
Journal of Computer Engineering Research Vol. 1(2), pp. 14 - 28, April 2010
Available online at http://www.academicjournals.org/JCER
©2010 Academic Journals

Full Length Research paper

A survey of agent-oriented software engineering
paradigm: Towards its industrial acceptance

O. Zohreh Akbari

Department of Information and Communication Technology, Faculty of Engineering, Payame Noor University,

Tehran, Iran. E-mail: z.o.akbari@gmail.com.

Accepted 13 January, 2010

Agent-oriented software engineering (AOSE) paradigm represents an interesting means of analyzing,
designing and building complex software systems quite suitable to new software development
requirements. Many scientific researches have been focused on this paradigm, yet its current state
still reports relative lack of industrial acceptance compared to others. As a survey of AOSE paradigm,
this paper outlines the overall state of this paradigm; and by identifying its weaknesses in detail,
leads to a proposal solution to such shortcoming. This solution, in keeping with the existing
approaches that aim to use situational method engineering (SME) in collaborative manner between
agent-oriented methodology designers, suggests the use of a methodology evaluation framework in
the process as well. This framework is a means to collect the best method fragment and evaluate
consecutively the methodology during the development process for possible methodology
improvements. The proposed solution is then readjusted to help software development organizations
to reach the fifth level of Capability Maturity Model (CMM).

Key words: Agent-oriented software engineering (AOSE), capability maturity model (CMM), evaluation
framework, methodology, project-specific, situational method engineering (SME).

INTRODUCTION

The complexity of software development process had
caused the development of increasingly powerful and
natural abstraction with which to model and develop
complex systems. Procedural abstraction, abstract data
types, and objects are all examples of such abstractions
(Wooldridge et al., 1999). During the past two decades,
with the increase in complexity of projects associated
with software engineering, agent concepts that originated
from Artificial Intelligence (AI) have been considered to
devise a new paradigm for handling complex systems
(Genesereth and Ketchpel, 1994; Jennings and
Wooldridge, 1996, 2000; Shoham, 1990, 1993;
Wooldridge, 1997).

Agent-oriented software engineering (AOSE) paradigm
represents an interesting means of analyzing, designing
and building complex software systems and it is quite
suitable to the new software development requirements
(agent-oriented methodologies strengths). But although
many scientific researches have been fo-cused on this
paradigm (existing agent-oriented software engineering),
its current state still reports relative lack of industrial
acceptance compared to others.

This paper aims to outline the current standing of

AOSE paradigm (a survey of agent-oriented software
engineering paradigm) and propose a solution to its
relative lack of industrial acceptance compared to others,
which is then readjusted to present a plan for software
development organizations to reach the fifth level of CMM
(proposal solution to agent-orientation promotion). Key
building blocks of the proposed approach are an evalua-
tion framework for agent-oriented software engineering
methodologies (existing approaches for evaluating agent-
oriented methodologies) and a project-specific
methodology building framework (existing approaches for
evaluating agent-oriented methodologies), which both
have suitable instances but have never been merged. A
practical instance of the proposal plan (agent open
method) is also presented in this paper using these
suitable frameworks.

A SURVEY OF AGENT-ORIENTED SOFTWARE
ENGINEERING PARADIGM

In order to outline the current state of agent-oriented
software engineering paradigm, this section starts with

defining AOSE methodologies (The definition of agent-
oriented software engineering methodology), then briefly
goes over its history (the history of agent-oriented
software engineering paradigm), lists existing AOSE
methodologies (existing agent-oriented software engi-
neering methodologies) and states their strengths and
weaknesses (strengths and weaknesses of agent-
oriented methodologies).

The definition of agent-oriented software engineering
methodology

To define AOSE methodology, it is first necessary to
have a precise definition of methodology itself. Regarding
(Brinkkemper, 1996; CMS, 2008; Firesmith, 2002;
Lyytinen, 1987; IEEE, 1990; Sturm and Shehory, 2003;
Sudeikat et al., 2004) the definition considered for a soft-
ware engineering methodology in this paper is as follows:
A business process equipped with distinct concepts and
modeling tools for developing software (Akbari and
Faraahi, 2008).

The methodology definition merged with software
engineering paradigm concept constitutes the AOSE
methodology definition. An agent-based system is a
system in which the key abstraction used is that of an
agent (Jennings and Wooldridge, 2000; Wooldridge,
1997) and (Wooldridge and Jennings, 1995). Thus by
agent-oriented software engineering we mean a software
engineering paradigm in which the key abstraction used
is that of an agent. Considering this description and the
mentioned definition for methodology, an agent-oriented
software engineering methodology can be defined as
follows: An agent-oriented software engineering metho-
dology is a business process of developing software,
equipped with distinct concepts and modeling tools, in
which the key abstraction used in its concepts is that of
an agent.

The history of agent-oriented software engineering
paradigm

AOSE Paradigm, which was first proposed by Yoav
Shoham in 1990, is based on a societal view of com-
putation (Shoham, 1990 and 1993). The main source of
this paradigm is AI (Debenham and Henderson-Sellers,
2002; Wooldridge, 1997) or precisely, Distributed Artificial
Intelligence (DAI) (Bond and Gasser, 1998; Henderson-
Sellers and Gorton, 2003). Nevertheless, in agent-
orientated software engineering, agents are about
computer science and software engineering more than
they are about AI (See Wooldridge, 1997 for more
description).
Agent-oriented paradigm has multiplied a lot during the

past two decades, and although it was first limited to
academic researches, it has interested the industry within

Akbari 15

the last years as well (Debenham and Henderson-
Sellers, 2002; Henderson-Sellers and Gorton, 2003). It
should be pointed out that after almost a decade of its
introduction, the progress of this paradigm has faced a
great transformation, which some researches refer to as
the entrance to the new generation of software engineer-
ing methodologies (Dam and Winikoff, 2003; Henderson-
Sellers and Gorton, 2003) (Figure 1) shows the effect of
this transition on the number of AOSE methodologies de-
signed per year. The main idea of this transition is based
on SME (Harmsen, 1997) and the unification strategy of
existing issue (AOSE TFG, 2004), to build a framework
for designing project-specific methodologies. The
mentioned approach is the researchers' solution to elimi-
nate the relative industry rejection of this paradigm, or
eliminate its weaknesses (AOSE TFG, 2004; Henderson-
Sellers and Gorton, 2003; Henderson-Sellers et al.,
2004). Such issues can be found in (Cossentino and
Seidita, 2004), (Henderson-Sellers and Gorton, 2003)
and (Juan et al., 2002), which will be described later.

EXISTING AGENT-ORIENTED SOFTWARE
ENGINEERING METHODOLOGIES

This section goes through the identification of existing
AOSE methodologies. Having the complete list of these
methodologies can be a good base to distinguish the
current state of AOSE paradigm, yet despite this
standing, this list may also be used as a resource
reference for the existing project-specific methodology
building frameworks to complete their repositories
(existing approaches for creating agent-oriented project-
specific). The number of existing agent-oriented software
engineering methodologies is very high despite their
newness. Due to the limited space, examples of existing
AOSE methodologies are presented in two separate
tables in order of the year of presentation: Table 1 lists
the AOSE methodologies introduced before year 2000,
and Table 2 lists the AOSE methodologies introduced
after year 2000. It should be pointed out that items
presented at rows number 37, 43 and 57 are more than
just simple methodologies, and are frameworks for
creating agent-oriented project-specific methodologies,
which will be described in (existing approaches for
creating agent-oriented project-specific).

Figure 1 shows the number of AOSE methodologies
designed each year from 1990, when AOSE paradigm
was first introduced. As it is shown, the number of
designed AOSE methodologies has a significant increase
in year 2002, but has dropped again the year after. This
could have several meanings:

1. AOSE paradigm had dramatically improved till year
2002 that has interested many methodology designers
and users at the time: despite some exceptions, the
number of methodologies designed has increased each

J. Comput. Eng. Res. 16

0

5

10

15

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10N
um

be
r o

f A
O

SE

M
et

ho
do

lo
gi

es

D
es

ig
ne

d
Year

Figure 1. The number of AO methodologies designed each year.

Table 1. List of AOSE methodologies introduced before year 2000.

