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Follicular atresia is the term used for the fate of follicles which undergo degenerative changes before
rupturing during ovulation. Recent studies suggest that granulosa cell apoptosis play a major role in
follicular atresia. The factors which lead the cell to apoptosis and which protect the cell death, still
remain complicated and more studies are needed to elucidate the whole process. Here in this review,
we aimed to simplify the factors and mechanisms taking place in granulosa cell apoptosis, to make the

process more understandable.
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INTRODUCTION

When a female human embryo is 8-week-old, she has
600,000 germ cells in her gonads and this number
increases to 6 to 7 million at 20 weeks of gestation. But
with the increasing rate of atresia, the number declines
progressively and 1 million oocytes are present in the
newborn, whereas 300,000 oocytes remain in puberty, of
which approximately 400 will ovulate during the fertile
lifespan (Oktem and Oktay, 2008; Gougeon, 1996;
Matova and Cooley, 2001).

‘Follicular atresia’ term is used to define antral follicles
undergoing degenerative changes before rupturing during
ovulation. It is initiated within the granulosa cell layer and
subsequently in the theca cells (Morita et al., 1999;
Hsueh et al., 1994). In mammals, the basic mechanism of
follicular atresia is apoptosis (Depalo et al., 2003). Apop-
tosis is a way which multicellular organisms use to elimi-
nate unwanted cells in response to developmental
signals or toxic stimuli (Quirck et al., 2004). It is regulated
at the level of transcription or translation (Manabe et al.,
2008). Major morphological characteristics of apoptosis
are the internucleosomal DNA fragmentation, cell shrin-
kage, plasma membrane blebbing, and the apoptotic
body formation (Schwartzman and Cidlowski, 1993).

Granulosa cells possess endogenous pathways to trig-
ger apoptosis, that are inhibited in the presence of survi-

*Corresponding author. E-mail: zebru33@gmail.com. Tel: +90
(312) 2158652. Fax: +90 (312) 3124931.

val factors (Quirck et al., 2004). To date, many apoptosis-
related factors have been implicated in follicular atresia,
including death ligands and receptors, Bcl-2 family pro-
teins, Nodal, caspases, growth factors, gonadotropins,
and calcium. In this report, we will overview these factors
one by one.

Proapoptotic regulators in the cell death receptor-
ligand system

Death receptors constitute a subgroup within the tumor
necrosis factor (TNF) receptor family. They are located
on the cell surface, anchored to the cell membrane, are
trimerized and have cytoplasmic death domains (DDs)
which are necessary to induce apoptosis (Park et al.,
2005; Ashkenazi and Dixit, 1998; Wallach et al., 1999).
Fas receptor, TNF receptor, and TNF related apoptosis
inducing ligand receptors (TRAILr) are the members of
TNF receptor family that are found to have roles in follicu-
lar atresia in mammalian ovaries (Park et al., 2005).

In most of the cases, the cell death receptor-mediated
apoptosis takes place as follows:

1) The cell death ligand binds to the extracellular domain
of cell death recepor (Fas ligand-Fas L for Fas receptor
[CD 95, APO-1, TNFR sf 6], TNF a for TNF a receptors,
and TNF a related apoptosis inducing ligand [TRAIL] for
TRAIL receptors).



2) The intracellular DD of the receptor becomes activated
and binds to the DD of the adaptor protein through
homophilic interactions (Fas associated death domain
[FADD] for Fas-Fas L system, TNF receptor associated
death domain [TRADD] for TNF a-TNF receptor system)
3) Procaspase 8 (also named FLICE) is an initiator cas-
pase and binds to FADD with the death effector domain
(DED) through homophilic interactions. The complex
formed by procaspase 8 and FADD is called death indu-
cing complex (DISC).
4) Dimerization of procaspase 8 induces auto-proteolytic
cleavage and procaspase 8 becomes activated (Medema
et al., 1997; Boldin et al., 1995; Chinnaiyan et al., 1995;
Muzio et al., 1996; Nagata, 1997; Scaffidi et al., 1998).
5) Activated caspase 8 subsequently activates down-
stream caspases either directly (in type 1 cells) or via
mitochondrial perturbation (in type 2 cells) (Matsui et al.,
2003).

