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Studies focusing on mortality data use a wide variation of strategies for data analyses, making 
comparison between studies difficult. The research problems focus upon different statistical analyses 
of mortality among patients and matched controls regarding clustered data and relations over different 
levels of age and follow-up time. Four hundred and twenty (420) treated female alcoholics were 
compared to 2,036 matched controls and public register data for a follow-up period of 27 years were 
used. The statistical analyses are multilevel, structural equation modeling (SEM) level-and-difference 
analyses, multilevel Cox regression analysis, interaction Cox models, time-dependent Cox survival 
models, proportional and non-proportional latent discrete-time survival models. The multilevel analyses 
confirm the success of the matching procedure. The interaction model adds more information to the 
main effect model and shows the mortality estimate to be dependent on age. Continuous time-
dependent Cox regression models and latent discrete-time survival analyses show the mortality 
estimates to differ with time and age. Different results depend on statistical models. This illustrates how 
mortality as a construct not only represents hard and unequivocal evidence given by the samples 
studied, but also includes factors related to the statistical model used. Such methodological factors 
need to be incorporated in the scientific discussion of mortality studies generally. 
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INTRODUCTION 
 
Mortality statistics are one of the most important methods 
of reporting the health of general populations and the se-
riousness of a disorder. In addition, mortality is widely 
used in medicine to report the efficacy and risks of treat-
ment procedures. The construct “mortality” seemingly 
represents hard evidence, making comparison between 
studies simple and unequivocal. Thus, a discussion of the 
applied outcome measurement may be seen as super-
fluous or unnecessary. However, methods of sampling and  

analyses vary and the comparison of results between 
studies may be problematic or even misleading. Some 
studies report frequency of death without including time 
to death in the analyses. Information about this is im-
portant to take into consideration in order to explain why 
a group difference is found or not (Singer and Willett, 
2003). Another topic is confounding variables, which 
more or less are taken into consideration in different stu-
dies. Regression models accounting for relevant variables, 
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both as main and interaction terms, may be used to 
control factors which themselves also may be related to 
mortality. A third factor is about sampling. Mortality risks 
are estimated in relation to a control sample. Control 
subjects may be randomly sampled from the general 
population (Gerdner and Berglund, 1997), or from a 
matched control population in order to control mortality 
related variables (Rosenbaum and Rubin, 1985).  

Matching increases the efficiency of the estimation of 
difference between cases and controls and creates 
equivalence in the samples regarding relevant covariates 
(Smith, 1997). Increasing the numbers of matched 
subjects increases the accuracy of population estimates, 
while confounding effects may be controlled by increa-
sing the number of matching variables. However, several 
matched controls for each study subject makes clustered 
data. In this study, up to five controls were matched for 
each study subject. Within cluster, women were almost 
identical, regarding age, civil status, socio-economic 
status and level of education and data may therefore be 
almost perfectly correlated within clusters on the matched 
variables and somewhat less perfectly correlated regar-
ding other related variables. Thus, observations are not 
independent and statistical tests not accounting for data 
clustering may give biased results (Norušis, 2005; Brown 
and Prescott, 2006; Breslow, 1996). Multilevel analysis is 
a method that gives unbiased estimates and tests the 
success of the matching procedure (Drukker et al., 2008). 

Matching variables may themselves be related to 
mortality (Rogers et al., 2010; Saarni et al., 2008). In 
addition to making cases and controls equal by matching, 
less unbiased estimates is achieved if such confounding 
matching variables also are included in the statistical mo-
del (Card et al., 2003; Jackson et al., 2007). For example, 
one study showed how a group difference changed from 
lower to higher mortality rates after accounting for age, 
race, gender, and major comorbidities (Yuan et al., 
2001). In the present study, group difference is analyzed 
with statistical control for age and educational level. How-
ever, assuming mortality difference between patients and 
controls to be equal over all levels of age represents an 
oversimplification for the statistical model, especially in 
samples with large variation in age. The interaction term 
between group and age should also be considered for the 
model. Interaction terms are often not considered for 
inclusion in regression models (Cohen et al., 2003; 
Pedhazur and Schmelkin, 1991), nor in Cox regression 
models. 