Methodology Year Reference(s)
1 ARCHON 1991 (Cockburn and Jennings, 1996)
2 MADE 1992 (O'Hare and Wooldridge, 1992)
3 DRM 1993 (Singh et al., 1993)
4 TOGA 1993 (Gadomski, 1993)
5 CIAD 1994 (Verharen and Weigard, 1994; Verharen, 1997)
6 Agent Factory 1995 (Collier, 1996, 2002; Collier and O'Hare, 1999; O'Hare and Collier, 1998)
7 AOMfEM 1995 (Kendall et al., 1996)
8 Cassiopeia 1995 (Collinot and Drogoul; 1998, Collinot et al., 1996)
9 AAII (KGR) 1996 (Kinny and Georgeff, 1996; Kinny et al., 1996)

10 AOAD 1996 (Burmeister, 1996)
11 AWIC 1996 (Muller, 1996)
12 CoMoMas 1996 (Glaser, 1996)
13 MASB 1996 (Moulin and Brassard, 1996)
14 MAS-CommonKADS 1996 (Iglesias et al., 1998)
15 AALAADIN 1997 (Ferber, 1997; Ferber and Gutknecht, 1998)
16 AMBSA 1997 (Neal Reilly, 1997)
17 AOIM 1997 (Kindler et al., 1997)
18 CaseLP 1997 (Martelli et al., 1997)
19 DESIRE 1997 (Brazier et al., 1997)
20 Adept 1998 (Jennings et al., 1998)
21 AMBIA 1998 (Gao and Sterling, 1998)
22 AOAaD 1999 (Wooldridge, 1999)
23 HIM 1999 (Elammari, 1999)
24 MaSE 1999 (Deloach, 1999, 2005)
25 MASSIVE 1999 (Lind, 1999, 2001)
26 ZEUS 1999 (Nwana et al., 1999)
27 ASEfIA 2000 (Zamboneli et al., 2000)
28 Gaia 2000 (Wooldridge et al., 2000; Zamboneli et al., 2005)
29 MESSAGE/UML 2000 (Caire et al., 2000; Evans et al., 2001)
30 SODA 2000 (Omicini, 2000)

year and about 14 methodologies were introduced in year
2002.
2. AOSE paradigm has provided the necessary con-
ditions for creating project-specific methodology building
frameworks: two project-specific methodology building
frameworks were defined in year 2002, and also one in
year 2004.

3. The introduction of project-specific methodology
building frameworks has relevantly answered the user
willingness to setup project-specific methodology, yet
there is still room for improvements: the number of
methodologies designed per year has significantly
decreased since year 2002, yet there are still some
methodologies designed independent from project-specific

Akbari 17

Table 2. List of AOSE methodologies introduced after year 2000.

Methodology Year Reference(s)

31 Agent-SE 2001 (Far, 2001)
32 AOSM 2001 (Shi, 2001)
33 Styx 2001 (Bush, 2001)

34 Tropos 2001 (Bresciani et al., 2001, 2004; Castro et al., 2001, 2002;
Mylopoulos et al., 2001)

35 ADELFE 2002 (Bernon et al., 2002)
36 ALCCIG 2002 (Zhang et al., 2002)

37 CAOMF 2002 (Juan et al., 2002a; Juan et al., 2003; Taveter and
Sterling, 2008)

38 IEBPM 2002 (Taveter and Wagner, 2002)
39 INGENIAS 2002 (Pavon and Gomez-Sanz, 2003, 2005)
40 MESMA 2002 (Cuesta et al., 2002)
41 Nemo 2002 (Huget, 2002)
42 ODAC 2002 (Gervais, 2002)

43 Agent OPEN 2002
(Debenham and Henderson-Sellers, 2002; Henderson-
Sellers and Gorton, 2003; Henderson-Sellers et al.,
2005)

44 PASSI 2002 (Cossentino and Potts, 2002; Cossentino, 2005)
45 Prometheus 2002 (Cervenka, 2003; Padgham and Winikoff, 2002a,b)
46 ROADMAP 2002 (Juan et al., 2002b)
47 SABPO 2002 (Dikenelli and Erdur, 2002)
48 SADDE 2002 (Sierra et al., 2002)
49 MAGE 2003 (Shi et al., 2003, Shi et al., 2004)
50 OPM/MAS 2003 (Sturm et al., 2003)
51 RAP/AOR 2003 (Taveter and Wagner, 2005; Wagner, 2003)
52 RoMAS 2003 (Yan et al., 2003)
53 SONIA 2003 (Alonso et al., 2005)
54 AMBTA 2004 (Sardinha et al., 2004)
55 AODM 2004 (Tian et al., 2004)
56 CAMLE 2004 (Shan and Zhu, 2004)
57 FIPA 2004 (Cossentino and Seidita, 2004; Garro et al., 2004)
58 MAOSEM 2004 (Wang and Guo, 2004)
59 RAOM 2004 (Giret and Botti, 2004)
60 MAHIS 2005 (Li and Liu, 2005)
61 MAMfHMS 2005 (Giret, 2005)
62 OMASM 2005 (Villaplana, 2005)
63 OWL-P 2005 (Desai et al., 2005)
64 ADMuJADE 2006 (Nikraz et al., 2006)
65 MOBMAS 2006 (Tran et al., 2007; Tran and Low, 2008)
66 WAiWS 2006 (Lu and Chhabra, 2006)

67 ADEM 2007 (Cervenka and Trencansky, 2007; Whitestein
technologies, 2008)

68 ASPECS 2007 (Cossentino et al., 2007)
69 ForMAAD 2007 (Hadj-Kacem et al., 2007)
70 ANEMONA 2008 (Giret, 2008)
71 MASD 2008 (Abdelaziz et al., 2008)
72 MASIM 2008 (Clancey et al., 2008)
73 PerMet 2008 (Grislin-Le Strugeon et al., 2008)

74 AOMEIS 2009 (Athanasiadis and Mitkas; 2009)

75 ODAM 2009 (Mao et al., 2009)

J. Comput. Eng. Res. 18

methodology building frameworks.

Strengths and weaknesses of agent-oriented
methodologies

In this section the necessity of agent-orientation usage is
discussed as the agent-oriented methodologies strengths
and its weaknesses, in terms of its relative industrial
rejection.

Agent-oriented methodologies strengths

Agent-oriented methodologies strengths can be
considered in two different aspects:

1. Inclusion of other paradigms' capabilities and
presentation of more abilities: AOSE paradigm includes
all the capabilities of other paradigms (e.g. object-
oriented, knowledge engineering and service-oriented)
and even more abilities.

a) Agent-oriented methodologies versus object-
oriented metho-dologies: As stated by Shoham
(Shoham, 1993), agents can be considered as
active objects with mental states (Iglesias et
al.,

1999) which means despite the common characteristics
between objects and agents they are not just simple
objects but they present more capabilities (Iglesias et al.,
1999).
b) Agent-oriented methodologies versus knowledge en-
gineering methodologies: Most of the problems subject to
knowledge engineering methodologies are also present
in designing Multi-Agent Systems (MAS) as knowledge
acquisition, modeling, and reuse. Furthermore, these
methodologies conceive a knowledge-based system as a
centralized one, thus they do not address the distri-buted
or social aspects of the agents, or their reflective and
goal- oriented attitudes (Iglesias et al., 1999).
c) Agent-oriented methodologies versus service-oriented
methodo-logies: Regarding service-oriented
methodologies, it should be
pointed out that service is only one of the several
concepts presented by an agent, and that agents may not
be just service performers, but also predictives – they
may volunteer information or services to a user, without
being explicitly asked, whenever it is deemed appropriate
(Jennings and Wooldridge, 1996).

2. Suitability with new software development
requirements: As mentioned before, due to the
complexity of software development process, wide range
of software engineering paradigms has been devised
(e.g. structured programming, object-oriented program-
ming, procedural programming and declarative
programming) (Jennings and Wooldridge, 2000). But

recently, with the high rate of increase in complexity of
projects associated with software engi-neering, agent
concepts, which originated from artificial intelligence,
have been considered to devise a new paradigm for
handling complex systems (Genesereth and Ketchpel,
1994; Jennings and Wooldridge, 1996, 2000; Shoham,
1990, 1993; Wooldridge, 1997). Some special
applications of this paradigm are presented in
(Wooldridge and Ciancarini, 2001).

Agent-oriented methodologies weaknesses

Agent-oriented methodologies weaknesses can be
considered in two different aspects:

1. The lack of attraction for methodology user to use
the agent-oriented paradigm:
a) Lack of agent-oriented programming languages:
Although programming languages are only part of the
development story, industry is reticent to adopt a new
paradigm at the conceptual level if it is impossible to
implement these ideas in a currently acceptable,
commercially viable programming language (Henderson-
Sellers and Gorton, 2003).
b) Lack of explicit statement of agent-orientation
advantages: The benefits of agent technology must be
declared by introducing the cases where AOSE paradigm
succeeds and other existing paradigms fail (Henderson-
Sellers and Gorton, 2003).
c) Relative difficulty of learning concept related to agent-
oriented paradigm (AI): As an example the usage of Gaia
agent-oriented methodology (Wooldridge et al., 2000)
requires learning logic, which decreases the adoption of
this methodology, since usually methodology users are
not familiar with logic and do not tend to learn it (Sturm
and Shehory, 2003).
d) High cost of AO acquisition: The acquisition of this
paradigm by software development organizations
requires a high cost for training the development team
(Henderson-Sellers and Gorton, 2003).

