International Journal of Physical Sciences Vol. 4 (11), pp. 672-675, November, 2009

Available online at http://www.academicjournals.org/ijps
ISSN 1992 - 1950 © 2009 Academic Journals

Full Length Research Paper

A characterization of H- strictly convex hypersurfaces

i i g0
in de Sitter space *i

Mehmet Erdogan* and Giilsen Yiimaz

Beykent University, Faculty of Science and Letters, Department of Mathematics and Computing, 34457 Sisli, istanbul,
Turkey.

Accepted 8 October, 2009

In this study, we introduce a H-strictly convex hypersurface in the 6-dimensional unitary de Sitter space
Sf and give a lower bound approximation for the Ricci curvature of such hypersurfaces under some

appropriate conditions.
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INTRODUCTION

Let L' be the 7-dimensional Lorentz-Minkowski space
endowed with the Lorentzian metric tensor & given by

6

gV W ) = z v.w, —

i=1

V,w,

and let S’ — L' be the 6-dimensional unitary de Sitter

space S/, that is

St={x e Ll : gdXx . ,X)=1}

As is well known, the de Sitter space Sf’ is the stan-dard

simply connected Lorentzian space form of positive
constant sectional curvature. A smooth immer-

sion,M — S’ < L' of an 5-dimensional connected

manifold, M, is said to be spacelike hypersurface if the
induced metric is a Riemannian metric on M which is
denoted by g.

In the last years, the study of spacelike hypersurfaces
in de Sitter space has been of substantial interest from
both physical and mathematical points of view. In this
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work, we obtain a result for a H-strictly convex space-like
hypersurface in de Sitter space to be spherical in terms of
a pinching condition for the Ricci curvature.

Let T.M* be the normal space to M at x. We denote

by V (resp. ﬁ) the covariant differentiation on M

(resp. Sf’). Then, for tangent vector fields X, Y and the

unit normal field £ on M, as is well known, the formulas
of Gauss and Weingarten are;
Ve

Y =V ,Y +0 (X ,Y), (1)

X

Ve . { = - A (X )0

Where; o is the second fundamental form of M and
satisfies o(X,Y)=0(Y,X) and A is the symmetric
linear transformation on each tangent space to M, which

is called the shape operator. Since M is a hypersurface
we may write

c (X ,Y )= h(X ,Y )¢ (3)

Then it can be seen that

h(X.,Y)=go(X.,Y),{)=g(A(X).Y). (4

The eigenvalues A, 4,,...,A; of the shape operator A



are called principal curvatures of M and an orthonormal
basis {el,ez,...,es} such that:

Ace = Ae, 1<i<5,

are called principal vectors on M. In this case,
A =h(e,e,), where i =1,2,...,5.

Furthermore, the mean curvature vector of the hyper-
surface M is defined by H=%trace€ and

K, = AAAA, A is called the Gaussian curvature of M.
The second fundamental form o is said to be semi-

definite at xe M if o(X,X)=0 or o(X,X)<0 for

all non-zero vectors X € T M , that is, his either positive

semidefinite or negative semidefinite. It is well known that
if Mis convex at xe M , then the h is semidefinite at the
point x. The second fundamental form o is said to be

definite at xe M if o(X,X)#0 for all non-zero
vectors X € T M , that is, h is either positive definite or

negative definite. In this case the hypersurface M is said
to be strictly convex at the point x . O is said to be non-
degenerate at x if h is non-degenerate at x. Taking the
mean curvature vector H to M instead of the unit normal

field { on M, an H —strictly convex submanifold, can

be define in a Riemannian space form (Chen, 1999;
Udriste, 1986).

Definition 1
A Riemannian submanifold is said to
be H — strictly convex submanifold if the shape operator

A, is positive definite at each point of the submanifold.

Denote by R the Riemannian curvature tensor of M.
Then the equation of Gauss is given by

RX.Y.ZW)=(e(X,W)g(Y.Z)—g(X,Z)g(Y.W))
+8(0(X,W),0Y.2)-g(0(X.2),0¥.W)) (5,

For vector fields X,Y,ZW tangent to M. For the
hypersurface M, denote by K () the sectional curvature

of a 2-plane secton 7 T M ,xe M and choose an

orthonormal basis {61,62,---,6'5} of T.M such that

e, = X , then we may define the Ricci curvature of T M
at x by

5
Ric(X)=)> K,,,. (6)

j=2
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where; KU. denotes the sectional curvature of the 2-plane

section spanned by e,e;. The scalar curvature 7 of the
hypersurface Mis defined by

T(M ) = > K 7)

1<i< j<5

RICCI CURVATURE OF A H-CONVEX

. 6
HYPERSURFACE iN S,

Now, following Chen (1999), a Riemannian invariant on
the hypersurface M of the 6-dimensional de Sitter space

Sf of constant sectional curvature 1 is introduced,
defined by

gs(x) = (L)inf Ric(X), x1 M. (8)

xXirm |x|=1

In this study, the following theorem for the hypersurface
M of the 6-dimensional de Sitter space Sf’ is proved.