Mortality difference between two groups may vary 
during the follow-up interval, particularly if this interval is 
of long duration. Follow-up interval may vary between 
studies from months to decades, and comparisons over 
studies are difficult. To divide the number of deaths on 
the duration of follow-up time in order to compare findings 
from different studies may be a problematic procedure 
(Timko et al., 2006), as this strategy represents an 
average number of deaths for each unit of time and mask  
potential differences between groups regarding when deaths 

 
 
 
 
occur. For example, a treatment study may show the 
preventive effect to be stronger right after the inter-
vention than in the long run (Cuijpers et al., 2004). This 
will be reflected in varying mortality rates over time, a 
situation that represents a threat against the proportional 
hazard assumption (Norušis, 2005). Time-dependent 
interaction effects should be considered in order to 
explore this research problem (Willett et al., 1998). Also, 
time may be treated as a continuous variable or as 
discrete-time interval variables (Masyn, 2003).  

The present research problems focuses on statistical 
analyses of mortality among patients and matched 
controls regarding clustered data with several matched 
controls for each study subject, the effect of statistical 
models including the group mortality difference and 
predictor relations over different levels of age and follow-
up time. The data analyzed is from an alcohol study 
(Haver et al., 2009). However, the discussion of alcohol 
related mortality is not the substantial theme here, since 
this topic of methodology extends to mortality studies in 
general and to studies of long follow-up duration in 
particular.  
 
 
MATERIALS AND METHODS 
 
Participants 
 
The subjects were 420 women not previously treated for alcohol 
use disorders, who participated in the European Workplace and 
Alcohol (EWA) project at the Karolinska Hospital, Stockholm, 
Sweden (Haver et al., 2009). This sample consists of four sub 
groups (sequence strata); one pilot study sample from 1981 to 1982 
(N = 100), another randomized controlled trial (RCT) study sample 
with two groups receiving different treatments from 1983 to 1984 (N 
= 200), and a comorbidity study sample from 1991 to 1993 (N = 
120). In 2009, a matched general population control (MGPC) group 
was obtained from the Swedish Causes of Death Register (N = 
2036), with up to five matched controls for each study woman. The 
follow-up period was up to 27 years. 
 
 
Measures 

 
Variables used for analyses are group (addicted versus MGPC 
women), age and time since intake to treatment, mortality status, 
and education level. The education variable was ordinal with 3 
categories: primary school, high school and college/university. Two 
Helmert contrast variables were constructed, specifying the 
difference between the low level and the sum of the two other levels 
(Edu_H1 = 1, -.5, -.5) and the difference between the two last 
education categories (Edu_H2 = 0, 1, -1).  
 
 
Analyses  

 
Due to strata and clustering of data, bootstrapping with stratified re-
sampling was used to estimate confidence intervals (Timmerman et 
al., 2009; Barber and Thompson, 2000). Bootstrapping handles 
deviation from normal distribution well (Hair et al., 1998; Wehrens et 
al., 2000), and gives more precise estimates in samples smaller in 
size (Haukoos and Lewis, 2005). Clustered data may be analyzed 
with multilevel models, giving within and between cluster estimates 
(Brown and Prescott, 2006; Smith, 1997; Norušis, 2005). Such models 



 

 

 
 
 
 
may also control for measurement errors (Breslow, 1996). With 
relatively few cases within clusters, structural equation latent level-
and-difference modeling may be used as an alternative (Newsom, 
2002). Both statistical methods are used as an illustration of the 
analyses of within and between cluster levels and variations of age. 
In addition, the multilevel relationship between age and mortality is 
analyzed. Since the total sample consisted of four strata, potential 
strata effects are accounted for (Muthén and Satorra 1995, 
Stapleton 2006).  