2. The lack of attraction for methodology user to use
existing agent-oriented methodologies:

a) Relative immaturity: The AO paradigm immaturity,
which is a relative matter compared to other paradigms
(Dam and Winikoff, 2003), is clearly because of it
newness.
b) Marketing of multiple AO methodologies: As long as
the availability and marketing of multiple agent-oriented
methodologies are in competitive manner, this feature is
an obstacle to their widespread industrial adoption, since
it leads to confusion of methodology users (Henderson-
Sellers and Gorton, 2003).
c) Lack of confrontation with wrong expectation of one-
size-fits-all methodology: No unique specific methodology

can be general enough to be useful to every project
without some level of personalization (AOSE TFG, 2004).
Users usually think a unique methodology has general
usage and ignore the fact that each methodology is
designed for some specific goals (e.g. specific domain or
different parts of life cycle). Thus when a specific metho-
dology does not fit their requirements and leads to project
failure they conceive the problem from the side of
methodology whereas the problem is with the wrong
methodology selection (Henderson-Sellers and Giorgini,
2005). Agent-oriented paradigm should support its user
with the awareness and facilities to find the proper
methodology for his project from existing methodologies
or to change the existing instances in order to fit the
project.
d) Lack of confrontation with user willingness to setup an
owned project-specific methodology: The high number of
existing AO methodologies can be seen as a proof that
methodology users, often prefer to setup an owned
methodology specially tailored for their needs instead of
reusing existing ones (AOSE TFG, 2004). AO paradigm
should support its user with the awareness and facilities
to avoid setting up his methodology from the scratch, but
to change the existing instances in order to fit the project.

PROPOSAL SOLUTION TO AGENT-ORIENTATION
PROMOTION

The progress of AOSE paradigm is dependent to the
elimination of its weaknesses as mentioned above.
Clearly, when the software development organization
becomes justified for using agent-orientation, by its
strengths, it will accept its cost and learning effort much
easier, since it knows that in long-term this paradigm will
not just pay back this cost but that its benefits would be
more than others.

With the emergence of industry willingness for agent-
orientation, the next problem to be eliminated would be
the lack of attraction for agent-oriented methodologies. It
is obvious that identifying the strengths and weaknesses
of each methodology can be the first step to its progress
and wide industrial acceptance as well (Akbari and
Faraahi, 2008; Aose TFG, 2004; Dam and Winikoff,
2003). In addition, the availability and marketing of multi-
ple methodologies which is an obstacle to the ease of
selection, lack of the presence of a one-size-fits-all
methodology and the need of project-specific methodo-
logies, shows the necessity for exploitation of a project-
specific building framework.

Thus it is suggested that software development organi-
zations use an evaluation framework for agent-oriented
methodologies such as the one described in existing
approaches for evaluating agent-oriented methodologies
in order to choose the best for their project, and in case
of finding no fitting match to exploit the evaluation results

Akbari 19

for building effective project-specific methodologies. This
might be done by completing and thus improving existing
methodologies by replacing their weak parts with strong
parts from other methodologies, using one of the
frameworks for creating agent-oriented project-specific
methodologies described in (existing approaches for
creating agent-oriented project-specific methodologies).
Thus a consolidated approach as also expressed in
(Henderson-Sellers and Gorton, 2003) could give a better
signal to the industry. With this regard, it is suggested
that instead of competing, agent-oriented methodology
designers collaborate with each other by evaluating their
own methodologies using an appropriate evaluation
framework, to collect the method fragments with their
rankings in order to use these information for method
engineering. This is quite feasible since most of the
agent-oriented methodologies are academic and not
commercial products.

This approach would: (i) help to improve existing
methodologies by identifying their weaknesses, (ii) make
the availability of multiple methodologies an advantage
(having wide range of method fragment options), (iii) do
away with the wrong expectation on one-size-fits-all
methodology, and (iv) answer to user willingness to setup
an owned project-specific methodology. Clearly this
approach will attract methodology users to use agent-
oriented methodologies, and in other words results to
industrial acceptance of AOSE paradigm. In addition the
usage of the frameworks for creating agent-oriented
project-specific methodologies will not only make it
possible to use programming languages from other para-
digms which are suitable for agent-orientation, but the
industry willingness for this paradigm will encourage
language designers as well.

This solution to AOSE weaknesses may also be read-
justed to propose a plan for development organizations to
reach the fifth level of CMM. Figure 2 explains this plan.
In CMM organizational maturity framework (Humphery,
1990; Paulk et al., 1993), 5 maturity levels are distin-
guished (Harmsen, 1997): Initial, Repeatable, Defined,
Managed and Optimizing. Since the proposed plan
exploits the SME in order to build project-specific metho-
dologies, it is clear that it satisfies the third level of CMM.
In addition, since the evaluation framework assesses the
methodologies for management plans and thus the
management plans' method fragments are constructed to
methodology, both process and products are regularly
evaluated by the project management team to satiate the
forth level of CMM. The feedback that is given by the
organization while employing the methodology using the
evaluation framework causes the methodology correction
to take place continuously and concurrent with its
exploitation, and satisfies the 5th level of CMM.

What has taken place by now is the growth of reposi-
tory by adding all the AOSE methodology's components
without considering any evaluation (Henderson-Sellers et

J. Comput. Eng. Res. 20

Feedback

Existing AOSE
Methodologies

Software
Product

AOSE
Methodologies

Evaluation
Framework

Method
fragments
enter the

repository and
evaluation
results are

saved

Project-Specific
Methodology

Organization
exploits the
developed

methodology
to build the
software
product

An arbitrary framework for
building project-specific
AOSE methodologies

based on SME

According to
the project and
based on the

framework, the
organization
constructs a

project-specific
methodology by
composing the

appropriate
method

fragments
Method Fragments

Repository

Methodologies

are chosen
to be

 evaluated

Figure 2. Proposal plan for agent-oriented software development organizations
to reach the fifth level of CMM.

al., 2003; Henderson-Sellers et al., 2004; Henderson-
Sellers et al., 2006). But the approach presented here is
the usage of an evaluation framework and a project-
specific methodology building framework simultaneously
together. So, each methodology would first be evaluated,
and the method fragments with their grades entered in
the repository. This makes possible the selection of
method fragments with desired grades at the methodo-
logy building stage which better implements SME ap-
proach. To implement this plan, an evaluation framework
and a project-specific methodology building framework
are needed. Existing approaches for evaluating agent-
oriented methodologies and existing approaches for
creating agent-oriented project-specific methodologies
describes existing approaches of each of the frameworks.

EXISTING APPROACHES FOR EVALUATING AGENT-
ORIENTED METHODOLOGIES

Researches considering the evaluation of agent-oriented

methodologies are limited to (Akbari and Faraahi, 2008,
2009; Cernuzzi and Rossi, 2002; Dam and Winikoff,
2003; Henderson-Sellers and Giorgini, 2005; Kumar,
2002; Lin et al., 2007; Sabas et al., 2002; Shehory and
Sturm, 2001; Sturm and Shehory, 2003; Sudeikat et al.,
2004; Yu and Cysneiros, 2002) and some other studies
that compare two or three methodologies, only with res-
pect to the expressiveness and the concepts supported
by the methodology (Sturm and Shehory, 2003). Most of
the mentioned evaluation frameworks suffer from one or
both of the following shortcomings: (1) Lack of coverage
for all of the methodology aspects, (2) Lack of definition
of a precise evaluation metric. As mentioned above,
methodology is referred to as an economical process of
developing software, equipped with distinct concepts and
modeling tools (Akbari and Faraahi, 2008, 2009). In this
regard methodologies can be considered in six major
aspects: concepts, notation, process, pragmatics, support
for software engineering and marketability. In addition,
evaluation metric should be able to present different
levels of methodology support for each criterion. The
framework presented in (Akbari and Faraahi, 2008) and

completed in (Akbari and Faraahi, 2009) evaluates
methodologies from all aspects men-tioned and defines a
metric with 7 levels of support; thus it perfectly
overcomes the mentioned shortcomings of most
evaluation frameworks.

As stated in (Akbari, 2010) the most important
difference between the mentioned evaluation framework
with existing approaches is that this framework is multi-
layered (Figure 3); meaning that methodologies are first
considered in the six mentioned aspects and in detailed
layers base on the criteria and sub-criteria. Actually, each
criterion refer to its sub-criteria, thus it increases the
preciseness and clarity of the evaluation and helps the
evaluator through the process. Furthermore, users will
use the evaluation results accordingly to their required
level. For example, for software development organiza-
tion customer, the overall grade of methodology is impor-
tant; thus average of methodology rating are presented to
him (according to the metric of the framework, resulting
average should be rounded in each level of evaluation, to
fit one of the 7 levels). But on the contrary, for software
developer the grade obtained for most detailed criteria
are important.