In type 1 apoptotic cells, caspase 8 directly activates
the effector enzyme caspase 3, active form of which acti-

vates endogenous endonucleases and causes apop-tosis.

In type 2 apoptotic cells, activation of procaspase 8 leads
to the release of cytochrome ¢ from the mitochon-drion.
Cytochrome ¢ binds to the apoptosis activating factor
(Apaf 1) and causes activation of procaspase 9 (the com-
plex formed by cytochrome c, Apaf 1, and cas-pase 9is
called apoptosome). Activated caspase 9 cleaves procas-
pase 3 and causes its activation, leading to activa-tion of
endonucleases, and apoptosis is the result of the path-
way (Ashkenazi and Dixit, 1998; Nagata, 1997; Matsui et
al., 2003).

Fas-Fas L system

Fas and Fas L are the best characterized apoptotic
signalling machinery in the granulosa cells of many spe-
cies, including humans. In human females, Fas is expres-
sed in granulosa cells of atretic antral follicles and its
level increases as atresia progresses (Quirk et al., 1995;
Kondo et al., 1996).

When Fas L binds to the extracellular domain of Fas,
the intracellular DD of the receptor interacts with FADD
through its DD. FADD and procaspase 8 interact through
their DEDs and procaspase 8 becomes activated. This
leads to activation of a caspase system and eventually
apoptosis is induced as shown in the Figure 1 (Inoue et
al., 2006).

TNF a-TNF receptor system

TNF is produced by granulosa cells and the oocyte, and it
is another important regulator of follicular development
and atresia (Jiang et al., 2003). When it binds to the TNF
receptor 1, it stimulates apoptosis via its DD and when it
binds to TNF receptor 2 which lacks DD, it acts as a
survival factor (Matsuda-Minehata et al., 2006).

Increased mRNA expression of TNF receptor asssocia-
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ted DD (TRADD) which transmits the death signal from
death receptor 4 and/or 5 to intracellular apoptosis indu-
cing pathways in granulosa cells, was demonstrated only
in atretic follicles, showing that the TRAIL receptor sys-
tem induces apoptosis in granulosa cells during atresia in
porcine ovaries (Wada et al., 2002).

Caspases

Caspases are a family of intracellular cysteine proteases
which have roles in both initial and final stages of apop-
tosis in almost all types of vertebrate cells (Johnson and
Bridgham, 2002). As discussed earlier, procaspase 3
activates endogenous endonucleases and causes apop-
tosis, while procaspase 9 is activated via cytochrome ¢
and Apaf 1, and the complex named apoptosome formed
by these three, activates procaspase 3 in type 2 cells. In
humans and mice, it showed that antibody raised against
the activated form of procaspase 3 reacted strongly with
the granulosa cells of degenerating antral follicles. The
studies in caspase 3 deficient mice showed that caspase
3 is required for granulosa cell apoptosis and therefore
necessary for the process of follicular atresia (Matikainen
et al., 2001). Caspase 9 deficient mice were found to
contain numerous developing follicles that failed to com-
plete the process of atresia due to the failure of granulosa
cell apoptosis (Johnson and Bridgham, 2002).