Cox regression is used to analyze survival models with con-
tinuous and categorical predictor variables (Bradburn et al., 2003). 
Age is analyzed as a continuous variable, since categorizing a 
continuous variable may give biased estimates and is encumbered 
with reduced statistical power (Royston et al., 2006; Cohen et al., 
2003). Interaction models often introduce multicolinearity problems 
and resulting in instability in estimates. Different solutions exist; 
centering and incremental significance testing (Hair et al., 1998), or 
the use of the residualized interaction term (Delacroix and Ragin, 
1978). Centering changes the interpretation of the main effects and 
has implications regarding what level of the main effect that is tested 
for statistical significance (Hair et al., 1998, Cohen et al., 2003). In the 
present study, the age variable is centered. Visualization may be a good 
way to present survival differences between cases and controls at low 
and high levels of age. These age levels are arbitrary set and entered 
into the Cox regression equation to give predicted scores for women 
being 30 and 50 years, illustrating survival at those age levels. 

Allowing for group differences in mortality rates over time is done 
by entering variables as time dependent covariates in Cox regres-
sion. This procedure frees up and tests the proportional hazard 
assumption in ordinary Cox regression (Norušis, 2005; Chen et al., 
2010). This is not very often verified in research (Bellera et al., 
2010). Based on these results, time-restricted Cox proportional mo-
dels may be chosen. Covariates may be static or time-varying and 
may have different magnitude in their predictive associations with 
mortality over time. If time is divided into several restricted interval 
variables and discrete-time survival models analyzed, predictors 
may be directly related to mortality in separate time intervals 
(Muthén and Masyn, 2005; Abbott, 1985).  

Proportional hazard models may still be estimated as latent 
discrete-time survival analyses (Muthén and Muthén, 2007) and 
used as an approximation to the Cox regression model as long as 
the categorization of the time variable is sufficiently detailed 
(Asparouhov et al., 2006). Equal hazards over the entire range of 
time intervals is then specified with all factor loadings between the latent 
variable and the mortality status in each time interval specified as 
one (Muthén and Muthén, 2007) . Here, we used two set of models 
consisting of two- and four year intervals. Using a four year interval 
will increase the prediction power due to more deaths within each 
interval, while a more restricted interval is more suitable when 
shorter time-dependent associations is in focus. The proportional 
restriction may be freed up in order to analyze different predictive 
relations in each interval. This is done by removing the latent part of 
the model and different time intervals are allowed to be predicted by 
separate logistic regressions (Muthén and Masyn, 2005).  

Another test of a non-proportional hazard model could be done 
by adding predictors over and beyond the latent factor. We have 
not seen this last procedure used in the literature, but adding 
parameters to a basis model is used as a strategy in other structural 
models (Muthén and Curran, 1997). Dependent on the sample size 
(Kline, 2010), combinations of survival models and other structural 
equation models may address very flexible research problems (Muthén 
and Muthén, 2007; Bollen, 1989; Bollen and Curran, 2006; Duncan et 
al., 2006; Masyn, 2008). Model fit is evaluated with the measures-
LogLikelihood, Akaike information criterion (AIC), and the Bayesian 
information criterion (BIC) (Kline, 2010). 
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Statistical Package for Social Sciences (SPSS) 18 was used for 
multilevel analyses (linear mixed model) and Cox survival analyses. 
Mplus 5.2 was used for multilevel analyses, level and difference 
models, multilevel Cox regression and discrete-time survival 
analyses (Muthén and Muthén 2007, Muthén and Masyn 2005). 
 
 
RESULTS 
 

The mean age is 42.63 (standard deviation (SD) = 9.81) 
for patients, for controls 42.54 (SD = 9.77). The parame-
tric 95% confidence intervals (CI) are: addicted women: 
41.69 to 43.57 and MGPC subjects: 42.11 to 42.96. The 
stratified 95% bootstrapping of the MGPC group on 
cluster within the four sequence strata shows a much 
smaller CI than the parametric CI: 42.53 to 42.55. Mor-
tality was 33.1% in the alcoholic group and 14.6% in the 
control group (p < 0.001; RR = 2.26, OR = 2.89). 
 