EXISTING APPROACHES FOR CREATING AGENT-
ORIENTED PROJECT-SPECIFIC METHODOLOGIES

Existing approaches for creating agent-oriented project-
specific methodologies are based on situational method
Engineering (SME). The term method engineering (ME)
goes back to Maynard, who introduced it as the research
area in mechanical engineering, addressing the definition
of methods to industrial engineering (Maynard, 1939). In
definition, ME approaches do not necessarily take into
account the project or situation in which a method will be
applied (Harmsen, 1997). SME is the sub-area of ME
directed towards the controlled, formal and computer-
assisted construction of situational (project-specific)
methods out of method fragments (a description of an
Information System (IS) engineering method, or any
coherent part thereof) (Harmsen, 1997). A well-known
synonym for SME is Methodology Engineering, which
was first introduced in (Kumar and Walke, 1992).

Despite the strengths of existing approaches for
creating agent-oriented project-specific methodologies,
they also have some weak points:

1. Lack of methodology evaluation and result saving
while storing a methodology in method fragments
repository.
2. Lack of consideration of method fragment capability
while creating a project-specific methodology

To eliminate mentioned shortcomings, two different
approaches may be considered:

Akbari 21

1. Screening the method fragments at storing stage, by
evaluation and storing strong method fragments with high
grades.

2. Evaluating and storing all the method fragments with
their corresponding evaluation results, and postponing
the selection of method fragments with desired grade to
methodology building stage.

Clearly, the second approach is the best one and follows
the SME goals. Since SME is not always seeking to
assemble the method fragments with high grades, but
more precisely, it seeks to assemble the proper method
fragments (with proper capabilities). For example, a
software development organization that works on large,
complex, and business-critical projects, must consider
management plans in its methodology (Firesmith and
Henderson-Sellers, 2002), and as much as the project is
larger, more complex and more business-critical, the
management plans method fragments should be stronger
with higher grades of evaluation. Yet in opposite way
software development organization that works on small,
simple, and non-critical projects does not need restricted
management plans. In this case, restricted management
plans would not even help the progress of software deve-
lopment, but would be an overload to development team
by defining unnecessary fruitless tasks. Thus, in such
cases, method fragments with average or even low
grades would be sufficient for the project-specific
methodology.

As a result, weaknesses of existing approaches for
creating agent-oriented project-specific methodologies
also show the necessity of joining these frameworks with
evaluation frameworks in order to build project-specific
methodologies and thus improve agent-oriented
methodologies acceptance. The existing project-specific
methodology building frameworks are briefly introduced
in the following sections.

Agent OPEN method

OPEN, which stands for Object-oriented Process, Envi-
ronment and Notation, was first outlined in (Henderson-
Sellers and Graham, 1996) and was published in
(Graham et al., 1997) as a full life cycle methodology
(Firesmith and Henderson-Sellers, 2002). OPEN Process
Framework (OPF) consists of: (i) a process metamodel of
framework from which can be generated an organi-
zationally specific process, (instance) created using a
method engineering approach from (ii) a repository and
(iii) a set of construction guidelines. The major elements
in OPF metamodel are Work Units (Activities, Tasks and
Techniques), Work Products, Producers and two auxiliary
ones (Stages and Languages) (Henderson-Sellers et al.,
2003).

J. Comput. Eng. Res. 22

Evaluation
Criteria for
Concepts

Agent’s
General
Concepts

Autonomy

Reactiveness

Proactiveness
Sociability

Agent’s
Lateral
Concepts

Mental
Attitudes

Physical
Attitudes

Communication

Operation

Socialization

Belief

Desire

Intention Message

Protocol

Task

Service

Role

Norm (Rule)

Organization

Society

Evaluation
Criteria for
Notation

Expressiveness

Preciseness

Symbol

Syntax

Analysis + Design

Static + Dynamic

Refinement

Different Sizes of System

Traceability
Dependency Verification

Transformation

Easiness
Understanding

Using

Modularity
Incrementality consistency

Partitioning Mechanism

Semantic

Evaluation
Criteria for
Process

Management Plans

Project Management Plan

Configuration Management Plan

Verification & Validation Plan

Quality Assurance Plan

Life Cycle
Life Cycle Standard

Life Cycle Coverage

Development Context

Development Perspective

Phases

Deliverables

Workflows

Evaluation
Criteria for
Pragmatics

Extant Resources

Project Adaptability
Domain Applicability

Scalability

Tools

Information

Skill Adaptability

Platform Suitability
Required Resources

Evaluation
Criteria for
Support for
Software
Engineering

Operation & Maintenance

Conceptual Integrity
Introduction of New Terms

Viewpoint

Reusability

Testability
Extensibility

Modifiability

Maintainability

Evaluation
Criteria for
Methodology

Trainer’s Satisfiability

Senior Manager’s Satisfiability

Manager’s Satisfiability

Development
Team’s
Satisfiability

Developer’s Satisfiability

End User’s Satisfiability

Evaluation
Criteria for
Marketability

Figure 3. Different levels of criteria in evaluation framework introduced in
(Akbari, 2010).

To extend this approach to support agent-oriented

information systems, (Debenham and Henderson-Sellers,
2003) analyzes the differences between agent-oriented

and object-oriented approaches in order to be able to
itemize and outline the necessary additions to the OPF's
repository in the standard format provided in (Henderson-

Sellers et al., 1998). A list of method fragments added to
OPF from existing agent-oriented methodologies can be
found in (Henderson-Sellers, 2005, 2004, 2006 and
2003).

Feature-based method

In (Juan et al., 2002) is proposed a modular approach
enabling developers to build customized project-specific
methodologies from AOSE features. An AOSE feature is
defined in (Juan et al., 2003) to encapsulate software
engineering techniques, models, supporting Computer-
Aided Software Engineering (CASE) tools and develop-
ment knowledge such as design patterns. It is considered
a stand-alone unit to perform part of a development
phase, such as analysis or prototyping, while achieving a
quality attribute such as privacy. Comparing to Agent
OPEN method, an AOSE feature can be defined in terms
of these notions as a Work Unit performed by one or
more Producers in support of a specific software engi-
neering stage resulting in one or more Work Products
represented in the respective Languages (Taveter and
Sterling, 2008). Differing from Agent OPEN approach,
this method does not regard it necessary to rely on the
formal metamodel of method fragments and has demon-
strated in (Juan and Sterling, 2003; Juan et al., 2002,
2003; Sterling and Taveter, 2009) that informal approach
to methodology composition works equally well and is
more likely to be adopted in industry.

This method identifies and standardizes the common
elements of the existing methodologies. The common
elements could form a generic agent model on which
specialized features might be based. The remaining parts
of the methodologies would represent added-value that
the methodologies bring to the common elements, and
should be componentized into modular features. The
small granularity of features allows them to be combined
into the common models in a flexible manner. By
conforming to the generic agent model in the common
elements, it is expected that the semantics of the optional
features remain consistent (Juan et al., 2002).

FIPA methodology technical committee method

This work refers to the FIPA Methodology Technical
Committee activity and it consists in a quite open
approach that allows the composition of elements coming
from a repository of fragments of existing design
processes that could be expressed in terms of a standard
notation. Specifically dealing with the methods integration
problem in this contribution, two different approaches
have been considered to obtain methods integration: (i)
guided by a MAS meta-model; (ii) guided by a deve-
lopment process. In the first approach, while building his

Akbari 23

own methodology, the designer has to preliminary identify
the elements that compose the meta-model of the MAS
he is going to build; then he has to choose the method
fragments that are able to produce the identified meta-
model elements. The second approach focuses on the
instantiation of some software development process that
completely cover the development of MAS. Given a
specific problem and/or an application domain, the
process will be instantiated by selection, for each phase,
suitable method fragments, chosen from agent-oriented
methodologies proposed in the literature or ad-hoc defined
(AOSE TFG, 2004; Cossentino and Seidita, 2004; Garro
et al., 2004).

A PRACTICAL INSTANCE OF PROPOSAL PLAN

As mentioned, to implement the plan proposed in propo-
sal solution to agent-orientation promotion, an evaluation
framework and a project-specific methodology building
framework are needed. Existing approaches for
evaluating agent-oriented methodologies shows that the
evaluation framework presented in (Akbari, 2010) per-
fectly overcomes the shortcoming of most of the existing
evaluation frameworks. In addition, since this framework
is a feature-based framework, it has the following
advantages as well:

1. Previous success (Sturm et al., 2004).
2. The possibility of implementation independent from
external resources (e.g. industrial partners) (Sturm et al.,
2004).
3. Lack of need of empirical information (Siau and Rossi,
1998)
4. The possibility of direct and detailed identification of
methodologies' weaknesses in order to improve them by
SME, with stressing on features.

Among existing project-specific methodology building
frameworks, Agent OPEN matches the proposed plan
best, since:

1. It is more complete and mature compared to others.
2. It has more existing resources compared to others,
which facilitates the current research.
3. Method fragment repository of this method is richer
compared to others.
4. It is also approved by FIPA (FIPA has some sugges-
tions on merging its own method with Agent OPEN
method).