Nodal

Nodal is a member of transforming growth factor § (TGF
) family whose members act through cell surface serine
/ threonine kinase receptor complexes. It was shown that
Nodal is a critical regulator of early vertebrate develop-
ment and involved in the induction of dorsal mesoderm,
anterior paterning, and formation of left-right asymmetry
(lannaccone et al., 1992; Brennan et al., 2002; Eimon
and Harland, 2002). Proapoptotic and growth inhibitory
effects of Nodal in ovarian granulosa cells have also
been reported (Wang et al., 2006). Like the other mem-
bers of the TGF B family, Nodal has type 1 (ALK 4 and
ALK 7) and type 2 receptors (Activin type 2 receptors
ActR2A and ActR2B) (Oktem and Oktay, 2008). Nodal
exerts its function by binding to and bringing together on
the cell surface type 1 and 2 receptors to form a ternary
ligand-receptor complex (Massague, 1998). Then, type 2
receptor phosphorylates type 1 receptor, which activates
Smads, the intracellular signalling members of TGF
family, by phosphorylation. Smads 2 and Smad 3 are the
ones that respond to Nodal. The phosphorylated Smads
are released from the receptors and form complexes with
common partner Smad and Smad 4 and translocate into
the nucleus to regulate the transcription of target genes
(Wang and Tsang, 2007). Nodal and its type 1 receptor
ALK 7, are expressed in a cell type specific and follicular
stage-dependent manner during folliculogenesis. Nodal
immunoreactivity is the strongest in the preantral follicles
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Figure 1. (1) Ligand binds to its receptor on the cell membrane, (2) intracellular death domain of the receptor binds to
death domain of adaptor protein, (3) procaspase 8 binds to adaptor protein and becomes activated procaspase 8 and
FADD together called death inducing signalling complex (DISC), (4 and 5) type | cells activated caspase 8 activates
caspase 3 which activates endogenous endonucleases andcauses apoptosis of the cell, (6 and 7) type Il cells
activated caspase 8 causes mitochondrial release of cyt ¢ which together with apoptosis activationg factor 1 (Apaf 1)
activates procaspase 9 (cytochrome c (cyt ¢) Apaf 1 and procaspase 9 together are called apoptosome), (8) activated
caspase 9 activates caspase 3 and leads to apoptosis, (9) cFLIP inhibits activation of caspase 8, (10 and 11) Akt,
which is inhibited by Nodal improves cFLIP effect, (12, 13 and 14) X linked inhibitor of apoptosis is protein (XIAP)
which is inhibited by Nodal and activated by FSH, inhibits caspase 3, (15) mitochondrial release of cyt c is inhibited by
Bcl2 and activated by Bax protein, and (16) Nodal inhibits Bcl2 and improves Bax protein effection mitochondrial
release of cyt c.

when compared with the later stages of development, in theca cells, but ALK 7 was only present in granulosa
whereas ALK 7 was mainly detected in the interstitial cells cells. During the development through the penultimate
at the preantral stage. Nodal was found to be expressed stage, the granulosa cells have the capability of under-



going apoptosis due to the presence of ALK 7, but fail to
do so due to low levels of its ligand (Wang et al., 2006).
When the gonadotropin support decreases the antral
follicle destined for atresia begins to express increased
levels of Nodal and also shows colocalization of both the
ligand and its receptor in the granulosa cells. This allows
us to accept that increased granulosa cell Nodal expres-
sion may be a physiological signal for induction of atresia
(Wang and Tsang, 2007). It was also shown in studies
that Nodal or ALK 7 activation downregulates the X linked
inhibitor of apoptosis protein (XIAP) which acts as a direct
inhibitor of caspases 3, 7, and 9 (Wang et al., 2006;
Asselin et al., 2001; Deveraux et al., 1998).

Overexpression of Nodal and ALK 7 activation can
significantly decrease the ratio of acitvated Akt protein
which is an important antiapoptotic factor in granulosa
cells (Wang et al., 2006; Asselin et al., 2001). Inactivation
of Akt increases the mitochondrial release of Smac-Omi
and cytochrome c, thus leading to activation of caspases
and eventually granulosa cell apoptosis (Wang and
Tsang, 2007).

Bcl-2 family proteins

Bcl 2 family proteins regulate apoptosis of granulosa
cells bidirectionally. Some act as promoters of apoptosis
like Bax, Bid, Bak, Bim, Mtd/Bok, Diva/Boo, etc., and
some act as inhibitors like Bcl-2, Bcl-X., Mcl-1 (Datta et
al., 1999; Kim and Tilly, 2004; Hsu and Hsueh, 2000).
One of the most studied members of the Bcl-2 family
proteins is Bax, which is proapoptotic as previously men-
tioned. Its role has been emphasized by many studies. It
has been shown that Bax deficient mice have abnormal
follicles with an excessive number of granulosa cells
(Perez et al., 1999). In humans and other species it was
found that the atretic follicles and the granulosa cells
going to apoptosis had increased levels of Bax expres-

sion at the mMRNA and protein levels (Kim and Tilly, 2004).

