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Within the framework of perturbation theory and of dipole approximation, the angular distribution for 
third order processes can be expressed for any state of quantum numbers (n, l) of the hydrogen atom 
as θθθ 642 coscoscos dcba +++ ; whatever the polarisation state (linear or circular). The explicit 
expressions of the corresponding angular coefficients are given for ns and np initial states. It is shown 
for the particular case of linear polarization that, the isotropic term a occurs only for initial states with 
orbital quantum number l greater than zero, and contains exactly twenty one contributing terms for np 
states; in the case of circularly polarized light, the distribution follows a sin6θθθθ behaviour for ns states, 
while for np states, it is expressed as a combination of sin4θθθθ and sin6θθθθ. Using the implicit summation 
technique, nine radial transitions matrix elements are determined and a quantitative analysis of these 
coefficients is made for 1s, 2s, 3s, 2p and 3p initial states at various wavelengths, including the three 
photons ionization threshold; for linear polarization, the shapes are strongly dependent on both 
quantum numbers (n, l); while for circular polarization the shapes remain the same. Furthermore, the 
corresponding total cross sections obtained indirectly from these coefficients, are globally in 
agreement with that obtained directly from other methods. 
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INTRODUCTION 
 
It is well known that the study of the angular distribution 
of photoelectrons can provide information about 
quantities characterizing the bound and continuum states 
of the atoms. Odd order non resonant multiphoton 
ionization (or detachment) processes are of particular 
interest with the advent of powerful lasers. Experimental 
investigations for non resonant angular distributions of 
xenon (Fabre et al., 1981), sodium (Leuch and Smith, 
1982), caesium (Dodhy et al., 1985), and rubidium 
(Dodhy et al., 1986), atoms, have been done using an 
odd number of linearly polarized photons. All of them 
exhibit a nonzero distribution at right angle (between 
laser polarization and the direction of ejected 
photoelectron), whereas   theory   (Lambropoulos,  1972),  
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(Gontier et al., 1975) predicts zero distribution. It would 
be very exciting to study other excited states, so as to 
verify under what conditions, the isotropic terms is 
expected to occur; especially as, this nonzero isotropic 
term has also been observed in xenon (Giugni, 2000). 

In the particular case of non resonant three photons 
ionization of hydrogen atom, for which exact calculations 
are feasible, calculations emphasizing on other states 
than the ns ones were similar to those of Arnous et al. 
(1973), for two photons ionization since these works 
would be absent in the literature. So, to fill this gap, our 
aim here is: Firstly, we extend these previous calculations 
(Lambropoulos, 1972; Gontier et al., 1975) to initial state 
with a principal quantum number n = 1, 2 and 3 and an 
orbital quantum number l = 0, 1; using linearly as well as 
circularly polarized light, by expressing the angular 
distribution, independently of the azimuthal angle 
(Lambropoulos, 1972), in the universal from:  

θθθ 642 coscoscos dcba +++ ;  as  stated by Yang 



 
 
 
 
(1948) general theorem, a long time ago. 

Secondly, we determine nine radial transitions matrix 
elements for 1s, 2s, 3s 2p and 3p; at wavelengths 
comprising between the two and three photons ionization 
thresholds as well as three photon threshold ionization. 
However, the evaluation of the relevant transition matrix 
elements between complete sets of atomic states 
(discrete as well as continuum states) is crucial. But, the 
integration over the continuum poses some difficulty. 
Various methods (Morellec et al., 1982; Gao and Starace, 
1988) have been proposed to calculate these above 
radial transition matrix elements: Sturmian functions, 
variational, inhomogeneous differential equations, and 
recently, Radhakrishnam and Thayyullathhil (2004) have 
proposed an alternative closed form method. But in 
general, no one has given the contributions of the angular 
coefficients to the total cross sections. 

In this work, we use the implicit summation technique 
method, previously used by Zernik and Klopfenstein 
(1965), and generalized later by Gontier and Trahin 
(1971) to continue the work of Gontier et al. (1975), only 
limited to 1s, and 2s states. These calculations devoted 
to the excited states are very useful in astrophysics 
(Leckrone and Sugar, 1993). 
Furthermore, the corresponding general expressions of 
the total cross sections for any (n, l) initial states have 
already been given by Maquet (1977), for linear and 
circular light polarization; in contrast to the present 
numerical method, he evaluated the radial part with the 
help of the Coulomb Green’s function for ns, np and nd 
initial states. 

In this study, we recall briefly the expressions of the 
partial amplitudes transitions appearing in the angular 
distribution for linear and circular polarization and the 
implicit summation technique used to evaluate the radial 
part.  

We then proceed with derivation of: Firstly, the general 
analytical expressions of the angular distribution by 
averaging over the magnetic quantum number m the 
quadratic and the crossed partial amplitudes, for linearly 
as well for circularly polarized light. These expressions 
allow us to arrive at the exact explicit expressions of the 
angular coefficients (a, b, c, d, c’, d’), in the particular 
cases of ns and np initial states; secondly, the series 
solutions of the implicit summation technique and the 
corresponding expressions of the transition matrix 
elements, are given. So, these coefficients are 
numerically evaluated from a computer Mathcad 13 
program, and discussed at various wavelengths including 
threshold, for 1s, 2s, 3s, 2p, and 3p states. Finally, we 
conclude the study. 
 