Conclusion

The study of AOSE paradigm strengths shows the neces-
sity of its usage; yet its current state reports relative lack
of industrial acceptance compared to others. This paper

J. Comput. Eng. Res. 24

proposes a solution to this problem which aims to elimi-
nate the weaknesses of this paradigm by the usage of an
evaluation framework and a project-specific methodology
building framework, simultaneously in a software deve-
lopment organization. The usage of SME, considerations
for project management plans, and continuous improve-
ments in the methodology through a wise combination of
these frameworks may also lead the organization to
reach the fifth level of CMM. In this regard, following
future works are suggested:

1. Activities towards implementation and exploitation of
the proposal plan:

a) Enriching the method fragment repository: The list of
AOSE methodologies presented in existing agent-
oriented software engineering methodologies may be
used as a reference of methodologies, in order to extract
their method fragments and complete the repositories of
project-specific methodology building frameworks.
b) Storing the methodologies' evaluation results: The
information stored may be used as a means to select
suitable method fragments for building a project-specific
methodology.

2. Activities towards completion of proposal plan details:

a) Enforcing the identification of the method fragments
related to each criterion while storing a methodology:
This will facilitate the selection of suitable method
fragments with desired grades (level of property
implementation) while building a project-specific
methodology.
b) Defining a change management plan for continuous
changes that occur in proposal plan structure and data:
These changes may occur towards improving the
evaluation framework, and/or the methodology in use.
3. Activities towards adding more capabilities to the
proposal plan:

a) Preparing possibilities to design Domain-Specific
Languages (DSL): The availability of project-specific
methodologies is useless if no proper programming
languages assure the software implementation. Thus, it is
suggested to establish the facilities for designing DSLs
along with the building project-specific methodologies as
well.
b) Preparing possibilities to determine the proper para-
digm for the project and change dominant paradigm of
the proposal plan: As the software development organi-
zation needs to exploit a project-specific methodology, in
case of wide range of projects handled by the organi-
zation, there may be the need for different paradigms as
well. Thus the proposal plan may be equipped with a
framework to select the proper paradigm to handle the
project and follow the software development process with

this paradigm, which needs suitable evaluation
framework and project-specific methodology building
framework as well.

REFERENCES

Abdelaziz T, Elammari M, Branki C (2008). MASD: towards a

comprehensive multi-agent system development methodology,
Meersman R, Tari Z, Herrero P. (Eds.), OTM Workshops, LNCS
5333: 108–117.

Akbari ZO, Faraahi A (2008). Evaluation Framework for Agent-Oriented
Methodologies, Proceedings of World Academy of Science,
Engineering and Technology, WCSET Paris, France, 35: 419-424,
ISSN 2070-3740.

Akbari ZO, Faraahi A (2009). A Feature-Based Framework for Agent-
Oriented Methodologies Evaluation, In Proceedings of CCSR,
Tehran, Iran, pp 125-133.

Akbari ZO (2010). An Evaluation Framework for Agent-Oriented
Methodologies and Its Utilization in Creating an Efficient Agent-
Oriented Methodology, M. Sc Thesis, Payame Noor University,
Tehran, Iran.

Alonso F, Frutos S, Martinez L, Montes C, Sonia (2004). a methodology
for natural agent development, In Gleizes M.P., Omicini A,
Zambonelli F (Eds.): ESAW. LNCS 3451, Springer-Verlag Berlin
Heidelberg, (2005), pp 245-260.

AOSE Technical Forum Group (2004). AL3-TF1 Report, The first
AgentLink III Technical Forum (AL3-TF1), Rome, Italy.

Athanasiadis IN, Mitkas PA (2009). A methodology for developing
Environmental Information Systems with Software Agents, Whitestein
Series in Software Agent Technologies and Autonomic Computing,
Birkhauser Verlag Basel/Switzerland, pp. 119-137.

Bernon C, Gleizes MP, Picard G, Glize P (2002). The ADELFE
methodology for an intranet system design, In Giorgini P, Lespérance
Y, Wagner G and Yu E (Eds.). Proceedings of Agent-Oriented
Information Systems (AOIS). pp. 1-15.

Bond AH, Gasser L (1988). A Survey of Distributed Artificial
Intelligence, Readings in Distributed Artificial Intelligence, Morgan
Kaufmann Publishers: San Mateo, CA.

Brazier FMT, Dunin-Keplicz BM, Jennings NR, Treur J (1997). DESIRE:
modelling multi-agent systems in a compositional formal framework,
Int J. Cooperative Inf. Syst. 6(1), 67-94.

Bresciani P, Giorgini P, Giunchiglia F, Mylopolous J, Perini A, (2004).
Tropos: An agent-oriented software development methodology,
Auton. Agents Multi Agent Syst. 8(3): 203-236.

Bresciani P, Perini A, Giorgini P, Giunchiglia F, Mylopoulos J, (2001). A
Knowledge Level Software Engineering Methodology for Agent-
Oriented Programming, Proceedings of the 5th International
Conference on Autonomous Agents, Agents’01, Montreal, Canada,
pp. 648-655.

Brinkkemper S (1996). Method engineering: engineering of information
systems development methods and tools, Inf. Software Technol. 38:
275-280.

Burmeister B (1996). Models and methodology for agent-oriented
analysis and design, In Fischer K. editor, Working Notes of the KI’96
Workshop on Agent Oriented Programming and Distributed Artificial
Intelligence, Dresden.

Bush G, Cranefield S, Purvis M (2001). The Styx agent methodology,
The Information Science Discussion Paper Series, Number
(2001/02).ISSN 1172-6024, Department of Information Science,
University of Otago, Dunedin, New Zealand.

Caire G, Leal F, Chainho P, Evans R, Garijo F, Gomez J, Pavon J,
Kearney P, Stark J, Massonet P (2000). Agent Oriented Analysis
using MESSAGE/UML, In Wooldridge M., Weiss G, Ciancarini P,
(Eds.). AOSE II, 119-135, LNCS 2222, Berlin: Springer-Verlag.

Castro J, Kolp M, Mylopoulos J (2001). A Requirements-Driven
Development Methodology, In: Proceedings of the 13th International
Conference on Advanced Information Systems Engineering
(CAiSE'01) pp. 108-123.

Castro J, Kolp M, Mylopoulos J (2002). Towards requirements-driven

information systems engineering: The Tropos project, Inf. Syst. 27(6):
365-389.

Cernuzzi L, Rossi G (2002). On the Evaluation of Agent Oriented
Methodologies, in Proc. of the OOPSLA (2002) Workshop on Agent-
Oriented Methodologies.

Cervenka R, Trencansky I (2007). The Agent Modeling Language –
AML, A Comprehensive Approach to Modeling Multi-Agent Systems,
Whitestein Series in Software Agent Technologies and Autonomic
Computing, ISBN: 978-3-7643-8395-4.

Cervenka R (2003). Modeling Notation Source: Prometheus, Version: 03-
04-02, Foundation for Intelligent Physical Agents.

Clancey WJ, Sierhuis M, Seah C, Buckley C, Reynolds F, Hall T, Scott
M (2007). Multi-agent simulation to implementation: a practical
engineering methodology for designing space flight operations, In
Artikis A et al. (Eds.): ESAW. LNCS 4995, Springer-Verlag Berlin
Heidelberg, (2008) pp. 108-123.

CMS (2008), Selecting a development approach, Centers for Medicare
and Medicaid Services (CMS), Original Issuance: February (2005).
Revalidated: March.

Cockburn D, Jennings NR (1996). ARCHON: A distributed artificial
intelligence system for industrial applications, In O’Hare GMP,
Jennings NR, (editors), Foundations of Distributed Artificial
Intelligence, pp. 319–344, JohnWiley & Sons.

Collier R (1996). The Realisation of Agent Factory: An Environment for
the Rapid Prototyping of Intelligent Agents, M. Phil Thesis, UMIST,
UK.

Collier RW (2002). Agent Factory: a framework for the engineering of
agent-oriented applications, PHD Thesis, National University of
Ireland.

Collier RW, O'Hare GMP (1999). Agent Factory: A Revised Agent
Prototyping Environment, in 10th Irish Conference on Artificial
Intelligence and Cognitive Science (AICS).

Collinot A, Drogoul A (1998). Using the Cassiopeia method to design a
soccer robot team, Appl. Artif. Intell. (AAI) J. 12(2-3): 127-147.

Collinot A, Drogoul A, Benhamou P (1996). Agent-oriented design of a
soccer robot team, In Proceedings of the Second International
Conference on Multi-Agent Systems (ICMAS’96), 41-57, Menlo Park,
CA: American Association for Artificial Intelligence.

Cossentino M, Potts C (2002). A CASE tool supported methodology for
the design of multi-agent systems. In Ababnia HR and Mun Y (Eds.),
Proceedings of the International Conference on Software Engi-
neering Research and Practice (SERP’02), Las Vegas pp. 315-321.

Cossentino M, Seidita V (2004). Composition of a New Process to Meet
Agile Needs Using Method Engineering, Software Engineering for
Large Multi-Agent Systems, vol. III, LNCS Series, Elsivier Ed.

