS tags. A training corpus of Arabic news
articles has first been stemmed using the Buckwalter's
stemmer, and then, tagged manually with proposed tag
set. Then, a trigram language model was built for the
tagged training corpus. The trigram language model
computes lexical probabilities. Then, the POS tag
sequences was obtained from the training corpus and
created a trigram Arabic language model based on the
POS tag corpus. Next, lexical and contextual probabilities
were used to determine the HMM model’s parameters as
follows: contextual probabilities were transition
probabilities and lexical probabilities were the emission
probabilities. Once matrices A and B were computed,
search needs to be performed to find the POS tag
sequence that maximizes the product of the lexical and

Alajmi et al 29

contextual probabilities. The proposed HMM POS tagger
achieved a performance of 97%.

El Hajar et al. (2010) combine morphological analysis
with Hidden Markov Model (HMM) and rely on the Arabic
sentence structure to produce Arabic Part-Of-Speech
Tagging. The morphological analysis is used to reduce
the size of the tags lexicon by segmenting Arabic words
in their prefixes, stems, and suffixes due to the fact that
Arabic is a derivational language. HMM is used to
represent the Arabic sentence structure in a hierarchical
manner. Each tag in this system is used to represent a
possible state of HMM and the transitions between tags
(states) are governed by the syntax of the sentence. A
corpus is manually tagged and then used for training and
testing this system. Experiments conducted on the data
set have given a recognition rate of 96%.

Arabic stemming algorithms can be classified,
according to the desired level of analysis (El-Hajar et al.,
2010), as either stem-based or root-based algorithms.
Stem-based algorithms, remove prefixes and suffixes
from Arabic words, while root-based algorithms reduce
stems to roots. Light stemming refers to the process of
stripping off a small set of prefixes and/or suffixes without
trying to deal with infixes.

One light stemmer is Larkey et al. (2002), who used a
predefined list of prefixes and suffixes to produce a
prefix/stem/suffix form. The maximum number of prefixes
it can remove is 3, and the maximum number of letters in
a suffix is 2. Thus, it fails to remove prefixes that have
more than three letters long and suffixes that have more
than two letters long. Larkey et al. (2005) revisited the
light stemmers and developed another one called light10
that exploits the possibility of having more prefixes and
suffixes in the list.

Another light stemmer introduced in Buckwalter (2002),
returns all valid segmentations based on the fact that an
Arabic prefix length can go from zero to four letters, and
the stem can consist of one or more letters, and the suffix
can consist of zero to six letters. It returns stems rather
than roots. It is based on a set of lexicons of Arabic
stems, prefixes, and suffixes, with truth tables indicating
their legal combinations. The three dictionaries list
possible prefixes, Arabic stems, and possible suffixes.
The three compatibility tables indicate compatible prefix/
stem category pairs, compatible prefix/suffix category
pairs, and compatible stem/suffix category pairs.

Al-Ameed et al. (2005) is based on the elimination of
the Arabic character “و” if it is the beginning of the word,
of specific list of prefixes and the suffixes. This stemmer
is not dictionary driven, so it cannot apply a criterion that
an affix can be removed only if what remains is an
existing Arabic word. The stemmers work blindly on
words even if they are not found in a word list. It attempts
to remove strings which would be found reliably as affixes
far more often than they would be found as the beginning
or end of an Arabic stem without affixes. The light
stemmers do not remove any string that would be

J. Comput. Eng. Res. 30

considered Arabic prefixes by itself.

Khoja and Garside (1999) presented a simple
morphological analyzer, where layers of prefixes and
suffixes are removed, then a list of patterns and roots are
checked to determine whether the remainder could be a
known root with a known pattern applied. If so, it returns
the root. Otherwise, it returns the original word,
unmodified. This system also removes terms that are
found on a list of 168 Arabic stop words.

Taghva et al. (2005) introduced a stemmer without a
root dictionary. It uses a similar approach to extract roots
as Khoja's approach, but without using a root dictionary
or lexicon, and performs as well as a light stemmer. This
method is based on the elimination of several sets of
affixes, and on the application of several patterns. This
method does not use any dictionary to extract the Arabic
root. To implement this algorithm, they have defined
several sets of the affixes, D diacritic. P3 P2 P1 prefix of
three, two, and one letter. And S3 S2 S1, suffix of three,
two, one letter, and several sets of pattern models of four,
five and six letters. Furthermore, a three, four, five letters
roots Models were defined.