 
ANGULAR DISTRIBUTION CALCULATIONS 
 
Within the framework of the perturbation theory and of the dipole 
approximation, the differential cross section for non resonant three 
photon ionization (or detachment) has the general form in atomic 
units: 
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Where α is the fine structure constant, 
9

0 102917.5 −×=a cm is 

the radius of the first Bohr orbit, I the field strength of the radiation, 
216

0 /10019.7 cmWI ×=  is the atomic unit field strength 

intensity, k is the momentum of the photoelectron ejected in the 
direction of the unit vector. The summation runs over the whole 
(discrete and continuum) spectrum of the unperturbed atomic 
Hamiltonian and the magnitude of k is given by conservation of 
energy: 
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Here � is the unit polarization vector of the incident radiation field, 
and Ei is the energy of the initial atomic bound state and � is the 
energy of the incoming photons. The atomic system is presumed to 
be initially in an arbitrary bound state (n, l, m) 
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The intermediate (virtual) states |si > are belonging to the complete 
set eigen states:  
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and the wave function of the photoelectron 
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is given as the partial wave expression: 
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is the coulomb phase shift and RkL is the radial wave function 
 
 
Angular part 
 
With a convenient choice of the coordinate system orientation 
different from that of  
(Lambropoulos, 1972), one shows that the dipole interaction 
operator assumes the form by Arnous et al. (1973): 
For linear polarization 
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and, for circular polarization 
 
(4π/3)1/2 
 
The angular distribution calculation is thus reduced to the 
evaluation of known integrals over a product of three spherical 
harmonics. Such integrals may be expressed in terms of Wigner 3 – 
j symbol ( Sobel’man, 1972), one easily gets: 
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l> = sup (l, �) 
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As a consequence of the selection rules � = l ± 1, the sum of 
Equation (1) can be split into four components, each of which 
corresponds to one of the accessible values for the final angular 
momentum L. Substituting the explicit expression of the 3 – j 
symbols, one finds : 
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Where the expressions of the partial amplitudes ML read ( Maquet, 
1977): 
 
For linear polarization: 
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and for circularly polarized light: 
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is the radial transition matrix element. 



 
 
 
 
Radial part 
 
We recall briefly the method of the implicit summation technique, by 
applying it to the case of third order processes. The radial 

contribution LT ,, 21 λλ  due to the transition from the bound initial 

state (n, l, m) to the continuum final state (L, M) via intermediate 
states of orbital quantum numbers �1 and �2, is given by (Gontier et 
al., 1975): 
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Where the function y (�1, �2, L) is obtained by solving a set of first 
order inhomogeneous differential equations derived from the 
Schrodinger equation: 
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Where yL is the (L+1)th derivative of the Laplace transform of the 

continuum radial function ; the quantities : ( )iq Eq +−= ωα 22
, 

where Ei is the energy of the initial state. A particular value of y (�2, 

L) is obtained at the value p = 2α . In the case of ns states one 
must derive: T123, T121 and T101; while for np states there are: T234, 
T232, T212, T210, T012 and T010. These contributing terms numerically 
evaluated, will allow us to arrive quantitatively at the angular 
coefficients given in linear and circular polarization. 
 
 
RESULTS AND DISCUSSION 
 
Analytical results 
 
Linear polarisation 
 
General formulas: We shall prove now that, although 
the � dependence for the different magnetic sublevels is 
quite intricate indeed, containing power of cos� as high 
as 2l + 6, the observed angular distribution will assume, 
for an unpolarized target, the simple form mentioned in 
the introductory part of this study, whatever the orbital 
quantum number, l. The angular distribution is now 
obtained by averaging over all magnetic sublevels 
assumed to be equally populated, then, Equation (2) 
yields: 
 

	 Ω+
=

Ω m

mlnln

d
d

Ild
d

I
,,

2
,

2

1
12

11 σσ
           (14) 

Faye et al.        1511 
 
 
 
Using the well known formulas (Cooper and Zare, 1969) 
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And establishing the summation formulas 
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Following to: 
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and summing term by term the corresponding explicit 
expressions of the angular coefficients, permits one to 
arrive at the general analytical results which are 
extremely lengthy and will not be shown here; the 
development of Equation (14) reads: 
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the distribution now has the form mentioned in the 
introductory part of this study. 
For total cross sections calculations (Maquet, 1977), all 
the crossed terms *

jiMM  (i ≠  j) vanish owing to the 

orthogonality of the spherical harmonics; and, only 
subsist the quadratic terms. The existence of the crossed 
terms containing the phase shifts shows that the 
differential cross section is a more sensitive tool than the 
total cross section for testing theories. Nevertheless the 
total cross section can be indirectly deduced from Eq. 
(20), by expressing cos2θ, cos4θ and cos6θ as a 
combination of Legendre polynomials of even order; one 
obtains: 
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Integrating this expression over the propagation direction 
of the ejected photo electron, allows one to get: 
 

A
I

ln π
σ

42
, =                         (22) 

 
With: 
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In order to have an insight of these general expressions, 
we consider the particular cases of ns and np initial 
states. 
 
Application to ns states: In this case, three channels 
are opened for the outgoing photoelectron: 
 
1. s →  p →  d →  kf 
2. s →  p →  d →  kp 
3. s →  p →  s →  kp 
 
One easily gets the explicit expressions of the angular 
coefficients by substituting, l = 0 in all the above 
equations; then Equation (20) yields: 
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Where the isotropic term, a rigorously vanishes (a=0), 
and: 
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We note that all the channels contribute to the weight of b 
and c coefficients while for d, only channel number 1 
contributes; they interfere between them in b, whereas in 
c, the interference between the channels 2 and 3 does 
not   occur.   Equation  (23)  is  different  from  that, found  

 
 
 
 
previously by Lambropoulos (1972), with the polarization 
vector lying in the (x, y) plane, implying a dependence of 
the distribution with φ (angle between the x-axis and a 
projection of the direction of the outgoing photoelectron), 
in addition to the θ angle. Unfortunately the 
corresponding explicit expressions of b, c and d 
coefficients are not yet given, to allow a comparison. With 
a zero isotropic term, this result is in full disagreement 
with the previous experimental ones (Fabre et al., 1981; 
Dodhy et al., 1986), showing a non zero isotropic term. 
As a test of our predictions from Equation (22), we 
deduce the corresponding total cross-section in 
conjunction with Equations (24), (25) and (26): 
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This is same as that obtained earlier, directly by Maquet 
(1977). 