Cossentino M (2005). From requirements to code with the PASSI
methodology, In Henderson-Sellers B, Giorgini P (Eds.), Agent-
oriented methodologies (Chapter 4). Hershey, PA: Idea Group.

Cossentino M, Gaud N, Hilaire V, Galland S, Koukam A (2007),
ASPECS: an Agent-oriented Software Process for Engineering
Complex Systems, In Proc. of the Fifth Agent Oriented Software
Engineering Technical Forum (AOSE-TF5), Hammameth, Tunisia.

Cuesta P, Gomez A, Gonzalez JC, Rodriguez FJ (2002). The MESMA
approach for AOSE, 4th Iberoamerican Workshop on Multi-Agent
Systems (Iberagents'2002). a workshop of IBERAMIA'2002, The VIII
Iberoamerican Conference on Artificial Intelligence.

Dam KH, Winikoff M (2003). Comparing agent-oriented methodologies,
Proceedings of the 5th Int Bi-Conference Workshop on Agent-
Oriented Information Systems (AOIS), Melbourne, Australia.

Debenham J, Henderson-Sellers B (2003). Designing agent-based
process systems - Extending the OPEN process framework, In
Plekhanova V (Ed.), Intelligent agent software engineering, Chapter
VIII pp. 160-190, Hershey, PA: Idea Group Publishing.

Debenham JK, Henderson-Sellers B (2002). Full lifecycle methodo-
logies for agent-oriented systems – the extended OPEN process
framework, In Proceedings of Agent-Oriented Information Systems
(Eds. Giorini P, Lespreance Y, Wagner G, Yu E), Toronto pp. 87-101.

DeLoach SA (1999). Multiagent systems engineering: A methodology
and language for designing agent systems, In Proceedings of the

Akbari 25

First International Bi-conference Workshop on Agent-Oriented
Information Systems (AOIS ’99), In the Third International
Conference on Autonomous Agents, Seattle, USA.

DeLoach SA (2005). Multi-Agent Systems Engineering: An Overview
and Case Study, In Henderson-Sellers B, Giorgini P (Eds.), Agent-
oriented methodologies (Chapter 11), Hershey, PA: Idea Group.

Desai N, Mallya AU, Chopra AK, Singh MP (2005). OWL-P: a
methodology for business process development, Kolp M, Bresciani
P, Henderson-Sellers B, Winikoff M (Eds.), Agent-Oriented
Information Systems III, 7th International Bi-Conference Workshop,
AOIS. pp. 79-94.

Dikenelli O, Erdur RC (2002). SABPO: A Standards Based and Pattern
Oriented Multi-agent Development Methodology, ESAW, 213-226.

Elammari M, Lalonde W (1999). An agent-oriented methodology: high-
level and intermediate models, In the proceedings of AOIS (Agent-
Oriented Information Systems), In the Third International Conference
on Autonomous Agents, Seattle, USA.

Evans R, Kearney P, Stark J, Caire G, Garijo F , Gomez Sanz J, Pavon
J, Leal F, Chainho P, Massonet P (2001). MESSAGE: Methodology
for engineering systems of software agents, EURESCOM Technical
Information.

Far BH (2001). Agent-SE: A Methodology for Agent Oriented Software
Engineering, In Jin Q, Li J, Zhang N, Cheng J, Yu C, Noguchi S,
(Eds.), Enabling Society with Information Technology, Springer pp.
357-366.

Ferber J, Gutknecht O (1997). Aalaadin: a meta-model for the analysis
and design of organizations in multi-agent systems, rapport de
recherche, Lirmm, univ. de Montpellier.

Ferber J, Gutknecht O (1998). A Meta-Model for the Analysis and
Design of Organizations in Multi-Agent Systems, In Proceedings of
the Third International Conference on Multi Agent Systems
(ICMAS98), Paris, France.

Firesmith DG, Henderson-Sellers B (2002). The OPEN Process
Framework: An Introduction, Addison-Wesley, UK, ISBN 0-201-
67510-2.

Gadomski AM (1993). TOGA: A Methodological and Conceptual Pattern
for modeling of Abstract Intelligent Agent, Proceedings of the First
International Round-Table on Abstract Intelligent Agent, Gadomski
AM, (editor) pp. 25-27.

Gao X, Sterling L (1998). A Methodology for Building Information
Agents, In Yang Y, Li M, Ellis A, (editors), Web Technologies and
Applications, Chapter 5, pp. 43-52, International Academic Pulishers.

Garro A, Fortino G, Russo W (2004). Using Method Engineering for the
Construction of Agent-Oriented Methodologies, In Proc. of WOA 04 –
Dagli Oggetti Agli Agenti, Sistemi Complessi e Agenti razionali, pp.
51-54, Torino, Italy.

Genesereth MR, Ketchpel SP (1994). Software agents, Communica-
tions of the ACM, 37, 7, pp. 48-53.

Gervais MP (2002). ODAC: An Agent-Oriented Methodology Based on
ODP, J. Auton. Agents Multi Agent Syst. 7: 199-228.

Giret A, Botti V (2004). Towards a Recursive Agent Oriented
Methodology for Large-Scale MAS, In Giorgini P, Muller JP, Odell J,
(Eds.): AOSE (2003). LNCS 2935, 25–35, Springer-Verlag, Berlin,
Heidelberg.

Giret A (2008). ANEMONA: a multi-agent methodology for holonic
manufacturing systems, Springer Series in Advanced Manufacturing,
First edition, ISBN-13: 978-1848003095,

Giret A, Botti V, Valero S (2005). MAS methodology for HMS, In Marik
V, Brennan RW, Pechoucek M (Eds.): HoloMAS. LNCS 3593,
Springer-Verlag Berlin Heidelberg pp. 39-49.

Glaser N (1996). The CoMoMAS methodology and environment for
multiagent system development, In Zhang C, Lukose D (Eds.), Multi-
agent systems methodologies and applications, pp. 1-16, Second
Australian Workshop on Distributed Artificial Intelligence, LNAI 1286,
Berlin: Springer-Verlag.

Graham I, Henderson-Sellers B, Younessi H (1997). The OPEN
Process Specification, Addison-Wesley.

Grislin-Le Strugeon E, Anli A, Adam E (2006). A methodology to bring
MAS to information systems, In Kolp M et al. (Eds.): AOIS. LNCS
4898, Springer-Verlag Berlin Heidelberg, (2008) pp. 90-104.

J. Comput. Eng. Res. 26

Hadj-Kacem A, Regayeg A, Jmaiel M (2007). ForMAAD: a formal

method for agent-oriented application design, Web Intell. Agent Syst.
5(4): 435-454, IOS Press, Amesterdam, Netherland, ISSN: 1570-
1263.

Harmsen AF (1997). Situational Method Engineering, Doctoral
dissertation University of Twente, With ref., index and summary in
Dutch, ISBN: 90-75498-10-1.

Henderson-Sellers B, Giorgini P (2005). Agent-Oriented Methodologies,
Idea Group Publishing, ISBN 1-59140-587-4.

Henderson-Sellers B, Gorton I (2003). Agent-based Software
Development Methodologies, White Paper on OOPSLA 2002
Workshop on Agent-Oriented Methodologies, COTAR, Sydney.

Henderson-Sellers B, Graham IM (1996). OPEN: Toward Method
Convergence, IEEE Comput. 29(4): 86–89.

Henderson-Sellers B (2005). Evaluating the Feasibility of Method
Engineering for the Creating of Agent-Oriented Methodologies, In
Pechoucek M, Petta P, Varga LZ, (Eds.), CEEMAS pp. 142–152.

Henderson-Sellers B, Debenham J, Tran QNN (2004). Adding agent-
oriented concepts derived from GAIA to Agent OPEN, In Advanced
Information Systems Engineering: 16th International Conference,
CAiSE. Riga, Latvia pp. 98-111, Berlin: Springer-Verlag.

Henderson-Sellers B, Debenham J, Tran QN, Cossentino M, Low G
(2006). Identification of Reusable Method Fragments from the PASSI
Agent-Oriented Methodology, In Agent Oriented Information Systems
III, Lecture Notes in Computer Science, 3529, Springer-Verlag
GmbH, 95-110.

Henderson-Sellers B, Giorgini P, Bresciani P (2003). Enhancing Agent
OPEN with concepts used in the Tropos methodology, in
Proceedings of the Fourth International Workshop Engineering
Societies in the Agents World, Imperial College London, UK.

Henderson-Sellers B, Simons AJH, Younessi H (1998). The OPEN
Toolbox of Techniques, Addison-Wesley, UK, 426 pp.

Henderson-Sellers B, Tran Q, Debenham J, Gonzalez-Perez C (2005).
Agent-oriented information systems development using OPEN and
the agent factory, Information Systems Development Advances in
Theory, Practice and Education: 13th International Conference on
Information Systems Development, ISD (2004). Vilnius, Lithuania,
149-160, New York: Kluwer Acadmic / Plenum Publishers.

