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The removal of random noises in electrocardiogram (ECG) using adaptive noise canceller (called 
single-input adaptive noise canceller) without reference input is presented in this paper. Common 
approaches for noise cancellation require reference input that must be well-correlated with the noise 
part of the primary input. However, the reference input may be limited in availability and hence, results 
in degradation of performance. ECG signals can be treated as quasi-periodic signals relative to their 
additive random noises. This paves the way for the possibility of using single-input adaptive noise 
canceller for the removal of random noises in ECG under limited availability of reference input.  
Computer simulation results verified that commonly used adaptive noise canceller cannot perform well 
for a poorly correlated reference input. Also, the results indicated that the single-input adaptive noise 
canceller with delays in the primary input performs almost the same as the commonly used adaptive 
noise canceller under a well-correlated reference input. 
 
Key words: Adaptive noise canceller, electrocardiogram (ECG), mean-square error, reference input, single-
input adaptive noise canceller. 

 
 
INTRODUCTION 
 
Adaptive filters are capable of separating interference 
components from the signal of interest, even under the 
case when interference components are overlapped to 
the signal in frequency. Furthermore, adaptive filters can 
process signals in real time and hence, provide good 
tools for time-critical applications. In this paper, the 
removal of random noises in ECG with a single-input 
adaptive noise canceller (SIANC) is addressed. 

In the study of Widrow et al. (1975), they gave the 
basic principles and applications of adaptive filters. Lots 
of researches were carried out on the application of 
adaptive filters to the removal of artifacts for biomedical 
signals (Thakor and Zhu, 1991; Mehrkanoon et al., 2007; 
Kavitha et al., 2007; Sennels et al., 1997; Correa et al., 
2007; Wu et al., 2009; Slim and Raoof, 2010; Chang et 
al., 2010; Rahman et al., 2011). For example, Wu et al. 
(2009) proposed an unbiased and normalized adaptive 
noise reduction system for suppressing random noises  in  
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ECG signals. Slim et al. (2010) developed an adaptive 
structure with an ECG reference signal carried out by 
wavelet decomposition. Rahman et al. (2011) compared 
several sign based normalized adaptive filters for 
removing artifacts in ECG and gave a suggestion on 
wireless biotelemetry. Correa et al. (2007) used adaptive 
filters in cascade for artifact removal from 
electroencephalogram (EEG) signals. Suresh and 
Puttamadappa (2008) proposed a combination of 
adaptive noise canceller (ANC) and adaptive signal 
enhancer in a multilayer recurrent neural network to 
remove the electromyography (EMG)/ECG artifacts as 
well as to enhance the EEG signals. Additionally, many 
non-adaptive schemes, such as those based on empirical 
mode decomposition (Weng et al., 2006), ensemble 
empirical mode decomposition (Chang, 2006) and on the 
evaluation of higher-order statistics at different wavelet 
bands (Sharma et al., 2010) can also be used for the 
same applications. However, they cannot achieve results 
in real time and will not be involved in this paper. 

Commonly used ANCs basically require two inputs: 
primary input and reference input. For an ANC to be 
feasible, the reference input must be  correlated  with  the  
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Figure 1. General model of ANC with reference input. 

 
 
 
noise part of the primary input in order to cancel the noise 
therein. However, there are cases in which commonly 
used ANCs are limited in use. For example, if off-line 
processing of ECG recordings is required, the recordings 
themselves are the only data available for processing. 
Moreover, in the case when reference input cannot be 
well-correlated with the noise part of the primary input, 
ANC cannot perform well as the case with a well-
correlated reference input. In such cases, alternative 
approaches other than an ANC must be pursued. 

The aim of this paper is to provide a solution for the 
cases mentioned earlier. Random noises generally 
encountered in ECG recordings, include power-line 
interference, EMG noise and instrumentation noise. Due 
to the fact that ECG signals can be treated as quasi-
periodic signals relative to the additive random noises, 
SIANC can be a useful alternative for removing the ran-
dom noises under limited availability of reference input. 
Computer simulation results confirmed the assertion we 
made in this paper. 
 