The numerical values of the angular coefficients are 
displayed in the Tables 1(a), 2(a) and 3(a) for 1s, 2s, and 
3s initial states; the corresponding curves are shown in 
Figures 1, 2(a) and 3(a). Following the same process, we 
consider the particular case of np initial states. 
 
Application to np states: Occurrence of an isotropic 
term - In this case, six channels are allowed for the 
ejected photoelectron: 
 
1’. p →  d →  f →  kg 
2’. p →  d →  p →  kd 
3’. p →   d →  f →  kd 
4’. p →  d →  p →  ks 
5’. p →  s →  p →  kd 
6’. p →  s →  p →  ks 
 
Substituting l = 1 in all equations, it comes for Equation 
(20): 
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Table 1. (a) Non resonant three photon ionization contributing coefficients (cm2  w-2 sr-1); (b) the corresponding total cross-sections (cm6 w-2) of  

H(1s): b, c, d  and 2I
σ  for linearly polarized light; d’ and 2

'
I

σ
 for circularly polarized light. 

 
(A)  Angular coefficients 

� (nm) b c d d’ 
200 7.179 (-48) -2.335 (- 47) 1.904 (-47) 2.380 (-48) 
210 2.755 (-47) -9.381 (-47) 8.142 (-47) 1.018 (-47) 
220 2.006 (-47) -6.637 (-47) 5.494(-47) 6.869 (-48) 
229* 2.197 (-47) -6.558 (-47) 5.340 (-47) 6.675 (-48) 
230 2.264 (-47) -6.558 (-47) 5.344 (-47) 6.680 (-48) 
239* 9.221 (-47) -5.615 (-47) 5.439 (-47) 6.799 (-48) 
240 1.598 (-46) -4.984 (-47) 5.451 (-47) 6.814 (-48) 
244* 2.880 (-45) -1.877 (-46) 5.495 (-47) 6.868 (-48) 
248* 1.615 (-46) -1.039 (-46) 5.523 (-47) 6.904 (-48) 
250 1.870 (-46) -9.998 (-47) 5.529 (-47) 6.912 (-48) 
257* 6.515 (-47) -9.866 (-47) 5.492 (-47) 6.864 (-48) 
260 6.061 (-47) -9.968 (-47) 5.440 (-47) 6.801 (-48) 
264* 5.779 (-47) -1.014 (-46) 5.334 (-47) 6.667 (-48) 
270 5.665 (-47) -1.039 (-46) 5.077 (-47) 6.347 (-48) 

273.528 5.679 (-47) -1.051 (-46) 4.866 (-47) 6.082 (-48) 
 

(B) Total cross-sections 
� (nm) Kristenko (1976) 

2I
σ  

Gao (1988) 

2
'
I

σ  

(Radhakrishnan, 2004; Laplanche, 1976) Present work 

2I
σ  2

'
I

σ  2
'
I

σ  2I
σ  2

'
I

σ  

200 5.577 (-48) 1.326 (-47) 5.423(-48) 1.324(-47) 1.365(-47) 5.570 (-48) 1.367 (-47) 
210 2.582 (-47) 5.776 (-47) 2.539(-47) 5.772(-47) 5.771(-47) 2.580 (-47) 5.847 (-47) 
220 1.590 (-47) 3.945 (-47) 1.588(-47) 3.943(-47) 3.957(-47) 1.589 (-47) 3.946 (-47) 
229* ------------ -------------    2.308 (-47) 3.835 (-47) 
230 2.599 (-47) 3.840 (-47) 2.640(-47) 3.839(-47) 3.853(-47) 2.597 (-47) 3.838 (-47) 
239* -------------- ------------    3.427 (-46) 3.906 (-47) 
240 6.422 (-46) 3.917 (-47) 7.056(-46) 3.917(-47) 3.935(-47) 6.488 (-46) 3.914 (-47) 
244* ------------ ------------    1.169 (-44) 3.946 (-47) 
248* ------------- -------------    5.145 (-46) 3.966 (-47) 
250 3.034 (-46) 3.972 (-47) 2.948(-46) 3.972(-47) 3.998(-47) 3.032 (-46) 3.970 (-47) 
257* ----------- -------------    1.235 (-46) 3.943 (-47) 
260 1.011 (-46) 3.906 (-47) 1.002(-46) 3.906(-47) 3.947(-47) 1.010 (-46) 3.907 (-47) 
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264* -------------- --------------    8.304 (-47) 3.830 (-47) 
270 --------------- ------------- 6.705(-47) 3.641(-47)  6.732 (-47) 3.646 (-47) 

273.528 --------------- --------------    6.100 (-47) 3.494 (-47) 
 

*  Corresponds to the second harmonic generation wavelength provided from an ion laser system based on Beta Borate (BBO) crystal; � = 273.528 nm is the 
ionization threshold wavelength; the format A(n) means A∗10n. 
 
 

Table 2. The same as in Table 1 but (A) for H(2s); B) for H(2p): Effect of the quantum orbital number; � = 1094.112 nm,  is the ionization threshold 
wavelength; a tunable titanium: Sapphire/Dye laser can provide wavelengths between 810 to 1000 nm; and 1060 nm by a CO2 laser. 
 