Theorem 1

Let M be a hypersurface of the 6-dimensional de Sitter
space Sf , for any point x1 Sf we have: i) If g;(x)! 1,

then the shape operator at the mean curvature vector
satisfies

A, > g (x)- DILxT M 9)

iy Ifg(x)=1,then A,3 O atx.

Proof

Let {e,e,,...,e;} be an orthonormal basis of T .M .
Considering Equation 6, 7 and 8, we have

7(x) 210.6, (x) (10)

Then by following Chen (1999), the equation below is
obtain

H?(x)3 &t (x)- 1 (11)

Now, from Equation 10 and 11, H’(x)3 gs(x)- 1 is

obtain. This shows that only when ¢,(x)£ 1, H(x)=0
and in this case i) and ii) is clearly satisfied, so it may be
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assumed that H(x)# 0. Choose an orthonormal basis
{e,e,,...,e.} at x such that e, is in the direction of the
mean curvature vector H(x) and e¢,,e,,...,e; diagonalize

the shape operator A,,. Then we have

@, 0 0 0 0
0 a, 0 0 0
A, =10 0 a, 0 0 (12)
0 0 0 a, O
0 0 0 a,|

From the equation of Gauss, the equation below is
obtana@ ;a ; = K, - 1 (13)
and from Equation 13, the Equation below is obtain
a,(a,+ ...+ a;)= Ric(e, )+ 4 (14)

If ¢ =X in Equation 13, taking into account Equation
8, Equation 14 becomes

a(a,+ a,+ ..+ as)3 4(qs(x)- 1)+ a12 (15)

In similar way, the following equalities for any j,
j=L2,..,5, can be obtain

aj(a1+ a,+ ..+ as)® 4(g;(x)- D+ aj2 (16)
Which yields
Ay 3 +(gs(x)- 1)I (17)

Here, the equality case only occurs when one of the
vectors ¢ ,e,,...,es is in the null space, but for the

hypersurfaces this is impossible, so the inequality (17)
must be sharp, that is

A, > F(gs(x)- DI (18)

From the Theorem 1, the following can be obtained.

Corollary 1
Let M be a hypersurface of the 6-dimensional de Sitter

space 516 of constant sectional curvature 1, if the Ricci
curvature of M is positive, then M is a H-strictly convex
hypersurface immersed in 5'16 . All hypersurfaces in Sf
are bounded, that is, M is contained in a closed geodesic

ball of finite radius r . Without loss of generality, we take
such a geodesic ball as the closed ball B(a,r) with the
center a= (0,0,...,1). By simple trigonometry, it can be
deduce that the distance in L’ from the timelike direction
ato a point of the geodesic sphere S(a,r)= {B(a,r) is
t= 2sinh(r/2)-.

By the generalized extremum principle, the present
author obtained some upper bound estimations for the
Ricci curvatures of hypersurfaces in the sphere and the
hyperbolic manifold (Erdogan, 1996, 1998). However,
Being motivated by (Erdogan, 1996, 1998, 2009) Alias
(2000) proved the following:

Theorem 2

Let M be a complete hypersurface in 6-dimensional de
Sitter space Sf whose  sectional curvatures are
bounded away from —oo. If M is contained in the region

Q(a,p)z{xe Sf :g(a,x)S—sinh(p)<0} for the

timelike direction ae L’ and a positive real number P
and if ris assume to be less than p/2, then,

lim  inf
X11,M |X|=1,p1 M

Ric(X,X)£ . (19)

cosh?(r)

Now, obtaining a sharp result for the best possible
approximation of the Ricci curvature of a H-strictly convex

hypersurface immersed in Sf; According to the Corollary

1, for such an hypersurface, the left side of the inequality
(Equation 19) must be positive. On the other hand, to be
a H-strictly convex hypersurface, M must satisfy the
condition (Equation 18), that is,

A, > +(qgs;(x)- 1)I or

1 . }
> —inf ric - —.

A
" 5 5

Hence, M is definitely H-strictly convex if inf ric>4 .
Therefore, combining two conditions, the equation below
is obtain

4 <inf ric < Lz (20)
cosh”™(p)

Thus, considering that Coshz(p) >1, from Equation 20,



the following conclusion can be drawn.

Theorem 3

Let M be a H —strictly convex hypersurface in 6-

dimensional de Sitter space Sf such that all sectional

curvatures of M are bounded away from —co. If M is
contained in the region

Q(a,p)={xe Sf :g(a,x)s—sinh(p)<0} for the

timelike direction a€ L’ and a positive real number o
then for any point xe M, the best possible
approximation for the minimum Ricci curvature of M is 4
and Mis a round 5-sphere of radius cosh(p) .
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