Chen and Gey (2002) developed two Arabic stemmers
and an Arabic stop list at TREC 2001. The two
researchers created a machine translation (MT) based
stemmer and a light stemmer. The stemmer based on
translation was relied on the idea of translating the Arabic
word to the English, after removing English stop words,
then, extract the base word in English, then translate this
word in Arabic to the root for example: �
 our) أ
��ل
children), remove "our" is a word, �
 is apparent that in أ
��ل
relation to "child". So �

�� is related to أ
��ل. The light
stemmer (Chen and Gey, 2002) was called Berkeley
which shares many of prefixes and suffixes that should
be removed with the light stemmers developed by Larkey
et al. (2002) and the one developed by Darwish (2002).
They identified other sets of prefixes and suffixes. They
start by counting the words that begin with a given prefix,
and the number of words ending with the given suffixes.
At the end, the prefixes that must be removed are
identified: 19 three-letters, 14 two-letters, and 3 one
letter, and the suffixes: 18 two-letters, 4 one letter. To
remove the prefixes and suffixes in the predefined sets,
each algorithm proposes their own rules.

A statistical method which belongs to the "N-gram"
class was developed by Ahmed and Nürnberger (2007)
and Sinane et al. (2008). An n-gram is a subsequence of
n letters from a given word to predict the next letter in
such a sequence. It is based on the concept of words
similarity or dissimilarity. Two words are considered
similar if they have several common substrings of N
letters. Two words are considered dissimilar if they do not
have common different substrings of N characters. N-
gram was implemented with bi-gram N=2 and tri-gram
N=3. Similarity or dissimilarity statistical coefficients are
calculated between the processing word and a list of
roots are extracted from a dictionary to extract the root of
a word. The roots that have the highest for similar or lowest

for dissimilar coefficient are named as probable roots.

THE PROPOSED APPROACH

Hidden Markov Model is one of the most important machine
learning models in speech and language processing (Jurafsky and
Martin, 2000). HMM is a probabilistic sequence classifier, given a
sequence of units (in our case letters) and its job is to compute the
probability distribution over possible labels and choose the best
label sequence.

The Hidden Markov Model is a finite set of states, and a set of
transitions between states that are taken based on the input
observations. Each of which is associated with a probability
distribution (Lawrence, 1989). Weights are augmented; where each
transition is associated with a probability of how likely state a transit
to state b. Transitions among the states are governed by a set of
probabilities called transition probabilities. In a particular state, an
outcome or observation can be generated, according to the
associated probability distribution. It is only the outcome, not the
state visible to an external observer and therefore, states are
``hidden'' to the outside; hence the name Hidden Markov Model
(Lawrence, 1989).

A Markov chain is a special case of a weighted auto-maton in
which the input sequence uniquely determines which states,
sequence will go through. In our case the sequence represents a
word.

Weight extraction

Hidden Markov Model is used to extract Arabic word weights. HMM
is represented by a set of states and a set of transitions from one
state to another. A given word is tested through the model by using
states as the letters of the word, and the transition from start state 0
to end state will represent the full word. The model will output the
path which yields the highest probability. There are two probability
matrices, the state transition probability matrix, and the emission
probability matrix. State transition matrix will provide the probability
of going from state i to state j. Furthermore, the emission probability
matrix will provide the probability of emitting an observation in a
given state i, observations are the alphabets of the Arabic language
plus a special character called “Shadda” “ة��”, a total of 31
observation is considered.

Elements of the proposed Hidden Markov Model are:

A set of N states
N

sssS ...21= representing the number of states

of the model, each state represent one letter of a word, and a path

from state
i

s to js represent a word. N = 172 states.

A transition probability matrix A.
nn

aaaA ...1211= , where ija

represents the probability of moving from state

i to state j, { }
ijaA = . That is going from one letter to the next in a

given word.

A sequence of K observation
k

oooO ...21= each drawn from the

vocabulary
V

vvvV ,..., 21= , V represents Arabic letters plus some

special letters. The number of observation symbols in the alphabet,
M =31.

A sequence of emission probabilities)(ki oeE = , each sequence

expresses the probability of an observation
k

o being generated

from a state i .

Alajmi et al 31

Prefixes SuffixesWeights

Initial

Null state

Final State

Figure 1. Proposed model.

Table 1. Example of words decoding

Word Prefix Weight suffix length Weight

Fsayakfekahma Will be Enough For them 10 FAL

Muslim - Muslim they 6 mFAL

Yalaabn ya play they 5 FAL

Aljamee the all - 6 FAeL

A special (start) state and a final (end) state
F

SS ,0 which are not

associated with observations. The proposed model has one null
initial state and multiple end states. End state can be the last state
of any valid weight states, or a suffix state.