(A) 2s initial state 

� (nm) b c d d’ 

Present work Maquet (1977) 

2I
σ  2

'
I

σ  2I
σ  2

'
I

σ  

810 9. 914 (-44) -3. 074 (-43) 2. 438 (-43) 3. 047 (-44) 8 .270 (-44) 1. 751 (-43) - - 
820 3 .260 (-40) -1 .118 (-39) 9 .904 (-40) 1. 238 (-40) 3 .341 (-40) 7 .112 (-40) - - 
830 3 .620 (-42) -1 .242 (-41) 1 .081 (-41) 1 .351 (-42) 3 .348 (-42) 7 .763 (-42) - - 
840 9 .480 (-43) -3 .233 (-42) 2 .770 (-42) 3 .462 (-43) 8 .184 (-43) 1 .989 (-42) - - 
860 1 .986 (42) -6 .940 (-42) 6 .292 (-42) 7 .865 (-43) 2 .170 (-42) 4 .518 (-42) - - 
870 2 .171 (-40) -7 .561 (-40) 6 .691 (-40) 8 .364 (-41) 2 .103 (-40) 4 .805 (-40) - - 
930 1 .891 (-43) -6 .477 (-43) 5 .558 (-43) 6 .947 (-44) 1 .617 (-43) 3 .991 (-43) - - 
940 7 .553 (-45) -2 .746 (-44) 2 .571 (-44) 3 .214 (-45) 8 .700 (-45) 1 .846 (-44) - - 
960 1 .061 (-41) -3 .685 (-41) 3 .211 (-45) 4 .013 (-42) 9 .442 (-42) 2 .306 (-41) - - 
970 5 .267 (-40) -1 .828 (-39) 1 .590 (-39) 1 .987 (-40) 4 .660 (-40) 1 .142 (-39) - - 

1 060 4 .783 (-42) -1 .700 (-41) 1 .511 (-41) 1 .889 (-42) 4 .451 (-42) 1 .085 (-41) - - 
1 094. 112 3 .532 (-42) -1 .301 (-41) 1 .198 (-41) 1 .497 (-42) 3 .603 (-42) 8 .601 (-42) 3.600 (-42) 8.600 (-42) 

 
(B) 2p initial state 

� (nm) a b c d c’ d’  2I
σ  2

'
I

σ  

810 2 .178 (-44) 6. 455 (-44) -1 .051 (-43) 5 .604 (-44) 2 .563 (-44) 5. 599 (-45) 3. 806 (-43) 2 .039 (-43) 
820 5 .334 (-36) -4.235 (-36) 2.121 (-35) 3.313 (-40) 7.757 (-37) -5.311 (-43) 1.026 (-34) 5.191 (-36) 
830 1.485 (-43) 3.818 (-43) -1.632 (-42) 1.987 (-42) 6.383 (-43) 2.428 (-43) 2.931 (-42) 5.673 (-42) 
840 2.946 (-44) 2.090 (-43) -5.486 (-43) 5.343 (-43) 1.760 (-43) 7.020 (-44) 8.260 (-43) 1.583 (-42) 
850 5.490 (-45) 5.839 (-44) -6.932 (-44) 2.565 (-44) 2.357 (-44) 7.660 (-45) 1.870 (-43) 2.020 (-43) 
860 5.706 (-43) 4.901 (-42) -4.897 (-42) 1.004 (-42) 3.524 (-43) 1.509 (-43) 1.719 (-41) 3.228 (-42) 
870 4.197 (-37) -4.568 (-37) 1.422 (-36) 3.670 (-39) 5.324 (-38) -4.259 (-40) 6.939 (-36) 3.534 (-37) 
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900 6.708 (-44) 4.313 (-43) -1.409 (-42) 1.514 (-42) 4.795 (-43) 1.808 (-43) 1.825 (-42) 4.253 (-42) 
960 5.944 (-42) 2.870 (-41) -4.188 (-42) -1.444 (-42) 2.250 (-42) 2.661 (-42) 1.818 (40) 2.807 (-41) 
970 3.819 (-36) -2.233 (-36) 1.672 (-35) -7.542 (-38) 5.933 (-37) 9.536 (-39) 8.052 (-35) 4.064 (-36) 
980 1.130 (-39) -1.461 (39) 2.272 (-39) 6.053 (-40) 2.029 (-40) -5.376 (-41) 1.487 (-38) 1.051 (-39) 
990 3.247 (-42) 7.727 (-42) -3.619 (-41) 4.491 (-41) 1.065 (-41) 5.395 (-43) 6.285 (-41) 7.446 (-41) 

1000 6.090 (-43) 5.825 (-42) -2.061 (-41) 2.235 (-41) 5.576 (-42) 7.603 (-43) 2.039 (-41) 4.174 (-41) 
1060 1.245 (-43) 2.417 (-42) -8.786 (-42) 1.011 (-41) 2.359 (-42) 1.720 (-43) 7.765 (-42) 1.680 (-41) 

1 094.112 4.961 (-44) 2.392 (-42) -8.791 (-42) 1.041 (-41) 2.254 (-42) -3.079 (-44) 7.242 (-42) 1.493 (-41) 
 
 
Table 3. The same as in Table 2, but (A) for H(3s); (B) for H(3p). �= 2461.752 nm is the ionization threshold wavelength; all the wavelengths can be obtained from a tunable  Nd:YAG laser. 
 