Moreover, Bax protein was abundantly expressed in
granulosa cells of early atretic follicles, while it was found
to be scarce in amount or undetectable in healthy follicles
(Kugu et al.,, 1998). It was also shown that apoptosis
could be induced by microinjection of recombinant Bax
protein in oocytes (Kim and Tilly, 2004).

Interaction between pro- and antiapoptotic members of
Bcl-2 family proteins in the mitochondrion determines
whether pathways of apoptosis will be activated or not
(Zinkel et al., 2006). The exact mechanism of apoptosis
inhibition is not well-known, but the antiapoptotic mem-
bers of Bcl-2 family are supposed to inhibit the mitochon-

drial release of some apoptotic moleculeslike cytochrome c.

Many studies have shown the importance of Bcl-2 in
follicular development and growth. The number of follicles
was shown to decrease in Bcl-2 deficient mice (Ratts et
al., 1995) and overexpression of Bcl-2 was correlated
with decreased follicular apoptosis and atresia, and
increased susceptibility for germ cell tumorigenesis (Hsu
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et al., 1996; Morita and Tilly, 1999).

Antiapoptotic regulators in the cell

The antiapoptotic members of Bcl-2 family was discussed
in the Bcl-2 family proteins.

cFLIP

Cellular FLICE-like inhibitory protein (cFLIP), also named
as CASH, Casper, CLARP, FLAME, I-FLICE, MRIT or
usurpin (Goltsev et al., 1997; Han et al., 1997; Hu et al.,
1997; Inohara et al., 1997; Irmler et al., 1997; Shu et al.,
1997; Srinivasula et al., 1997), is a homlog of procaspase
8 (FLICE) and is one of the intracellular proteins inter-
fering with the apoptotic effects of death ligands. It was
discovered in several viruses as viral FLIP (vFLIP) which
contains two DEDs that interact with FADD to avoid the
host’s apoptotic response (Thome et al., 1997). In mam-
malian cells, homologue of vFLIP was discovered and
named as cFLIP (Irmler et al., 1997). cFLIP was defined
to have two forms, short and long ones, cFLIPs and
cFLIP,, respectively. cFLIPs is similar to VFLIP in struc-
ture and has two DEDs, whereas cFLIP_ contains an
additional pseudoenzymatic domain which is similar to
the enzymatic domain of procaspase 8, but lacks enzy-
matic activity. Therefore, cFLIP_ blocks the death ligand
inducible apoptosis by competing with procaspase 8 and
interfering the activation of caspase 8 (Thome and
Tschopp, 2001).

The researches in this subject showed that granulosa
cells of healthy follicles had highly expressed cFLIP_
mRNA and proteins, whereas the atretic ones had
decreased levels (Goto et al., 2004). The mRNA levels of
CFLIPs in granulosa cells are low and showed no
changes among the stages of follicular development
(Matsuda-Minehata et al., 2005, 2006, 2007).

cFLIP acts as a survival promoting factor in granulosa
cells and not only inhibits Fas-signalling, but also can
inhibit TNF a and TRAIL signalling (Manabe et al., 2008;
Cheng et al., 2007; Manabe et al., 2003).

Phosphotidyl inositide-3 kinase and Akt pathway

The phosphotidyl inositide-3 kinase (Plz;K)/Akt pathway
has an important role in regulating granulosa cell apop-
tosis (Asselin et al., 2001). Activation of PIsK results in
activation of broad spectrum of downstream kinases one
of which is Akt (Matsuda-Minehata et al., 2006). Akt is a
serine/threonine phosphokinase and is an important
antiapoptotic factor. Bcl-2 associated death promoter
(Bad), caspase 9, and forkhead transcription factors
(FOXO) are some of the targets of Akt and they are
proapoptotic (Datta et al., 1999).