 
METHODOLOGY 
 
Here, commonly used ANC is firstly introduced with an underscore 
of its possible issue on the availability of reference input and then, 
how and why the SIANC can be effective is described. 
 
 
ANC with reference input 
 
The commonly used ANC is as shown in Figure 1. Two inputs are 
required in this structure: the primary input and reference input, and 
the primary input is denoted the as: 

 

)()()( nvnsnx +=
                                                                  (1) 

 

where )(ns  is the signal and )(nv  is the noise. In our case, 

)(ns  is the clean ECG signal and )(nv  is the random noise. 

Consequently, the adaptive filter has the task to estimate the noise, 

that is, )(ˆ)( nvny = . Under this condition, the error signal 

becomes: 
 

)()(ˆ)()()()()( nsnvnvnsnynxne ≈−+=−=            (2) 

 
That is, the clean ECG signals to be estimated. 
 
 
Possible issue in ANC with reference input 
 
Equation 2 works only when the reference input is well-correlated 

with the noise part of the primary input, that is, )(nv . To achieve 

this goal, a lead need to be placed somewhere from which the 
correlation in between is maximum. This could be a problem, 
because to have such a reference input may not be an easy task. 
The reason why this may happen is at least twofold. First, the 
component picked up by the lead for the reference input may 
correlate in some extent to the signal besides the noise. Second, 
the path connecting the component picked up by the sensor to the 
reference input may cause distortion. As such, in reality, it could be 
difficult to have a reference input that is well-correlated with the 
noise part, while the signal part remains uncorrelated. This tells that 
the ANC may degrade its performance under limited availability of 
the reference input. Figure 2 depicts the ANC with limited 
availability on the reference input represented by a filter denoted by 

)(zL . Hence, the input to the adaptive filter may not be well-

correlated with the noise part of the primary input and hence, a 
good cancellation described by Equation 2 may not be possible. 

 
 
Single-input adaptive noise canceller (SIANC) 

 
For inputs comprising distinct components, an ANC can be 
configured as a SIANC with delays inserted in the path of reference 
input or in the path of primary input (Widrow et al., 1975). Figure 3 
shows the two configurations of SIANC. The block is denoted as 

D
z

−
, with D  being the number of delays in samples, making the 

random noises in )(nx  and )( Dnx −  uncorrelated while their 

signal components remained correlated. The adaptive filter in 
Figure 3a tries to estimate the periodic components  that  existed  in  
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Figure 2. ANC with limited availability on the reference input. 
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Figure 3. SIANC with delays inserted in the paths of (a) reference input and (b) primary 

input. 

 
 
 

)(nx , that is, )(ns , while that in Figure 3b tries to estimate 

)( Dnx − , that is, )( Dns − . Accordingly, the outputs from the 

adaptive filters will be the estimates of the clean ECG signals. 
Care must be taken in using the two configurations shown in 

Figure 3. M is denoted as the length of the adaptive filters. The 

relations between M and D should be DM <  for Figure 3a, while 

DM >  for Figure 3b. Otherwise, the adaptive filters may cancel 
both components in the primary input (Widrow et al., 1975). 
 
 
Learning algorithm 
 
Typical least mean square (LMS) algorithm is employed for 
updating the tap-weights of the adaptive filters. For example, in 
Figure 3a, the adaptive filter output is of the form: 

)()()(
1

0

kDnxnwny
M

k

k −−=∑
−

=

                                             (3) 

 
where M is the number of taps of the adaptive filter. The error signal  

 

)(ne  is: 

 

)()()( nynxne −=                                                                  (4) 

 
The tap-weights of the adaptive filter is updated according to the 
rule: 

 

1 , ,1 ,0      ),()()()1( −⋅⋅⋅=−−+=+ MkkDnxnenwnw kk µ      (5) 
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Figure 4. Seven ECG signals with ECG1: normal ECG and ECG2-ECG7: arrhythmia ECGs. 

 
 
 
where µ  is the step size controlling the speed of convergence. 

After completing the learning, the error signal becomes: 
 

)()(ˆ)()()()()( nvnsnvnsnynxne ≈−+=−=            (6) 

 
That is, the random noises should be removed. 