(A) 3s initial state 

� (nm) b c d d’ 
Present work Maquet (1977) 

2I
σ  2

'
I

σ  2I
σ  2

'
I

σ  

1850 1. 245 (-36) -4. 751 (-36) 4. 951 (-37) 6. 189 (-37) 2. 187 (-36) 3. 555 (-36) - - 
1875 1. 759 (-35) -5 .739 (-35) 4. 685 (-35) 5. 856 (-36) 1. 353 (-35) 3. 364 (-35) - - 
1900 3. 385 (-37) -1 .318 (-36) 1. 472 (-36) 1. 840 (-37) 7. 479 (-37) 1. 057 (-36) - - 
1925 9. 898 (-38) -3 .798 (-37) 3. 833 (-37) 4. 791 (-38) 1. 482 (-37) 2. 752 (-37) - - 
1975 7. 470 (-40) -2 .740 (-39) 4. 138 (-38) 5. 173 (-40) 3. 672 (-39) 2. 972 (-39) - - 
2050 8 .704 (--39) -3 .344 (-38) 3. 288 (-38) 4. 111 (-39) 1. 146 (-38) 2. 361 (-38) - - 
2075 2 .375 (-39) -8 .726 (-39) 8. 069 (-39)  1. 009 (-39) 2. 516 (-39) 5. 794 (-39) - - 
2100 3 .907 (-40)   -1 .158 (-39) 8. 643 (-40) 1 .080 (-40) 2. 769 (-40) 6. 206 (-40) - - 
2125 1 .704 (-40) -7.441 (-40) 1. 190 (-39) 1 .488 (-40) 9. 803 (-40) 8. 547 (-40) - - 
2200 1 .597 (-37) -6 .492 (-37) 6. 755 (-37) 8 .444 (-38) 2. 502 (-37) 4. 851 (-37) - - 
2225 2 .162 (-38) -8 .656 (-38) 8. 810 (-38) 1 .101 (-38) 3. 116 (-38) 6. 326 (-38) - - 
2420 3 .361 (-42) -3 .151 (-41) 1. 201 (-40) 1 .501 (-41) 1. 505 (40) 8. 625 (-41) - - 
2425 2 .107 (-41) -1 .515 (-40) 2 .928 (-40) 3 .660 (-41) 2 .330 (-40) 2. 102 (-40) - - 

2461.752 1 .100 (-39) -5 .051 (-39) 5 .798 (-39) 7 .248 (-40) 2 .322 (-39) 4. 164 (-39) 2.320 (-39) 4.170 (-39) 
 

(B) 3p initial state 

� (nm) a b c d c’ d’  2I
σ  2

'
I

σ  

1850 2 .161 (-33) -2.782 (-33) 7. 373 (-33) -6 .833 (-35) 2. 460 (-34) 8.829 (-36) 3 .391 (-32) 1. 699 (-33) 
1900 3 .682 (-33) -2 .225 (-33) 1.752 (-32) 6 .667 (-35) 6. 229 (-34) -8. 248 (-36) 8.110 (-32) 4.127 (-33) 
1925 3 .339 (-38) 6 .077 (-39) -2. 484 (-38) 3 .500 (-38) 2 .650 (-38) 2 .012 (-38) 4. 454 (-37) 2 .932 (-37) 
1975 9 .389 (-37) -3 .668 (-37) 5 .778 (-36) 7 .047 (-38) 2 .053 (-37) -8 .591 (-39) 2 .491 (-35) 1. 327 (-36) 
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2025 1 .993 (-37) -3 .355 (-37) 6 .230 (-37) -1 .167 (-37) 1 .692 (-38) 3 .160 (-38) 2 .455 (-36) 2 .960 (-37) 
2050 9 .298 (-40) 9 .310 (-40) -6 .206 (-39) 7 .249 (-39) 2 .830 (-39) 1 .472 (-39) 1 .300 (-38) 2.742 (-38) 
2075 9 .339 (-40) -1 .662 (-39) 5 .436 (-39) -2 .221 (-39) 5 .167 (-40) 8 .984 (-40) 1 .445 (-38) 8 .624 (-39) 
2150 1 .987 (-36) -1 .005 (-36) 1 .194 (-35) 3 .526 (-37) 4 .403 (-37) -4 .260 (-38) 5. 141 (-35) 2 .706 (-36) 
2175 1 .785 (-33) -1 .268 (-33) 8 .178 (-33) 4 .127 (-35) 2 .911 (-34) -5 .131 (-36) 3 .775 (-32) 1 .921 (-33) 
2250 6 .728 (-40) 1 .895 (-39) -1 .014 (-38) 1 .302 (-38) 3 .967 (-39) 1 .372 (-39) 1. 429 (-38) 3 .447 (-38) 
2300 2 .754 (-40) 1 .496 (-40) -9 .117 (-40) 1 .564 (-39) 1 .027 (-39) 7 .851 (-40) 4 .603 (-39) 1 .138 (-38) 
2325 2 .752 (-40) 8 .944 (-42) 1 .161 (-39) -1 .095 (-39) 4 .430 (-40) 7 .185 (-40) 4. 447 (-39) 7 .096 (-39) 
2350 3 .971 (-40) -4 .241 (-40) 4 .157 (-39) -2 .735 (-39) 1 .216 (-40) 6 .542 (-40) 8 .751 (-39) 4 .573 (-39) 

2461.752 1 .164 (-38) -3 .443 (-38) 3 .168 (-38) 8 .399 (-39) 1 .644 (-39) -8 .216 (-40) 9 .682 (-38) 6 .295 (-39) 
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In contrast with ns initial states, the distribution 
here, is marked by the occurrence of an isotropic 
term, a. As a consequence of the number of 
allowed channels, the number of terms increases 
to reach twenty-one terms for a, seventeen for b, 
fifteen for c, and four for d; obviously, the number 
of interference terms also increases; however, 
channels 5’ and 6’ do not contribute in d weight. 
These analytical expressions would be, to our 
knowledge the first to be reported, even if, that of 
the total cross sections do exist (Maquet 1977). 
As a test of our predictions, taking into account 
Equation (22), together with Equations (29) - (32), 
one finds for the total cross-section: 
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Figure 1. Normalized photoelectron angular distribution from 
non resonant three photons Ionization of hydrogen atom 
initially in its fundamental state: linear polarization :λ = 250 
nm (full line); λ = 273.528 nm (dotted line); circular 
polarization: λ = 250 nm (dashed line). 

