Full Length Research Paper
Abstract
The present work is focused on investigating the effect of rare earth ion on structural, magnetic and transport properties of (Cu0.5Zn0.5Fe2-x)SmxO4[x = 0.00, 0.05 and 0.10] ferrites which were prepared by solid state reaction technique at 1100°C for 3 h. The X-ray diffraction analysis revealed that rare earth free sample shows formulation of single phase cubic spinel structure with no extra peak whereas Sm substituted Cu-Zn ferrite samples show additional peaks that correspond to a secondary orthoferrite phase. Lattice parameter, bulk density, X-ray density and porosity of the studied samples are increased with Sm substituted ions. Lattice parameter of both series are slightly decrease with increase Sm content. The initial permeability decreases with increasing Sm ions in ferrite. Quality factor signifies the merit of the material from the application point of view. The dielectric constant was found to decrease continuously with increasing frequency and remain almost constant at higher frequency range. The dielectric behavior of the experimental ferrite samples can be explained on the basis of the mechanism of the dielectric polarization and conduction process. The saturation magnetization decreases with increasing rare earth Sm contents.
Key words: Solid state reaction technique, sintering temperature, quality factor, dielectric polarization.
Copyright © 2025 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0