 
 
RESULTS 
 
Simulated normal and arrhythmia ECGs derived from an 
ECG simulator (type number BC Biomedical PS-2210 
Patient Simulator) with 60 s duration are used in this 
study. Figure 4 shows the seven ECGs with ECG1 being 
the normal one and from ECG2 to ECG7 being the six 
arrhythmia ones (Chang, 2010). 

The EMG noise has the model of a random variable 
with normal distribution. The maximum noise level is 

predetermined as an amplitude ratio with respect to pp
V

, 
the peak-to-peak voltage of the normal ECG. The 
maximum EMG noise level is then produced by scaling 
the random sequence with a predefined percentage and 

the multiplication to pp
V

 is a ratio of 1/8 (Chang, 2010). 
The clean ECGs shown in Figure 4 are obtained with a 
sampling rate of1,000 samples/s, which are then 
corrupted with a 50% EMG noise to produce the noisy 
ECGs. To have reference input with limited availability for 

the simulation of the ANC, the filter )(zL  as  indicated  in  

Figure 2 is chosen to be: 
 

)1()(
111 +−−

+⋅⋅⋅++=
N

N
zzzL                                    (7) 

 
where N is the length of the filter. The first-null bandwidth 

of the filter is Nf
s
/  Hz with 

s
f  being the sampling 

frequency of the signal. We define the mean-square error 
(MSE) between the clean ECG and the filtered ECG as 
follows: 
 

{ }∑
=

−=
m

n

nens
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2
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1
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and 
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nyDns
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2
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1
MSE  for SIANC with 

delays in the primary                                                   (10) 
 
where m is the number of samples within the segment 
where adaptive filters converged. Table 1 compares the 
MSE (in dB) achieved by two  configurations  of   SIANCs
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Table 1. Mean-square error (MSE) comparison for different ECG signals. 
 

ECG 

MSE (dB) 

ANC with reference 
well-correlated with 

the noise in the 
primary input 

ANC with reference 
distorted by a LPF 

with first-null 
bandwidth of 200 Hz 

ANC with reference 
distorted by a LPF with 
first-null bandwidth of 

100 Hz 

SIANC 

with delays in 
primary input 

SIANC with 
delays in 

reference input 

ECG1 -28.30 -21.30 -21.06 -28.37 -16.57 

ECG2 -27.81 -20.88 -21.09 -27.89 -15.42 

ECG3 -26.53 -21.21 -20.26 -28.72 -10.16 

ECG4 -28.05 -20.69 -21.06 -28.15 -14.23 

ECG5 -31.03 -21.38 -21.15 -27.86 -14.22 

ECG6 -26.83 -20.80 -20.35 -27.77 -9.60 

ECG7 -29.05 -20.16 -18.83 -27.55 -14.29 

 
 
 
Table 2. Mean-square error (MSE) comparison for different M’s. 
 

M 

MSE (dB) 

Reference well-correlated 
with the noise in the 

primary input 

Reference distorted by a 
LPF with first-null 

bandwidth at 200 Hz 

Reference distorted by a 
LPF with first-null 

bandwidth at 100 Hz 

SIANC with 
delays in 

primary input 

SIANC with 
delays in 

reference input 

20 -30.01 -22.08 -20.99 -22.60 -14.89 

30 -30.18 -22.18 -20.80 -28.25 -14.99 

40 -30.69 -22.35 -20.93 -28.19 -16.68 

50 -29.60 -22.45 -20.96 -28.11 -22.77 

60 -30.43 -22.08 -20.78 -28.53 -27.84 

70 -29.84 -22.05 -20.78 -28.28 -27.88 

80 -29.32 -21.75 -20.72 -28.37 -28.25 

 
 

 
with the ANC with well-correlated reference input and 
those with reference inputs distorted by the filter 
represented by Equation 7 with different Ns. One 

distorted reference input is produced by using 5=N , 

which is the output of the filter with first-null bandwidth of 

2005/000,1 = Hz. The other is produced by using 

10=N , which is the output of the filter with first-null 

bandwidth of 10010/000,1 = Hz. Other parameters 

chosen are: 40=M  and 01.0=µ  for the ANC; 