When growth factor receptors are stimulated by their
ligands, first activation of PI3K occurs, leading to activa-
tion of downstream kinases including Akt. Growth factor-
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activated Akt, phosphorylates and thereby regulates
proteins that function to maintain the basic needs of the
cell like transportation and oxidation of glucose (Cross et
al., 1995; Kohn et al., 1996), or attenuates apoptotic
pathways by its substrates Bad and procaspase 9.

Akt causes upregulation of the expression of cFLIP
which results in inhibition of apoptosis (Suhara et al.,
2001; Panka et al., 2001), and also suppresses the mito-
chondrial release of death proteins like Smac, Omi or
cytochrome ¢ (Wang and Tsang, 2007).

Growth factors

Insulin like growth factors (IGFs) play an important role in
follicular development and the granulosa cell apoptosis.
There are two forms of it, namely, IGF 1 and IGF 2.
Researches have shown us that mice lacking IGF 1 are
sterile and have arrested follicular development at the
preantral and early antral stages leading to ovulation
failure (Baker et al., 1996; Zhou et al., 1997).

IGF 1 was shown to activate PI;K/Akt pathway by phos-
phorylation in rat and bovine granulosa cells (Matsuda-
Minehata et al., 2006), and thereby prevented apoptosis.
Although, IGF 1 has an essential role in ovarian follicular
development in many species, and IGF 2 is more abun-
dant in humans (Geisthovel et al., 1989; Zhou and Bondy,
1993; Thierry van Dessel et al., 1996).

IGF is believed to play its role in follicular development
by stimulating proliferation, increasing responsiveness to
gonadotropins mainly FSH, and by the way increasing
estradiol secretion (Monniaux and Pisselet, 1992; Campbell
et al., 1995; Glister et al., 2001). It was also shown that
follicle-stimulating hormone (FSH) receptor expression
was reduced in preantral IGF 1 null follicles and mostly
restored to wild type levels after two weeks of exo-
geneous IGF 1 supplementation. FSH receptor expres-
sion and aromatase activity found to be decreased in IGF
deficient mice, and IGF 1 administration restored normal
FSH expression (Zhou et al., 1997).

Progression through the cell cycle is necessary for IGF
to prevent apoptosis (Quirck et al., 2004). IGF, basic
fibroblast growth factor (bFGF), and EGF were shown to
decrease Fas L induced apoptosis of cultured bovine
granulosa cells (Quirk et al., 2000), and this protective
effect of IGF 1 is mediated through the PIs;K/Akt pathway
(Hu et al., 2004). When the granulosa cells were treated
with PI3K inhibitor LY294002, the protective effect of IGF
1 against Fas L induced apoptosis was shown to be
blocked (Quirck et al., 2004).

IGF is found to be bound to IGF binding proteins
(IGFBP), which have six subgroups, in the body fluids.
Although, circulating IGFBPs prolong the half life of IGF,
they mostly inhibit its functions (Ui et al., 1989; Bicsak et
al., 1990; Adashi et al., 1992). IGFBPs were shown to be
expressed in the ovary (Adashi et al., 1985; Giudice,
1992). IGFBP 4 and IGFBP 5 are produced by rat granu-

losa cells and FSH treatment decreases their secretion
(Erickson et al., 1992a, b; Adashi et al., 1990). Dominant
and subordinate follicles differ in their IGFBP contents
(Monget et al., 1996). Their presence is controlled at the
level of synthesis (Armstrong et al., 1998) by the gonado-
tropins and by the presence of proteases which break-
down low molecular weight IGFBP in the healthy antral
follicles of cows (Rivera and Fortune, 2001, 2003a, b),
humans (Conover et al., 2001), and mice (Conover et al.,
2002).

Growth differentiation factor 9 (GDF 9) is another
growth factor found to be important in granulosa cell
apoptosis. It exerts its function by activating the IP3;K/Akt
pathway. It was observed that when the intracellular GDF
9 decreased by intraoocyte injection of its inhibitor GDF 9
antisense morpholino, caspase 3 activation increased,
leading to granulosa cell apoptosis (Craig et al., 2007).