Huget M (2002). Nemo: an agent-oriented software engineering
methodology, In Proceedings of OOPSLA Workshop on Agent-
Oriented Methodologies, Debenham J, Henderson-Sellers B,
Jennings NR, Odell J, Seattle, USA.

Iglesias CA, Garijo M, Gonzalez JC (1999). A Survey of Agent-Oriented
Methodologies, in Intelligents Agents IV: Agent Theories,
Architectures, and Languages, 1555 of LNAI, Springer-Verlag pp.
317-330.

Iglesias CA, Garijo M, Gonzalez JC, Velasco JR (1998). Analysis and
design of multiagent systems using MAS-CommonKADS. In Singh,
MP, Rao A, Wooldridge MJ (eds.), Intelligent Agents IV (LNAI 1365),
Springer-Verlag: Berlin Germany pp. 313-326.

Jennings N, Wooldridge M (1996). Software Agents, IEEE Rev. 17-20.
Jennings NR, Wooldridge M (2000). Agent-Oriented Software

Engineering, In Handbook of Agent Technology (ed. Bradshaw J.),
AAAI/MIT Press.

Jennings NR, Norman TJ, Faratin P (1998).ADEPT: An agent-based
approach to business process management, SIGMOD Record 27(4):
32-39,

Juan T, Sterling L (2003). The ROADMAP meta-model for intelligent
adaptive multiagent systems in open environments, In Giorgini P,
Muller J, Odell J, (Eds.), Agent-Oriented Software Engineering IV,
4th International Workshop, AOSE. Melbourne, Australia, Revised
Papers (LNCS 2935, 53–68), Berlin, Germany: Springer-Verlag.

Juan T, Pearce A, Sterling L (2002).ROADMAP: Extending the Gaia
methodology for Complex Open Systems, Proceedings of the First
International Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), Bologna, Italy.

Juan T, Sterling L, Winikoff M (2002). Assembling agent oriented
software engineering methodologies from features, In Giunchiglia F,
Odel J, Weiss G, (Eds.), Agent-Oriented Software Engineering III,
Third International Workshop, AOSE. Bologna, Italy, Revised Papers

and Invited Contributions (LNCS 2585, 198–209). Berlin, Germany:
Springer-Verlag.

Juan T, Sterling L, Martelli M, Mascardi V (2003). Customizing AOSE
methodologies by reusing AOSE features, In Rosenschein JS,
Sandholm T, Wooldridge M, Yokoo M, (Eds.), Proceedings of the
Second International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), Melbourne, Australia, 113–120.

Kendall EA, Malkoun MT, Jiang C (1996). A methodology for developing
agent based systems for enterprise integration. In Lukose D, Zhang
C, (editors), Distributed Artificial Intelligence Architecture and
Modelling: Proceedings of the First Australian Workshop on DAI,
LNCS 1087, Springer-Verlag: Heidelberg, Germany pp. 85-99.
Kindler C, DeLuke R, Rhea J, Kunz JC (1997). Development and
Demonstration of an Agent-Oriented Integration Methodology,
Kaman Sciences Corporation, Rome, NY, Contract Number F30602-
94-C-0216.

Kinny D, Georgeff M (1996). Modelling and design of multi-agent
systems, In Intelligent Agents III: Proceedings of the Third
International Workshop on Agent Theories, Architectures, and
Languages (ATAL-96), LNAI 1193, Berlin: Springer-Verlag.

Kinny D, Georgeff M, Rao A (1996). A methodology and modelling
technique for systems of BDI agents, In Proceedings of the Seventh
European Workshop on Modelling Autonomous Agents in a Multi-
Agent World (MAAMAW-96), Eindhoven, The Netherlands, pp. 56-
71, Springer.

Kumar K, Welke RJ (1992). Method Engineering, a Proposal for
Situation-Specific Methodology Construction, In Systems Analysis
and Design: A Research Agenda, Cotterman and Senn (Eds.), Wiley
pp. 257-268.

Kumar M (2002). Contrast and comparison of five major Agent Oriented
Software Engineering (AOSE) methodologies, Available at
http://students.jmc.ksu.edu/grad/madhukar/www/professional /aose
paper.pdf.

Li C, Liu L (2005). MAHIS: An Agent-Oriented Methodology for
Constructing Dynamic Platform-Based HIS, Australian Conference
on Artificial Intelligence, 705-714.

Lin C, Kavi KM, Sheldon FT, Daley KM, Abercrombie RK, (2007). A
Methodology to Evaluate Agent Oriented Software Engineering
Techniques, Software Agents and Semantic Web Technologies
Minitrack, IEEE Proc. HICSS-40, Big Island HI.

Lind J (1999). MASSIVE: Software Engineering for Multiagent Systems,
PhD Thesis, University of Saarland, Saarbrucken.

Lind J (2001). Iterative software engineering for multiagent systems,
The MASSIVE Method, (LNAI 1994), Berlin: Springer-Verlag.

Lu H, Chhabra M (2006). A methodology for agent oriented web service
engineering, In Shi Z, Sadananda R (Eds.): PRIMA LNCS 4088,
Springer-Verlag Berlin Heidelberg, 2006 pp. 650-655.

Lyytinen K (1987). A Taxonomic Perspective of Information Systems
Development: Theoretical Constructs and Recommendations, In
Critical Issues in Information Systems Research, Jr, R J B,
Hirschheim RA, (eds.) John Wiley & Sons Ltd., 3-41.

Mao X, Zhao J, Wang J(2009). Engineering adaptive multi-agent
systems with ODAM methodology, In Ghose A, Governatori G,
Sadananda R, (Eds.): PRIMA 2007, LNCS 5044, Springer-Verlag
Berlin Heidelberg pp. 380-385.

Martelli M, Mascardi V, Zini F (1997). CaseLP: a Complex Application
Specification Environment based on Logic Programming, In Proc. of
ICLP'97 Post Conference Workshop on Logic Programming and
Multi-Agents pp. 35-50.

Maynard HB, Stegemerten GJ (1939). Operation Analysis, McGraw-Hill,
New York.

Moulin B, Brassard M (1996). A Scenario-Based Design Method and an
Environment for the Development of Multiagent systems, In Lukose
D, Zhang C, (editors), Proceedings of the First Australian workshop
on Distributed Artificial Intelligence, Lecture Notes in Artificial
Intelligence, No. 1087, pp. 216-231, Springer-Verlag.

Muller HJ (1996). Towards agent systems engineering, , Special Issue
on Distributed Expertise, Int. J. Data Knowledge Eng. (23): 217–245.

Mylopoulos J, Kolp M, Castro J (2001). UML for agent-oriented software
development: The Tropos proposal, Proceedings of the 4th

International Conference on the Unified Modeling Language,
UML’01, Toronto, Canada, October 1-5, Springer pp. 422-442.

Neal Reilly WS (1997). A Methodology for Building Believable Social
Agents, Proceedings of the First International Conference on
Autonomous Agents (Agents '97), Marina del Rey, CA, USA, 114-
121, ACM Press, New York, ISBN 0-89791-877-0, ACM Order
Number 605971.

Nikraz M, Caire G, Bahri PA (2006). A methodology for the
development of multi-agent systems using the JADE platform,
Computer Systems Science and Engineering, 21(2), 99–116.

Nwana H, Ndumu D, Lee L, Collis J (1999). ZEUS: A Tool-Kit for
Building Distributed Multi-Agent Systems, Appl. Artif. Intell. J. 13(1):
129-186.

O’Hare GMP, Wooldridge MJ (1992). A software engineering
perspective on multi-agent system design: Experience in the
development of MADE, In Avouris NM, Gasser L, (Eds), Distributed
Artificial Intelligence: Theory and Praxis pp. 109–127, Kluwer
Academic Publishers: Boston, MA.

O'Hare GMP, Collier RW, Conlon J, Abbas S (1998). Agent Factory: An
Environment for Constructing and Visualising Agent Communities,
9th Irish Conference on Artificial Intelligence and Cognitive Science
(AICS).

Omicini A (2000). SODA: societies and infrastructures in the analysis
and design of agent-based systems, In Agent-Oriented Software
Engineering, LNCS, 1957 pp. 185-193, Berlin: Springer-Verlag.

Padgham L, Winikoff M (2002). Prometheus: A methodology for
developing intelligent agents, In Giunchiglia F, Odell J, Weiß G,
(Eds.), Agent-Oriented Software Engineering III Proceedings of the
Third International Workshop on Agent-Oriented Software
Engineering (AAMAS’02) pp. 174-185, LNCS 2585.

Padgham L, Winikoff M (2002). Prometheus: A pragmatic methodology
for engineering intelligent agents, In Debenham J, Henderson-Sellers
B, Jennings N, Odell JJ, (Eds.), Agent-oriented Software Engineering
III Proceedings of the Workshop on Agent-oriented Methodologies at
OOPSLA. Seattle pp. 97-108, Sydney: Centre for Object Technology
Applications and Research.