 
 
 

 
 
Figure 2. Quantum orbital effect in normalized photoelectron angular distribution from 
non resonant three photons ionization of H initially in n = 2,state: linear polarization: a)for 
2s state, λ = 1094.112 nm ; b) for 2p state, λ = 810 nm (full line), λ = 820 nm (full triangle 
line), λ = 860 nm (chain line), λthreshold = 1094.112 nm (dotted line); circular polarization: λ 
= 860 nm (dashed line). 

 
 
 

 
 
Figure 3. The same as in fig 2, but for H in its n=3 state, and for linear polarization only: for 3s state: λ = 
1850 nm (full line), λ = 2420 nm (chain line), λ = 2461.752 nm (dotted line);  b) 3p state: λ = 1925 nm (full 
line), λ = 2025 nm (full triangle line), λ = 2250 nm (chain line), λ = 2350 nm (square line), λ = 2461.752 
nm (dotted line). 
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This is identical to that obtained by Maquet (1977). The 
numerical results are shown in the Tables 2(b) and 3(b), 
for 2p and 3p states, and some corresponding curves are 
displayed in Figures 2(b) and 3(b). 

We establish now for any initial state of quantum 
numbers n and l, the general expressions of the angular 
distribution in the case of circularly polarized light. 
 
 
Circularly polarized light 
 
General formulas: Taking into account Equations (15) - 
(18), and summing the term by the corresponding explicit 
expressions of the angular coefficients, permits one to 
arrive at the general analytical results which are 
extremely lengthy and will not be shown here; the 
development of Equation (14) yields a sine form as 
mentioned in the introductory part of this study: 
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Independent of the φ angle; here, � is the angle between 
the direction of light propagation and that of the emitted 
photoelectron. In order to have an insight into these 
general expressions, we consider the particular cases of 
ns, and np states. 
 
Application to ns initial states: In this case, one easily 
gets the expressions only by substituting l=0 in all the 
equations, then Equation (34) yields: 
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This form is a particular case of that established earlier 
by Klarsfeld and Maquet (1972), for N photon ionization. 
From the explicit expression of d, in Eq.(26), one obtains: 
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We note that, only the channel 1, appearing in the case 
of ns states, for linearly polarized light, is allowed, since 
for right-hand (left-hand) circularly polarized light, the 
channels 2 and 3 are forbidden by the selection rules: 

1±=∆m  
The numerical results for 1s, 2s and 3s states are 

shown in the Tables 1(a), 2(a) and 3(a), one 
corresponding curve is displayed in Figure 1. Even if 
most of the works (Gontier et al., 1986) have been done 
for ns initial states, it would seem of particular theoretical 
interest to treat the case where np initial states are 
considered, in comparison with the analytical results 
obtained for linearly polarized light treated in (Application 
to np states: Occurrence of an isotropic term). 
 
 
Application to np initial states 
 
Substituting l=1 in all the above equations, a’ and b’ 
rigorously vanish; so Equation (34) reads: 
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These expressions would to our knowledge, be the first to 
be reported. We note that like the d coefficient obtained 
for linearly polarized light, channels 4’ and 6’ are closed. 
As a consequence, great simplifications would occur in 
their interpretations. As a test of our predictions, taking 
into account Equation (22) in its equivalent form that is, 
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The corresponding total cross section reads: 
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This is exactly the same as that established earlier by 
Maquet (1977). 



 
 
 
 
Numerical values are shown in the Tables 2(b) and 3(b), 
for 2p and 3p states, and one corresponding curve 
displayed in Figure 2(b). 

In order to have reliable insights about the behaviour of 
the differential cross section, we make a quantitative 
analysis of the problem. Various wavelengths including 
the ionization threshold are considered. 
 
 
Numerical calculations 
 
Series solutions of Equations (12) and (13) 
 
As expressed in the radial part of the work, we give 
below, the explicit expressions of, ( )Ly ;2λ , Ly and 

( )Ly ;, 21 λλ  functions, of Equations (12) and (13), 
needed for the determination of the contributing radial 
matrix elements LT ,, 21 λλ . 

From the second member of Equation (12), the Laplace 
transform of the well known hydrogenic function kLR ( 
Zernik and Klopfenstein, 1965), reads: 
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We write: 
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One differentiates Equation (43) with respect to p to 
obtain: 
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Continued differentiation of Equation (43) leads to the 
general relation: 
 
( ) ( ) ( )[ ] ( ) ( ) ( )1122 12112 −+ ++−++−=+ n

L
n

L
n

L GnLnGpnLGkp    (46) 
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( )n
LG  is the n-th derivative of GL. 

 
An arbitrary point p0 in the real plan is considered, the 
real variable x is defined as: 
 

0ppx −= ; 
 
and the Taylor series for: 
 

( ) 	=
n

n
n xaLy ,2λ                                                   (47) 

 
( ) 	=

n

n
nL xbkpF ,,2λ                                                 (48) 

 
And 
 

( ) 	=
n

n
n xcLy ,, 21 λλ                                              (49) 

 
Determination of the bn coefficients: From the 
selection rules we distinguish two cases from Equation 
(44) 
 
.) 12 += λL  ; and ..) 12 −= λL  
 
When .) is considered, one obtains the Taylor 
development of LF ,2λ  around )( 210 αα andp =  

 

( ) ( ) ( )
( ) ( ) n

n

n
L

LLLL x
n

pG
AGkAkpF ⋅=⋅= 	

+

!
, 0

1
1

,2λ     (50) 

 
In comparison with Equation (48), this gives: 
 

( ) ( )
!

0
1

n
pG

Ab
n

L
Ln

+

⋅=                                                 (51) 

 
Taking into account Equation (46), the recurrence 
relations between 1+nb , nb  and 1−nb , yields: 
 

( )[ ]
�
�
�

�


� ++−

+
++−

+
= −+ 1

0
22

0
1

22
1

2121
n

n
n b

n
nL

n
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b         (52) 

 
Where: ( ) ( ) ( )0

1
0 pGkAb LL ⋅=  and ( ) ( )0

2
1 pGAb LL ⋅=  

 
When case ..) is considered, then: 
 

( ) ( )
( ) ( )

	
+

=⋅=
n

n
n

L
LLLL x

n
pG

AGAkpF
!