For example, a word “ن�����” (Muslims) has six letters, adding a null
state, it should start with state 0 and goes up to six states
depending on A (transition probability), and E (emission probability).
There could be multiple correct paths for the word, but the only one
with the highest probability will be accepted as a valid solution. In
the case of our example, a path of states, 0, 8, 15, 16, 17, 170, 171,
state 0, as a starting null state, state 8 will represent the letter “”
and it is considered as a part of the prefix states group, and it only
prefixes a noun, so the word will be identified as a noun. State 15
up to 17 represent the weight “F3L” (���=�س�) and it is also the root of
the word. States 170, and 171 (ون) are the suffixes of the word, and
it is special for plurals. Other words are found in the same way
(Figure 1).

First, we define the number of states S in the system. A total of
172 states were identified as prefixes, weights, or suffixes. Prefixes
are represented by 15 states. States are logically divided into three
groups that identify the set of prefixes state group, the set of
weights states group, and the set of suffixes states group. Weights
are represented by 82 states, and suffixes are represented by 75
states. We start with one initial null state, and multiple end states.
An end state is the last state of any valid end state of a weight, or a
suffix state. Observations are 28 Arabic letters added to it shadah
 and we distinguish between Alef ,(ة) and Taa (ى) Alef maqsora ,(�ّ�ة)

and Hamza (أ and ا). A total of 31 observations is embedded. Figure
1 shows the proposed model design.

A word may or may not have a prefix. Prefixes are of length up to
7, for example the word (و&�%س$#�ام). The word has a prefix of length
7. A word without prefixes or suffixes could be of size 3 - 4 - 5 - 6 -
7 with infixes. A word may or may not have a suffix. Suffixes could
be of length up to 4. For example, the word (لّ'�ت���) has a suffix of
length four letters.

For example, a word (�
) will have one prefix, and twoا($��
suffixes, leaving 4 letters to represent the pattern (��$ا�), which is a
verb in the past tense (as shown in Table 1). Hidden Markov Model
is characterized by three problems, the evaluation problem, the
decoding problem, and the learning problem. Evaluation is also
referred to as computing the likelihood, given an HMM

),(EA=λ and a sequence of letters
k

oooO ,...,, 21= , find

the pro-bability that the word letter are generated by the model,

}|{ λOp . Forward algorithm (Jurafsky and Martin, 2000) is

used to compute such likelihood.
Furthermore, decoding will discover the best hidden state

sequence (S) in the model that produces the word. Given a word is

represented by letters koooO ,...,, 21= and HMM),(EA=λ .

The discovery of the hidden sequence depends upon the way most
likely state sequence is defined. It can be interpreted as a search in
a graph whose nodes are formed by the states of the HMM in each

of the time instant Kkk ≤≤1, . Viterbi algorithm (Jurafsky and

Martin, 2000) solves this problem where the whole state sequence

J. Comput. Eng. Res. 32

with the maximum likelihood is found.

In addition to evaluation and decoding, the learning problem is
needed to extract model parameters from a training set. Learning is

defined as, given a model λ and a sequence of letters (a word)

koooO ,...,, 21= , how should we adjust the model parameters in

order to maximize }|{ λOp , that is to learn the HMM parameters

A, and E.
The input to the learning algorithm would be unlabeled sequence

of observations O (letters) and a vocabulary of potential hidden
states S which simply means the word and the correct path of
states it should have. Standard algorithms for HMM training are
Forward-backward, and Baum Welch algorithm. The Algorithm will
train both the transition probabilities, A, and the Emission
Probability, E, of the HMM. Generally, the learning problem is how
to adjust the HMM parameters, so that the given set of observations
(words) is represented by the model in the best way for the weight-
root extraction system. The Forward-Backward Algorithm was used
to train our system.

Word type detecting

The proposed system can extract the word type (Verb-Noun)
depending on different criteria. The detection of a word type (N, V)
may depend on any of the following: Prefixes; suffixes; weights;
word preceding the word in question (particles).