 
Matched data  
 
Multilevel analyses of age in the MGPC group showed 
the within cluster variation of age to be very small com-
pared to the between cluster variation (SPSS/Mplus: σ2

w 
= 0.09/0.07, p < 0.001); σ2

B = 95.05/94.84, p < .001; ICC 
= 0.999). The standard error of mean (SEM) level-and-
difference model confirms between cluster variations in 
age with equal estimates in an intercept model. A nested 
model with the age variable constrained to be equal for 
all within controls and patients shows a better fit than the 
unrestricted model (χ2 = 33.39, df = 24, p = 0.096, root 
mean square error of approximation (RMSEA) = 0.031, 
RMSEAclose fit = 0.91; ∆χ2 = 3.48, ∆df = 5, p = 0.63). This 
model with control for the statistical stratification effect 
was only marginally different (RMSEAclose fit = 0.92). Both 
Mplus and SPSS Cox regression analysis gives identical 
estimates of the relation between age and time to death 
(0.09, p < 0.001). Mplus multilevel Cox regression 
analysis show no such within cluster relation between 
age and mortality (0.08, p > 0.05).  
 
 
Group difference in mortality dependent on age: The 
interaction effect  
 
A Cox regression analysis shows the mortality risk 
among patients relative to controls to be 2.61. After 
accounting for the variable age, this estimate is 2.67 
(Exp(B), p < 0.001). When the interaction term with cen-
tered age variable is included, this group estimate is 3.31 
(p < 0.001), which indicate the group mortality difference 
at mean age level. The hazard ratio of the interaction 
term was 0.96 (p < 0.001). Figure 1 and Appendix 1 illus-
trates how the interaction effect influences the survival 
plot, with stronger mortality difference for younger than 
older patients. 
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Figure 1. Age adjusted survival plots for addicted women and matched controls (MGPC). The plots are 
based on one standard Cox regression without interaction terms between group and age and one 
interaction model within this effect included. The expected survival is illustrated for younger and older 
women, set to (a) 30 or (b) 50 years.  

 
 
 

Table 1. Survival analyses results for addicted women (ALC) and matched general population 
controls (MGPC) with age and group as time varying covariates. The variable age is centered. 
 

Variable b Exp(B) 95% CI (lower) 95% CI (upper) p 

Group (ALC - MGPC) 1.161 3.19 2.56 3.98 *** 
Age 0.065 1.07 1.04 1.09 *** 
Age × Time 0.002 1.00 1.00 1.00 * 
Age × Group × Time -0.002 1.00 1.00 1.00 *** 

 

*p < 0.05 **p < 0.01, ***p < 0.001, b = unstandardized regression weight. 
 
 
 

Analyzing group differences over a long follow-up 
time 
 
Inspection of the log minus log plots of patients and con-
trols as strata effects show parallel lines and confirm the 
assumption of proportional hazard. Further exploration of 
this assumption was done by entering the variables group 
and age (centered) as time dependent covariates. Table 1 
shows age and the interaction between age and group to be 
statistically significant. 

Since the coding for the patient group is one, the last 
time interaction effect in the table will even out the 
interaction effect of age and time. An increasing relative 
mortality risk for patients compared to controls is found 
among younger females over time, while relative mortality 
risk is decreasing among older women.  

Latent discrete-time survival models based on these 
two-year intervals show identical results compared to the 
SPSS Cox regression analysis (Group = 1.21, age = 
0.09, and Group × age = -0.04, all p-values < 0.001) 
(Model fit: LogLikelihood = -3150.41, akaike information 
criterion (AIC) = 6336.82,  Bayesian  information  criterion  

(BIC) = 6441.33). A multilevel latent discrete-time 
analysis, with the cluster variation in relationship between 
age and mortality accounted for, gives almost identical 
results. Another discrete-time survival model allows for 
direct group predictions of mortality within separate time 
intervals in addition to the already specified proportional 
hazard model accounted for by the latent factor. This 
shows the time interval 2 to 4 years to be statistically 
significantly predicted (b = 1.12, Exp(B) = 3.06, p < 0.05). 
This adds more evidence of non-proportionality in 
mortality between the groups over time. After accounting 
for educational level associations, the mortality ratio 
between cases and controls is found to be 3.65 (Exp(B)) 
for women at average age level and over all education 
levels. Education levels are found to be statistically sig-
nificant related to mortality (Mplus results: Group = 1.30, 
age = 0.10, Group × age = -0.04, Edu_H1 = 0.32, and 
Edu_H2 = 0.28, all p-values < 0.01; Model fit: 
LogLikelihood = -2545.12, AIC = 5130.24, BIC = 5243.12).  