; 0
3

3
,2λ

         (53) 

 
And 
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( ) ( )
!

0
3

n
pG

Ab
n

L
Ln

+

=                                                (54) 

 
Where: ( ) ( ) ( )0

3
0 pGkAb LL ⋅=  and ( ) ( )0

4
1 pGAb LL ⋅=  

 
The recursive relations read now: 
 

( )[ ] ( )( )
( ) �

�
�
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�
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+++−

+
++−

+
= −+ 1

0
22

0
1 1

423
1
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n
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nn
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n
bpnL

kp
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Determination of the cn coefficients: We consider the 
point 10 α=p in the real plan, and we define a 

variable 1α−= px ; by substituting Equations (47) and 
(49) into Equation (13), and taking into account the case 
when: 
 
�1 = �2+1; 
 
one obtains: 
 

({ ( )[ ] ( ) }
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n
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c nn
n                      (56’) 

 
And 
 

( ) 11 11

1
0 −+

−=
αλ

a
c  

 
While for ii): �2 = �1-1; 
 
One obtains: 
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This yields: 
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and 
 

( ) 11
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3
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Determination of the an coefficients: Substituting 
Equations (47) and (48) into Equation (12), leads to: 
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Hence, when p0=α2: 
 

( ) 11 22

0
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b
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0≥n  

 
While when 10 α=p , one obtains: 
 

( ) ( )	 −==
n

n
naLya 2120 ,

1
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Where the an are given by Equation (60); 
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 and 
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1≥n  

 
The coefficients of the Taylor series are hence 
recursively determined and we can now calculate the 
general expressions of LT ,, 21 λλ  given by Equation (11). 

 
General expressions of LT ,, 21 λλ  

 
From Equation (11), two cases occur: i) �1=l+1 and ii) 
�1=l-1; 
 
Thus, if i) is considered: 
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=

−=��
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While for ii), one obtains: 
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These expressions, in conjunction with the well known 
development of the confluent hypergeometric function: 
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+
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1
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permits us to arrive at the general form of LT ,, 21 λλ  for the 

different initial states that is: 1s, 2s, 3s, 2p and 3p. 
 
Fundamental state: n=1; l=0; �1=1; x=1-α1 
 

	
=

−=
1

1
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2
n

n
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2s metastable state: n=2; l=0; �1=1; 12
1 α−=x  
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3s initial state: n=3; l=0; �1=1; 13
1 α−=x  
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    (69) 

 
T123, T121 and T101, needed for the angular coefficients 
calculations (Application to ns states) for these states, 
have the same above forms. 
 

2p initial state: n=2; l=1; �1=0 or �1=2; 12
1 α−=x  

 

( )( )	
=

−−−=
3

3
,,0 21

62
1

2
n

n
nL xcnnnT λ                      (70) 

 

	
=

−−=
1

1
,,2

62
1

2
n

n
nL xncT λ                                       (71) 

 

3p initial state: n=3, l=1, �1=0 or �1=2; 13
1 α−=x  
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T012 and T010 needed for the angular coefficients 
calculations (Application to np states: Occurrence of an 
isotropic term), have the same forms than Equations (70) 
and (72); while T234, T232 and T210 have the same forms 
than Equations (71) and (73). 

We can now discuss these results. 
 
 
Linear polarization 
 
Fundamental state: Table 1 displays the numerical 
values of the angular coefficients b, c and d (cm6.W-2.sr-1) 
in a), and the corresponding total cross sections 

2
,

I
lnσ

(cm6.W-2), in b) for a wide range of wavelengths 

including second harmonic generation provided from an 
ion laser system based on Beta Barium Borate crystal. 
Since the c coefficient is always negative, it would mean 
that, from its explicit expression of Equation (25), the 
interference terms between channels 1 – 2 and between 
1 – 3 are either constructive or destructive; in this last 
case, the quadratic term will always be more weighted. 

It is noted in Figure 1, that maximum distribution is 
obtained for λ = 250 nm (full line) in the laser polarization 
direction, while for λthreshold = 273.528 nm (dotted line), it 
is located at � = 54° (125°). Figure 1 also predicts zero 
distribution at � = 90°, in agreement with that obtained by 
Potvliege and Shakeshaft (1988), who used non 
perturbative calculations; but, in disagreement with that 
observed from Cesium atom by Dodhy et al. (1985), 
which showed a departure from zero; Lambropoulos and 
Tang (1986) attributed that feature to spin-orbit coupling 
in the continuum; Furthermore, our calculated total cross 
sections in Table 1b) agree globally well with previous 
calculations using Sturmian expansion (Maquet, 1977; 
Kristenko and Vetchinkin, 1976; Laplanche et al., 1976) 
or variational method (Gao and Starace, 1988). 
 
2s and 2p states: Table 2a) reveals again for 2s, a 
negative sign for c, while in b) for 2p, b, c and d are either 
positive or negative. These signs depend on how the 
contributing terms of their explicit expressions found in 
Application to np states: Occurrence of an isotropic term, 
compete between them; the same remark holds for the 
weight of the isotropic term, a which can take either a 
relatively high value as in Figure 2b) for λ = 810 nm (full 
line), or a nearly zero value for λthreshold = 1094.112 nm 
(dotted line). Based on the above, the fifteen interference 
terms of Equation (38) between channels 1’ and 2’ are 
strongly destructive and nearly swept the other 
constructive terms, yielding a very small value for a. We 
note  also  that  the  shapes  are  very  sensitive  to  small  
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wavelengths change as shown in Figures 2b) for λ = 810 
nm (full line), 820 nm (full triangle line) and 860 nm (chain 
line). In addition to these contrasts, the chain line curve 
(λ = 860 nm), shows a shallow minimum value around � 
= 0° (180°) where only channel 2’ occurs in the final 
state. Another feature to be noted is that, the triangle line 
curve (λ = 820 nm) follows: θθ 42 coscos cba ++  
behaviour, recalling the second order processes. A 
similar shape as in Figure 2a) λ = 1094.112 nm, has 
been obtained from Lithium atom by Chen and 
Robicheaux (1996), who used an R-matrix Floquet 
calculations. 