Some prefixes are attached only to nouns (for example, ال),
others may only precede verbs (for example, ي). The same concept
follows the suffixes attached to nouns only (for example, ات), and
other attached to verbs only (for example, ّن). If word type was not
detected by prefixes and suffixes then we check for the extracted
word’s and suffixes then we check for the extracted word’s weight.
Weights are either belonging to nouns, or verbs, or common
between them. For example, the word (+,$-ا) has the weight (��$ا�)
which is a verb; whereas, the word (.0آ�) has the weight (����)
which is a noun. An example of common weight is (�1��). Words
preceding the word in question may detect a word type. For
example, words like (2�) only precede nouns and words such as (� (ل
only comes before verbs. Those preceding words are considered
as stop words in a text processing system. Over 90% of word types
can be detected by the given method. Weights might also help in
part-of-speech tagging.

Bi-gram word model

Hidden Markov Model will provide the most probable path for the
given sequence of letters that represents a word. The relation
between two consecutive letters is not preserved by the model.
Therefore, a bi-gram model was constructed from the training words
to preserve the letter to letter succession. This is done because of a
problem detected upon testing the decoding phase of the HMM. A
word which begins and ends with letters that has a high possibility
of being a prefix or a suffix can be interpreted wrongly by the
system. For example, the word (ن03ت) begins with a letter (ن) which
can be a prefix and ends with the letter (ت) which can be a suffix.
The correct path is to consider the last letter as a suffix, but the
system may consider wrongly the first letter as a prefix. To prevent

this, Two, 28 × 28 matrices were constructed with Arabic alphabetic
as the rows and the columns of the matrix. The value is considered
as the probability of going from letter A to letter B in the beginning
of the word for the first matrix, and the probability of going from
letter A to letter B at the end of the word for the second matrix. It
was found that, having the sequence (5ن) as the first two letters of a
word is more probable (14%) than having the sequence (رت) as the
last two letters of the word (2%).

EXPERIMENT AND RESULTS

About 15 million words were used to train the model.
Those words constitute all possible different forms that a
word could have. Words were generated by the aid of
Arabic dictionary (Ar-Rhazi, 1989; Al-Asmar, 2009).
Based on word root, and possible weights for those roots,
different forms of a word were generated. The generated
words were attached to different prefixes and suffixes
following Arabic morphological rules. The following are
the procedure to produce the Hidden Markov Model
parameters: Collect words’ roots and patterns for those
roots from Arabic dictionaries; generate different forms of
a word using morphological rules; add suffixes and
prefixes to resulting words; use the final result to train the
model using forward-Backward algorithm.

The result is two matrices, one for state transition
probability, and the other for observation emission proba-
bility. State transition matrix will provide the probability of
going from state si to state sj. Emission probability matrix
will provide the probability of emitting a letter E in state si.
These matrices are used as inputs for the Viterbi
algorithm to decode a given word. The algorithm was
altered to give all possible paths, and not only the one
with the highest probability. In order to extract the correct
path, further rules have to be applied, which are: End
states must not be before the last state of any valid
weight (pattern); prefix and suffix matching table must be
applied. For example prefix “ي” does not match suffix “ت”;
check the Bi-Gram generated matrices probability if the
first and the last letters of the word are probable prefix
and suffix.

The words were decoded using Veterbi Algorithm.
Those words (training set) were extracted from different
documents. The following are the processing procedure
of a text in order to extract weights and roots: Tokenizing
words and eliminating all punctuation; Hamza must all be
normalized to one shape “أ”; altered veterbi algorithm is
used to decode the words, and find all possible paths;
apply the weights correctness rules, and prefix-suffix
matching table; select the path with highest probability;
states which belongs to the weights’ states are identified,
thus, extract the root. Table 2 shows an example of the
text decoding.

Testing of 50, randomly selected documents from the
internet, shows an average count of 400 words after
tokenization. The results were compared manually
against Arabic dictionary to compare between the correct
and the outcome of the system. The presented approach
achieved a promising accuracy of 95%. It was found that
2% of error is due to spelling mistake.

CONCLUSION

Arabic is a highly inflected language. The wide range of
word forms and the large variety of prefixes and suffixes
complicate the extraction of precise features for a text

Alajmi et al 33

Table 2. Test result.

Input string State transition P of emission P of state transition Expected

She Eats 0-3-37-38-39-40-41 0.000616 0.006813 Ttfaal

They Feel 0-5-7-8-9-102-103- 0.0001037160 0.0029909289 Yafalon

Increase 0-2-25-26-27-28 0.000001 0.011867 Eftaal

processing system. Therefore, a preprocessing technique
is needed to unify similar words into a single feature
before further processing of the text. Root is aimed at
finding the base letters which represent a word in a
dictionary and, stemming simply refers to stripping
prefixes and suffixes from a word. Also, the root may
represent a group of words that may have different
meaning such as the word (7�$8�=community) and the
word (7��(=Mosque) that belongs to the same root (7�(),
but has different meaning.