In order to explore different mortality ratios in different 
time intervals, the latent variable is removed from the 
model. Table 2 shows no group differences for 3 intervals  
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Table 2. Prediction of mortality within discrete-time intervals (2 year). Predictors are 
group (addicted women versus matched general population control women - MGPC), 
age, and interaction between group and age. Fit statistics are given for full (M0) and 
restricted (M1) models with difference between these models. 
 

Variable 
Group  Age  G × A 

b OR  b OR  b OR 

Time interval               
0-2 1.36* 3.91  0 1  -   
2-4 2.01*** 7.45  0.04 1.05  -   
4-6 0.46 1.58  0.08** 1.08  -   
6-8 0.74* 2.1  0.09*** 1.09  -   
8-10 1.87*** 6.5  0.14*** 1.15  -0.08* 0.92 

10-12 0.85* 2.35  0.07** 1.07  -   
12-14 0.72 2.06  0.06** 1.06  -   
14-16 0.90* 2.46  0.11*** 1.12  -0.09* 0.92 
16-18 1.32*** 3.76  0.08*** 1.09  -   
18-20 1.17** 3.23  0.10*** 1.1  -   
20-22 1.03** 2.79  0.08*** 1.09  -   
22-24 0.62 1.86  0.10*** 1.11  -   
24-26 1.41*** 4.1  0.11*** 1.12  -   
26-28 1.35** 3.84  0.02 1.02  -   

LogLikelihood M0 -3126.64  M1 -3134.84  ∆M1M0 8.2 
AIC   6367.28    6359.68    -7.6 
BIC   6698.24    6477.98    -220.26 

 

*p < 0.05, **p < 0.01, ***p < 0.001. M0 = full model, M1 = restricted model without 
non-significant interaction effects, OR = odd ratio based on logistic regression, AIC: 
Akaike information criterion, BIC: Bayesian information criterion, b = unstandardized 
regression weight. 

 
 
 
intervals and relatively large variation in the other time-
dependent group estimates. Two interaction effects be-
tween group and age are found. The results from the four 
year interval model confirm the group mortality difference 
to be quite different in different periods (odds ratio: 1.82 
to 5.88). Educational level contrast variables were added 
to the analyses of four year intervals. The difference be-
tween patients and matched controls is now statistically 
significant in all intervals except the second (4 to 8 years) 
and the interval 12 to 16 years (mortality estimates: 5.54, 
1.00, 4.04, 1.00, 5.33, 3.09, and 4.64). The education 
level variables (Edu_H1 and H2) are statistically sig-
nificant, related to mortality in the intervals 4 to 8 
(Edu_H2 = 1.52) and in the interval 8 to 12 (Edu_H1 = 
1.90 and Edu_H2 = 1.76).  
 
 
DISCUSSION 
 
The mortality ratio between patients and controls is found 
to be 2.3/2.9. The estimate is 2.67 when time to death 
and age is included in the analyses. The interaction result 
between group and age shows the risk estimate to be 
3.31 at the average age level, while it is 3.65 when 
accounting for education levels. Higher  educational  level  

is associated with lower mortality risk. Thus, educational 
level is a factor to include when analyzing patient and 
control difference in mortality (Rogers et al., 2010; 
Thygesen et al., 2008; Saarni et al., 2008). Discrete two 
and four year intervals show varying mortality ratios 
between the groups, with estimates up to 7.45. These fin-
dings illustrate how mortality estimates depend on how 
time and event related variables are treated and 
analyzed. 
 