40=M  and 00005.0=µ  for SIANC. In addition, 

700=D  is chosen for the SIANC with delays in the 

reference input, and 20=D  is chosen for that with 

delays in the primary input. All of these parameters were 
obtained by trial and error. The results indicate that the 
SIANC with delays in the primary input performs quite the 
same as ANC with well-correlated reference input and 
equally well for all types of the ECGs. However, this is 
not the case for the SIANC with delays in the reference 
input. It is obviously seen that the performance of ANC is 
highly dependent on the availability of the reference 
input. The case using bandwidth of 100 Hz performs 
worse than that  using  200  Hz.  Table  2 extends  similar 

comparison for all structures using different Ms.  Again, it 
is seen that the SIANC with delays in the primary input, 
performs closely to ANC with well-correlated reference 
input provided that M is large enough. The results show 
that the SIANC with delays in the primary input achieves 
almost the same result for 30≥M . However, this is not 

the case for that with delays in the reference input. In this 

case, 60≥M  is required under the delay chosen. Note 

that for the SIANC with delays in the primary input, the 
case of 20=M  cannot perform well. This is because the 

value of M must be greater than D (Widrow et al., 1975). 
It is suggested that the one using SIANC with delays in 
the primary input performs better than that with delays in 
the reference input due to the fact that much shorter M is 
adequate for the former. 

Figure 5 compares the filtered results using the ANC 
under different availability of reference inputs with that 
using the SIANC. Only SIANC with delays in the primary 
input is performed in this comparison. Figure 5a shows 
the clean ECG and Figure 5b is the noisy one. Figure 5c 
shows that the filtered ECG using the ANC with well- 
correlated reference input achieved a very good result in.  
Figure 5d shows the output for the ANC with a poorly 
correlated    reference    input.   The   reference   input   is 
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Figure 5. Comparison of ECG signals for (a) clean ECG, (b) ECG corrupted with 50% EMG noise, (c) filtered 
ECG by using ANC with well-correlated reference input, (d) filtered ECG by using ANC with poorly correlated 
reference input, and (e) filtered ECG by using SIANC. 
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Figure 6. Power spectra for (a) an ECG with 50% EMG noise and (b) its corresponding 
filtered ECG. 

 
 
 

produced by using Equation 7 with 5=N . It is obvious 

that the ANC cannot perform well in this case. Figure 5e 
shows the filtered ECG by  using  the  SIANC.  It  is  seen 

that the SIANC performs almost the same as that of the 
ANC with well-correlated reference input. Figure 6 shows 
the  spectra   for  the  noisy  ECG  and  the  filtered  ECG. 
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Figure 7. The effect of D on the MSE performance with different M’s. 

 
 
 

Before processing, the difference of the power between 
low and high frequencies is about 14 dB as shown in 
Figure 6a. After processing, the difference increases to 
33 dB as shown in Figure 6b. Finally, to see the effect of 
D on the MSE performance, two different values of M, 

40=M and 50=M , are chosen for comparison. It can 

be seen from Figure 7 that the performance becomes 

worse whenever MD > . Here, a simulated ECG 
corrupted with 50% EMG noise is used. The step size 

chosen is 00005.0=µ . 
 
 

Conclusion 
 

The issue of using ANC with limited availability on the 
reference input is discussed and the use of SIANC is 
presented in this paper. Reference input not well-
correlated with the noise part of the primary input may 
degrade the performance of the ANC. ECG signals can 
be treated as quasi-periodic signals as compared to the 
randomness nature of high-frequency noise. By shifting 
the noisy ECG signal in time, the noise component can 
become uncorrelated while the signal component still 
remains correlated. Thus, SIANC can be an alternative to 
ANC when the reference input is not available. Computer 
simulation results confirmed the effectiveness of the 
SIANC. Future works are needed to investigate the effect 
of the lack of availability on the commonly used ANCs for 
bioelectric signals other than ECG. 
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