EGF, TGFa, and bFGF, as well as their receptors, have
been found in the ovary (Hsu and Hammond, 1987;
Khan-Dawood, 1987; Kudlow et al., 1987) and shown to
inhibit spontaneous onset of apoptotic DNA cleavage in
cultured granulosa cells (Tilly et al.,, 1992a, b). EGF
suppression of granulosa cell apoptosis is mediated by
the stimulation of progesterone production and the regu-
lation of intracellular free calcium concentration (Luciano
et al., 1994).

Gonadotropins

Follicular development of primordial to secondary follicles
does not need gonadotropin support. FSH is required for
the follicular growth from the time of postantrum forma-
tion till ovulation (Craig et al., 2007). Decrease of circu-
lating gonadotropins by hypophysectomy or blockage of
LH/FSH surge were shown to cause massive atresia of
preovulatory follicles on the day of proestrus (Ingram,
1953; Braw and Tsafriri, 1980). FSH treatment of hypo-
physectomized immature rats, decreased granulosa cell
apoptosis in vivo (Billig et al., 1994). Prevention of apop-
totic cell death in early antral and preovulatory follicles by
FSH or hCG treatment was also shown in cultured folli-
cles (Chun et al., 1994; Eisenhauer et al., 1995a, b).

Gonadotropins can induce the expression of survival
molecules like Bcl-2, FLIP, and XIAP (Kim and Tilly,
2004; Hsu and Hsueh, 2000; Perez et al., 1999; Kugu et
al., 1998; Hsu et al., 1996; Craig et al., 2007; Krysko et
al., 2008). In mid- to late-follicular stages, FSH increases
XIAP expression and activates PI;K/Akt pathway, leading
to suppression of the release of mitochondrial death pro-
teins (Wang et al., 2003). In mid- to late-follicular stages
when the FSH levels decrease, colocalization of Nodal
and its receptor ALK 7 in granulosa cells takes place, and
triggering of the downsteram events including Smad 2
activation, Akt inhibition, and XIAP downregulation take
place (Wang and Tsang, 2007).

A preovulatory follicle undergoes the final stage of
maturation if it is stimulated by the luteinizing hormone



(LH) surge. Studies have shown that granulosa cells of
rodents and primates withdraw from the cell cycle after
the LH surge (Robker and Richards, 1998a, b; Chaffin et
al., 2001), and become resistant to apoptosis (Quirck et
al., 2004; Porter et al., 2000).

Progesterone receptor (PR) is a potential mediator of
the changes in granulosa cell proliferation and survival
induced by the LH surge. Before the LH surge, PR ex-
pression is very low in preovulatory follicles, but begins to
increase in the granulosa cells after the LH surge in cows
(Cassar et al.,, 2002; Jo et al., 2002), and in primates
(Chaffin et al., 1999). When PR antagonist RU 486 is
used, to test the antiapoptotic effect of PR, it was ob-
served that granulosa cells reentered the cell cycle, and
regained susceptibility for the Fas L induced apoptosis
(Quirck et al., 2004).

Gonadotropin withdrawal may also cause increased
p53 protein expression which is an antiproliferative trans-
cription factor that regulates the expression of several
genes involved in mitosis and apoptosis. Overexpression
of p53 results in granulosa cell apoptosis (Wang et al.,
2006; Kim et al., 1999; Hughes and Gorospe, 1991;
Wang et al., 2002; Mussche and D’Herde, 2001; Orisaka
et al., 2006; Zwain and Amato, 2001).

Estradiol

Estradiol is an important intraovarian growth, differentia-
tion, and survival factor (Rosenfeld et al., 2001). It stimu-
lates the proliferation of granulosa cells and prevents
apoptosis (Quirck et al., 2004). Treatment of immature
hypophysectomized rats with diethylstilbestrol (DES)
caused stimulation of development of large numbers of
healthy, multilayered preantral follicles (Richards, 1980).
Subsequent removal of DES resulted in apoptosis in the
granulosa cell layer of antral and preantral follicles. No
increase in DNA breakdown was detected in the primor-
dial or primary follicles (Billig et al., 1993).