 
Clustered data 
 
The small within cluster variation of age does not contri-
bute statistically significantly regarding mortality. Finding 
equal results when accounting for the multilevel data 
structure are not obvious in all studies and such statistical 
models are well suited for checking how the matching 
procedure turned out. Significant within cluster variation 
in predictor levels and their relations with the outcome 
variable would indicate problems with this sampling 
procedure of matched controls. Multilevel analyses, 
controlling for cluster and stratification variations, give 
additional information about data (Muthén and Satorra, 
1995).  
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Interaction effects 
 
Mortality differences between patients and controls are 
found to be stronger for younger than older women. This 
finding illustrates the importance of considering the 
inclusion of interaction terms in time-to-event analyses 
and thereby account for important within group heteroge-
neity. A model including interaction effects may be 
misinterpreted, as the interpretation of main effects is 
changed in contrast to the model with main effects only. 
In interaction models, one main effect is tested when the 
other main effect is zero, while a model without 
interaction terms is testing one main effect over all levels 
in the other variable (Hair et al., 1998). Centering reduces 
the multicolinearity problem and makes the interpretation 
easier. In our case, the uncentered interaction model 
tested the group effect when age was zero, while in the 
centered interaction model the group difference was 
tested when age was at the average level. The last model 
is of course most relevant. However, the total model will 
in both cases give identical pictures, as main effects or 
lack of such effects only should be interpreted in relation 
to the interaction effect (Pedhazur and Schmelkin, 1991; 
Hair et al., 1998).  

In the present study, age is important to include both as 
a main effect and in the interaction term with group 
membership. We have elsewhere documented reduced 
mortality for addicted women who received a specialized 
treatment relative to mortality among women who re-
ceived “treatment as usual” (Gjestad et al., 2011). In that 
study, no effects were found without including interaction 
terms into the analyses. Then, a stronger mortality 
difference was found among younger than older women 
and early in the follow-up period than later on. This 
illustrates how an exclusive focus on the main effects not 
always gives the complete picture. 
 
 
Time-dependent relations in long term follow-up 
intervals 
 
Results from Cox regression analyses with time 
dependent covariates and discrete-time survival analyses 
show that the mortality difference between the groups is 
varying over time. These findings illustrate how non-
proportional hazard models may give other results than 
proportional hazard models. The non-proportional hazard 
discrete-time survival analyses based on two-year 
intervals reveal that patients in our study do not differ 
from controls regarding mortality in the two-year interval 
after treatment, which could imply the possibility of a time 
limited treatment effect (Cuijpers et al., 2004). In this way, 
to specify a latent discrete-time survival analysis gives 
the possibility of analyzing the effect of a set of predictors 
directly on mortality in all time-intervals, the  non-proportional 

 
 
 
 
hazard model, in addition to the predictive relationship 
through the latent factor, giving the proportional hazard 
part of the model. This method increases the flexibility in 
model specification. 
 
 
Conclusions 
 
This paper illustrates how results obtained from mortality 
data are affected by the statistical procedures used. 
Differences in follow-up time, the selection of control 
samples, and the handling of variables contribute inde-
pendently and together to reported mortality differences. 
Mortality estimates reported in epidemiological and 
clinical studies may be affected by factors that may be 
accounted for when groups are being made equal by 
matching variables (for example age, gender, and 
geographic location). However, other left out variables 
from the matching procedure may still contribute to some 
biases in the estimated risks. Applying different statistical 
models showed varying risk estimates, higher for the 
younger than for older women, and higher estimates 
early than later in the follow-up period. Thus, the overall 
estimate is only one way of reporting this group dif-
ference. Other studies have found mortality risks among 
women alcoholics to be about 6 (Dahlgren and Myrhed, 
1977), 5 (Lindberg and Ågren, 1988), 5 (Berglund, 1984), 
4 (Smith et al., 1994), and 3 (Schmidt and Popham, 
1980). These studies did not use matched controls or 
control for confounding factors, they were of very different 
follow-up duration, and different statistical models were 
used. Such differences between studies come in addition 
to differences related to the samples involved as explana-
tions for the findings and are relevant methodological 
aspects for other time-to-event analyses as well, for 
example treatment termination, relapse, drop-out, and 
hospital readmission. 
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APPENDIX 
 
Analysis syntax 
 
Appendix 1. Age adjusted survival plots for addicted women and matched controls (MGPC). The plots are based on one standard Cox 
regression without interaction terms between group and age and one interaction model within this effect included. The expected survival is 
illustrated for younger and older women, set to 30 or 50 years.  
 