Pavon J, Gomez-Sanz J (2003). Agent Oriented Software Engineering
with INGENIAS, Proc. 3rd International Central and Eastern
European Conference on Multi-Agent Systems (CEEMAS). Marik V,
Muller J, Pechoucek M, (Eds.), Multi-Agent Systems and Applications
II, LNAI 2691, Spring-Verlag pp. 394-403.

Pavon J, Gomez-Sanz JJ, Fuentes R (2005). The INGENIAS
methodology and tools, In Henderson-Sellers B, Giorgini P, (Eds.),
Agent-oriented methodologies (Chapter 9), Hershey, PA: Idea Group.

Sabas A, Badri M, Delisle S (2002). A Multidimentional Framework for
the Evaluation of Multiagent System Methodologies, 6th World
MultiConf on Systemics, Cybernetics and Informatics (SCI) pp. 211-
216.

Sardinha J, Milidiu R, Lucena C, Paranhos P (2004). A Methodology for
Building Trading Agents in Electronic Markets, Technical Report,
Computer Science Department, PUC-Rio, Brazil, PUC-
RioInf.MCC36/04.

Shan L, Zhu H (2004). Software engineering for multi-agent systems III:
Research issues and practical applications, In Choren R, Garcia A,
Lucena C, Romanovsky A, (Eds.), Proceedings of the Third
International Workshop on Software Engineering for Large-Scale
Multi-Agent Systems pp. 144-161, Berlin: Springer-Verlag.

Shehory O, Sturm A (2001). Evaluation of modeling techniques for
agent-based systems, Agents pp. 624-631.

Shi Z, Jiao W, Sheng Q (2001). Agent-oriented software methodology,
CEEMAS Cracow, Poland.

Shi Z, Zhang H, Cheng Y, Jiang Y, Sheng Q, Zhao Z (2004). MAGE: An
Agent-Oriented Programming Environment, IEEE ICCI pp. 250-257.

Shi Z, Zhang H, Dong M, Zhao Z (2003). MAGE: Multi-Agent
Environment, Proc. of the Int. Conference on Compt. Networks and
Mobile Computing (ICCNMC'03) pp. 181-188.

Shoham Y (1990). Agent-Oriented Programming, Technical Report
STAN-CS-1335-90, Computer Science Department, Stanford
University, Stanford, CA 94305.

Shoham Y (1993).Agent-Oriented Programming, Artif. Intell. 60(1):51-92

Akbari 27

Siau K, Rossi M (1998).Evaluation of Information Modeling Methods – A

Review, In Proc. 31 Annual Hawaii International Conference on
System Science pp. 314-322.

Sierra C, Sabater J, Agusti J, Garcia P (2002). Evolutionary
Programming in SADDE, AAMAS'02, ACM, Bologna, Italy pp. 1270-
1271.

Singh MP, Huhns MN, Stephens LM, (1993). Declarative
representations of multiagent systems, IEEE Trans. Knowledge Data
Eng. 5(5): 721–739.

Standards Coordinating Committee of the Computer Society of the
IEEE, (1990). IEEE Standard Glossary of Software Engineering
Terminology, IEEE Standards Board, IEEE Std 610.12.

Sterling L, Taveter K (2009). The art of agentoriented modeling,
Cambridge, MA, London, England: The MIT Press.

Sturm A, Shehory O (2003). A Framework for evaluating agent-oriented
methodologies, In Giorgini P, Winikoff M (Eds.), Proceedings of the
Fifth Int. Bi-Conference Workshop on Agent-Oriented Information
Systems pp. 60-67, Melbourne, Australia.

Sturm A, Dori D, Shehory O (2003). Single-Model Method for Specifying
Multi-Agent Systems, Proceeding of Second Int. Joint Conference on
Autonomous Agents and Multi Agent Systems pp. 121-128.

Sturm A, Shehory O, Dori D (2004). Evaluation of Agent-Oriented
Methodologies, In AgentLink AOSE TFG1.

Sudeikat J, Braubach L, Pokahr A, Lamersdorf W (2004). Evaluation of
agent-oriented software methodologies: Examination of the gap
between modeling and platform, Proceedings of the Workshop on
Agent-Oriented Software Engineering (AOSE), New York, USA.

Taveter K, Wagner G, (2005). Towards radical agent-oriented software
engineering processes based on AOR modelling, In Henderson-
Sellers B, Giorgini P, (Eds.), Agent-oriented methodologies (Chapter
10), Hershey PA: Idea Group.

Taveter K, Wagner G (2002). A multi-perspective methodology for
modelling inter-enterprise business processes, In Arisawa H,
Kambayashi Y, (Eds.): ER (2001). Workshops, LNCS 2465,
Springer-Verlag Berlin Heidelberg pp. 403-416.

Taveter K, Sterling L (2008), Features as Loosely Defined Method
Fragments, AOSE TFG08.

Tian J, Foley R, Tianfield H (2004). A new agent-oriented development
methodology, Proceedings of the Intelligent Agent Tech.,
IEEE/WIC/ACM Int. Conference pp. 373–376.

Tran QN, Low G (2008). MOBMAS: A Methodology for Ontology-Based
Multi-Agent Systems Development, Inf. Software Technol. 50: 697–
722.

Tran QNN, Beydoun G, Low G (2007). Design of a peer-to-peer
information sharing MAS using MOBMAS (ontology-centric agent-
oriented methodology, In Advances in Information Systems
Development, Springer pp. 63-76.

Verharen E, Weigard H (1994). Agent-Oriented Information Systems
Design, In Ras Z, Zemankova M, editors, Poster Proceedings of the
International Symposium on Methodologies for Intelligent Systems
(ISMIS'94), Amsterdam, 378- 392.

Verharen EM (1997). A Language-Action Perspective on the Design of
Cooperative Information Agents, PhD thesis, Katholieke Universieit
Brabant, the Netherlands.

Villaplana EA (2005). Proposal for an organizational MAS methodology,
AAMAS’05, 1370.

Wagner G (2003). The agent-object-relationship meta-model: Towards
a unified view of state and behavior, Inf. Syst. 28(5): 475-504.

Wang L, Guo Q (2004). Mobile Agent Oriented Software Engineering
(MAOSE), In Karmouch A, Korba L, Madeira E (Eds.): MATA LNCS
3284, Springer-Verlag Berlin Heidelberg pp. 168-177.

Whitestein Technologies (2008). LS/TS Product Brochure, Available at
http://www.whitestein.com/library/Whitestein Technologies_LS-
TS_ProductBrochure.pdf.

Wooldridge M, Ciancarini P (2001). Agent-Oriented Software
Engineering: The State of the Art, In Ciancarini P. and Wooldridge M.
(editors), Agent-Oriented Software Engineering, Springer-Verlag
Lecture Notes in AI (1957).

Wooldridge M (1997). Agent-based software engineering, IEE Proc.
Software Eng. 144(1): 26–37.

J. Comput. Eng. Res. 28

Wooldridge M, Jennings NR, Kinny D (1999). A methodology for agent-

oriented analysis and design, In Proceedings of the Third
International Conference on Autonomous Agents (Agents 99), 69–76,
Seattle, WA.

Wooldridge M, Jennings NR, Kinny D (2000). The Gaia methodology for
agent-oriented analysis and design, J. Autonomous Agents Multi
Agent Syst. 3(3): 285-312.

Wooldridge M, Jennings NR (1995). Intelligent agents: theory and
practice, Knowl. Eng. Rev. 10(2) 115–152.

Yan Q, Shan L, Mao X, Qi Z (2003). RoMAS: a role-based modeling
method for multi-agent systems, Proceedings of International
Conference on Active Media Technology pp. 156-161.

Yan E, Cysneiros LM (2002). Agent-Oriented Methodologies – Towards
A Challenge Exemplar, 4th Intl. Workshop on Agent-Oriented
Information Systems (AOIS’02).

Zamboneli F, Jennings NR, Omicini A, Wooldridge M (2000). Agent-
Oriented Software Engineering for Internet Applications, Published
as chapter 13 in the book: Coordination of Internet Agents: Models,
Technologies and Applications, Omicini A, Zambonelli F, Klusch M,
Tolksdorf R (Eds.), Springer.

Zambonelli F, Jennings NR, Wooldridge M (2005). Multi-Agent Systems

as Computational Organizations: The Gaia Methodology, In
Henderson-Sellers B, Giorgini P (Eds.) Agent-oriented
methodologies (Chapter 6), Hershey, PA: Idea Group.

Zhang T, Kendall EA, Jiang H (2002). An Agent-Oriented Software
Engineering Methodology with Application of Information Gathering
Systems for LCC, Proceedings of the Fourth International Bi-
Conference Workshop on Agent-Oriented Information Systems
(AOIS-2002 at CAiSE*02) pp. 1-15.