For total cross-sections and at threshold, our results in 
Table 2a), agree well for 2s state with that of Maquet 
(1977). Apart this wavelength, there would be no 
available calculated data as for Table 1b), although most 
mentioned wavelengths can be provided from tunable 
Titanium: Sapphire/Dye laser (810 to 1000 nm) and CO2 
laser (1060 nm) to permit further comparisons with 
experimental data. 
 
3s and 3p initial states: All the wavelengths mentioned 
in Table 3 can be obtained from a tunable Nd : Yag laser. 
Same remarks above made about the signs and weights 
of the different coefficients in Table 2, apply here; as a 
consequence, all the displayed curves in Figure 3 are 
much contrasted, even if the distributions are always 
peaked in the laser polarization direction. However the 
square line curve (λ = 2350 nm) in Figure 3b), reveals an 
interesting feature, the maximum is nearly constant 
between � = 0° and 30°; the same behaviour is observed 
for the minimum around � = 90°. One can also see that in 
the Figure 3a), the dotted line curve (λthreshold = 2461.752 
nm) shows a same shape as Figure 2a). A similar shape 
as for λ = 2025 nm (full triangle line), has been previously 
observed from photo detachment of Iodine ion (Blondel et 
al., 1990). In the Figure 3b), the dotted line (λ = 2461.752 
nm) curve displays three maxima 0° (180°) 90° and two 
minima at 43° (129°). For 3s total cross-sections (Table 
3a), our results agree well at threshold with that of 
Maquet (1977). Unfortunately, for these angular 
coefficients, there would not yet exist calculated data 
obtained from other methods; and that prevents us from 
testing the reliability of our results for 2p (3.2.1.2) and 3p 
states. Let us now study the case of circularly 
polarization. 
 
 
Circular polarization 
 
Whatever the Tables 1a), 2a) or 3a), for ns states, only 
one coefficient occurs: d’; the corresponding total cross-

sections 2
,

I
snσ ′

(Table 1b) agree well with that obtained 

from other methods (Maquet, 1977; Kristenko and 
Vetchinkin,   1976;   Laplanche   et   al.,  1976;  Gao   and  

 
 
 
 
Starace, 1988). In Figure 1, for λ = 250 nm (dashed line), 
the distribution is peaked at � = 90° (angle between the 
light propagation direction and that of the ejected 
photoelectron) and it follows a d’sin6

�, behaviour. 
In contrast, Tables 2b) and 3b), show for np states two 
coefficients c’and d’; but in this case, the last one can 
take either a positive or negative value; this would mean 
that, the destructive interference terms appearing in 
Equation (39) always cancels the quadratic term. 

Furthermore, except for a few wavelengths, c’ is always 
much stronger than d’; that would be due to the 
occurrence in Equation (38), of the quadratic terms 
corresponding to the four opened channels. Then, one 
would expect to have a pronounced c’sin4

� distribution. 
We have not shown all the curves, but they exhibit the 
same shape as Figure 2b) for λ = 860 nm (dashed line); 
which in turn is similar to Figure 1, for λ = 250 nm 
(dashed line). A direct consequence from these 
behaviours is: if for ns states all the photoelectrons are 
ejected as F-waves, for np states, most of them would be 
ejected as D-waves. 
Our 2p and 3p total cross-sections ( 26 −Wcm ) values 
(Tables 2b) and 3b)), agree well at threshold, with the 

values: )41(48.12
2 −=
′

I
pσ

 for 112.1094=λ  nm; and 

)39(22.62
3 −=
′

I
pσ

 for 752.2461=λ  nm; obtained by 

Maquet (1977). 
 
 
Conclusion 
 
Within the framework of perturbation theory and of dipole 
approximation, we have shown that, the angular 
distribution for third order processes can be expressed 
for any initial state of quantum numbers n, l of the 
hydrogen atom as: θθθ 642 coscoscos dcba +++ ; 
whatever the polarization (linear or circular). From the 
explicit expressions of ns and np initial states, it is shown 
for the particular case of linear polarization that the 
isotropic term rigorously vanishes for ns states, but, 
subsists only for any initial state with an orbital quantum 
number greater than zero and contains twenty one 
contributing terms for np states. In the case of circular 
polarization the distribution follows a sin6

� behaviour for 
ns states, while for np initial states it is analytically 
expressed as a combination of sin4

� and sin6
�. 

From the quantitative analysis where a wide range of 
laser wavelengths including the ionization threshold are 
considered, it is shown that: for linear polarization the 
shapes are strongly dependent on both quantum 
numbers n, l and the wavelength; while for circular 
polarization the shapes remain the same even if the 
behaviour is either sin6

� (ns states) or sin4
� (np states). It 

is   also   shown   that   at   � = 0° or 90° the distribution is  



 
 
 
 
strongly affected by the weights of the competing 
outgoing channels. Furthermore, our total cross-sections 
are globally in good agreement with that obtained from 
other methods for ns states; and further data for np states 
are much needed as a test of the validity of the theory. 
These results can be applied to more complex atoms. In 
the near future, we hope to extend these calculations 
above threshold ionization and to higher order processes. 
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