A1: SPSS syntax: COX regression with interaction 
effects plotting survival for 30 and 50 years old 
subjects. Age is treated as a continuous variable. 
 
COXREG TIME 
 /STATUS=DEAD(1) 
 /PATTERN age(30) BY Group 
 /PATTERN age(50) BY Group 
 /CONTRAST (Group)=Indicator(1) 
 /METHOD=ENTER Age Group Age*Group 
 /PLOT SURVIVAL 
 /PRINT=CI(95) CORR BASELINE 
 /CRITERIA=PIN(.05) POUT(.10) ITERATE(20). 
 
A2: COX regression with time-dependent 
covariates 
 
TIME PROGRAM. 
COMPUTE T_COV = T_. 
COXREG TIME 
 /STATUS=DEAD(1) 
 /METHOD=ENTER AGEc Group AGEc*Group  
 /method=enter AGEc*T_COV Group*T_COV  
 /method= enter AGEc*Group*T_COV  
 /PRINT=CI(95) CORR 
 /CRITERIA=PIN(.05) POUT(.10) ITERATE(20). 
 

 A3: Mplus Multilevel Cox regression 
TITLE: Multilevel Cox regression 
DATA: FILE = alc_mgpc_survival.dat; 
VARIABLE:  
 NAMES = Case EWAnr Ewanr2 Sequence  
 Seq_2 Group Group8 Age G_x_A Age_L2  
 Age_L1 Dead Time ;  
 USEVARIABLES = Age_L1 Age_L2 Group  
 Dead Time EWAnr2 G_x_A ; 
  
 Cluster = EWAnr2 ; 
 Categorical = Group ; 
 within = Age_L1 ; 
 between = Age_L2 Group G_x_A ; 
 Survival = Time (ALL); 
 Timecensored = Dead (1 = NOT 0 = Right) ; 
ANALYSIS:  
 Type = twolevel ; 
 Basehazard = off ; 
MODEL:  
 %within%  
 Time on Age_L1 ; 
 %between%  
 Time on Age_L2 ; 
 Time on Group ; 
 Time on G_x_A ; 
Output: 
 Sampstat ;  
 cinterval ; 

 
A4: Mplus Time-discrete survival analysis 
TITLE: Latent time-discrete survival model 
DATA:   FILE = survival.dat ; 
VARIABLE:  
 NAMES =   Case EWAnr Ewanr2 Sequence Seq_2 Group Group8 Age G_x_A  
   Age_L2 Age_L1 Dead Time D1-D14 DB1-DB7 ; 
 USEVARIABLES =  D1-D14 Age ; 
 Categorical =   D1-D14 ; 
 Missing =   all (999) ;  
  
ANALYSIS:  
 Estimator = MLR ; 
  
MODEL:  
 f by D1-D14@1 ; 
 f on Age ; 
 f@0 ; 
 
Output: 
 Sampstat ;  
 cinterval ; 

The two-year intervals D1-D14 is coded 0 if subject is alive and 1 if a person dies 

in that actual period. After that point of time, intervals are coded missing data 

(999). D1-D14 is declared as categorical variables. The latent factor f with factor 

loadings pre-specified as 1 on all periods constitutes a proportional hazard time-

discrete model. In this case, the survival function is regressed on the variable age.  

 

The model may be expanded in order to include a multilevel time-discrete survival 

model including group, age and the interaction term group x age 

MODEL:  

    %within%  

    D1-D14 on Age_L1 ; 

    %between%  

    F by D1-D14@1 ; 

    F@0 ; 

    F on Age_L2 Group G_x_A ; 

    D1-D14 on Group ; 
 

 