Estradiol enhances the ability of FSH to induce expres-
sion of LH receptors by which follicular growth and
differentiation was shown to be promoted in cattle (Oktem
and Oktay, 2008). Estradiol was also shown to increase
IGF 1 in porcine granulosa cells (Hsu CJ, Hammond,
1987). But in the bovine granulosa cells, it was shown
that treatment with anti IGF receptor antibody which
effectively blocked the protective effect of IGF 1 against
apoptosis, did not prevent the protective effect of estra-
diol (Quirck et al., 2004). In the research, estradiol treat-
ment was found to be effective in preventing Fas L
induced apoptosis, and this protective effect occurs if
only progression through the cell cycle takes place.

Cell cycle progression is mediated by a family of cyclin
dependent kinases (cdk) which are activated by binding
with specific cyclin proteins. Estradiol also increases
expression of cyclin D2 in rat granulosa cells (Robker and
Richards, 1998a, b).
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Progesterone

Progesterone was shown to prevent apoptosis in imma-
ture rat granulosa cells, although these cells did not
contain nuclear progesterone receptor (PR) (McMurray et
al., 2000; Tibbetts et al., 1999). Researches have shown
us that PR is expressed by granulosa cells just prior to
the ovulation (Natraj and Richards, 1993; Park and Mayo,
1991). So, we can assume that it inhibits apoptosis of the
granulosa cells isolated during the periovulatory period
(Svensson et al., 2000).

Recent evidence demonstrate that progesterone con-
trols apoptosis by maintaining low basal intracellular
calcium ion levels via membrane initiated events (Peluso
et al., 2001a, b; Peluso, 2003). The exact mechanism of
how the progesterone maintains low intracellular calcium
ion levels in the granulosa cells is not known but cGMP
dependent protein kinase (protein kinase G) plays an
important role in other cells like the cardiac muscle cell,
smooth muscle cell or endothelial cells. Protein kinase G,
stimulates Ca*? influx by closing calcium channels and
blocks inositol triphospate (IPs) receptor mediated Ca*?
release from cellular stores in these cell types (Carvajal
et al., 2000). Prevention of apoptosis by protein kinase G
activators and attenuation of antiapoptotic action of
progesterone by protein kinase G antagonists are the
pharmacological evidence for us to assume that proges-
terone exerts its antiapoptotic effects via protein kinase G
pathway (Peluso, 2003; Hubbard and Greenwald, 1981;
Hubbard, 1980).

Calcium

Calcium is a signalling agent involved in cell growth and
differentiation. Transient intracellular Ca*? rise was shown
to induce apoptosis in quail granulosa explants (D’Herde
and Leybaert, 1997, 1998). Bcl-2 was demonstrated to
suppress apoptosis by a mechanism that is linked to
intracellular Ca™ to compartmantalization (McConkey,
1996). Abnormal Ca*? elevations cause fragmentation of
the DNA and other indicators of apoptosis due to the loss
of the balance between anti- and proapoptotic proteins
(Fissore et al., 2002; Gordo et al., 2002). DNA fragmen-
tation promotes cytochrome c release from the respira-
tory chain into the cytosol and caspase cascade becomes
activated (Kluck et al, 1997; Vander Heiden and
Thompson, 1999).

CONCLUSION

There are many researches ongoing to elucidate the
exact mechanism of granulosa cell apoptosis in vivo and
factors that cause it. Solving this problem is crucial for us
to prevent premature ovarian failure, and to increase the
success rates in in vitro fertilization trials. The mediators
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which are found to be increased in the atretic granulosa
cells, like Fas, Nodal, and activated procaspase 3 may be
targeted by the new researches; and the inhibiton of
these in the selected patient population of suffering poor
ovarian capacity may lead to more follicular development,
enabling us to obtain more oocytes in the in vitro fertili-
zation programmes. The antiapoptotic factors like XIAP,
Akt protein, IGF 1 and 2, and cFLIP can also be used for
prevention of apoptosis in the same patient group. On the
other hand, germ cell tumorigenesis which is increased
by Bcl-2 overexpression, can be inhibited by producing

inhibitors of Bcl-2, or recombinant proapoptotic molecules.
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