Arabic words are structured in well known patterns
called weights thus “weights” are selected in this paper
as a feature of an Arabic text. Weights are closer to
stems, except some of the prefixes that belong to the
weight which will not be removed. The presented
approach is based on Hidden Markov Model. Each state
in a model is considered as a letter of a word, a word is
represented by consecutive states, from start to end. Two
questions to be answered are; what is the likelihood of a
path for a word, and what is the probability of emitting the
letter of a word in a given state of the path. The model
was trained with a collection of words extracted from
Arabic dictionaries and, it was ensured that words
constitute a verity of prefixes, suffixes, and weights.
Different rules have to be applied before selecting the
path with highest probability. States are distinguished as
prefixes or the weight or suffixes from the selected path.
Testing the system with different documents which
belongs to different categories, a 95 % correctness was
accomplished by this paper. The weights of document’s
words were manually checked against Arabic dictionary
to compare with the extracted result.

In the future, we aim at studying the reduction of the
extracted weights by grouping weights with similar
meaning and different states (single, plural, past, present)
into unified ones. Furthermore, the selected features will
be tested in text processing task (for example, clustering)
against the root features for a comparison.

REFERENCES

Ahmed F, Nürnberger A (2007). N-grams Conflation Approach for

Arabic, ACM SIGIR Conference, Amsterdam.
Al-Ameed H, Al-Ketbi S, Al-Kaabi K, Al-Shebli K, Al-Shamsi N, Al-

Nuaimi N, Al-Muhairi S (2005) Arabic Light Stemmer: A new
Enhanced Approach. The Second International Conference on
Innovations in Information Technology (IIT’05).

Al-Asmar R (2009). The Detailed Lexicon in Morphology. Scientific book
publisher. (Arabic Book)

Al-Sahmsi F, Guessoum A (2006). A hidden Markov Model – Based
POS Tagger for Arabic. 8es Journees internationals d’Analyse
statistique des Donnees Textuelles.

Ar-Rhazi MB (1989). Mukhtar Us-Sihah, Librairie du Liban. (Arabic
Book)

Buckwalter T (2002). Buckwalter Arabic Morphological Analyzer. the
Linguistic Data Consortium, University of Pennsylvania.

Chen A, Gey F (2002). Building an Arabic stemmer for information
retrieval.

Darwish K (2002), Building a shallow Arabic Morphological Analyzer in
one day, Proceedings of the ACL-02 workshop on Computational
approaches to semitic languages, pp.1-8, July 11, Philadelphia,
Pennsylvania

El-Hajar A, Hajar M, Zreik K (2010). A System for Evaluation of Arabic
Root Extraction Methods. fifth international Conference on Internet
and Web Applications and Services.

Jurafsky D, Martin JH (2000). Speech and Language Processing An
Introduction to Natural Language Processing Computational
Linguistics and Speech Recognition, Volume: 21, Prentice Hall.

Khoja S, Garside R (1999). Stemming Arabic Text. Technical report,
Lancaster University, Lancaster, U.K.

Larkey L, Ballesteros L, Connell M (2005). Light Stemming for Arabic IR
Arabic Computational Morphology: Knowledge-based and Empirical
Methods, A.Soudi, A. van en Bosch, and Neumann, G., Editors.
Kluwer/Springer's serieson Text, Speech, and Language Technology.

Larkey LS, Ballesteros L, Connel ME (2002). Improving Stemming for
Arabic Information Retrieval: Light Stemming and Co-occurrence
Analysis. Proc. of the 25th annual international ACM SIGIR
conference on Research and development in information retrieval,
pp. 275 – 282.

Lawrence RR (1989). A tutorial on Hidden Markov Models and selected
applications in speech recognition, Proceed. IEEE, 77: 2.

Mohamed El-Hadj, Al-Sughayeir IA, Al-Ansari AM (2009). Arabic Part of
Speech Tagging Using the Sentence Structure. 2

nd
 international

Conference on Arabic Language Resources & Tools. Cairo.
Sinane M, Rammal M, Zreik K (2008). Arabic documents classification

using N-gram, Conference ICHSL6, Toulouse.
Taghva K, Elkoury R, Coombs J (2005). Arabic Stemming without a root

dictionary.

