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In order to make the economic production quantity (EPQ) model more applicable to real-world 
production and inventory control problems, in this paper, we expand this model by assuming that some 
imperfect items of different product types are being produced such that reworks are allowed. In 
addition, we may have more than one product and supplier along with warehouse space and budget 
limitation. We show that the model of the problem is a constrained non-linear integer program and 
propose a genetic algorithm (GA) to solve it. Moreover, design of experiments is employed to calibrate 
the parameters of the algorithm for different problem sizes. At the end, a numerical example is 
presented to demonstrate the application of the proposed methodology. 
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INTRODUCTION 
 
The economic production quantity (EPQ) is one of the 
most applicable models in production and inventory 
control environments. This model can be considered as 
an extension to the well-known economic order quantity 
(EOQ) model (Harris, 1913). Regardless of the simplicity 
of EOQ and EPQ, they are still applied in industry-wide 
today (Jamal et al., 2004). 

Traditional EPQ models assume that a production 
process always produces parts with perfect quality. 
However, process failures are a fact of any workplace. It 
is more realistic to assume that production is sometimes 
imperfect. Such a production process is called imperfect 
production (Salameh and Jaber, 2000). Rosenblatt and 
Lee (1986) investigated the influence of process 
deterioration on optimal EPQ.  

A multiproduct single-machine system on EPQ problem  
in which the production defective rates of all items are 

random variables and all defective items are assumed to 
be scrapped (rework is not allowed) is considered. 
Besides, the productions of all items are performed on a 
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single machine such that there is a limited capacity, and  
that shortages are allowed and are considered to be 

partially backordered. Furthermore, the service level is 
another    constraint   of   the  system   (Taleizadeh et al.,  
2010). Goyal et al. (2003) developed a simple approach 
for determining an optimal integrated vendor-buyer 
inventory policy for an item with imperfect quality. 

Hou and Lin (2004) studied the effect of an imperfect 
production process on the optimal production run length 
when capital investment in process quality improvement 
is adopted. 

Leung (2007) proposed an EPQ model with a flexible 
and imperfect production process. He formulated this 
inventory decision problem using geometric 
programming. Recently, Hou (2007) considered an EPQ 
model with imperfect production processes, in which the 
setup cost and process quality are functions of capital 
expenditure. 

Specifically, Hsu and Yu (2009) investigate an EOQ 
model with imperfective items under a one-time-only sale, 
where the defectives can be screened out by a 100% 
screening process and then can be sold in a single batch 
by the end of the 100% screening process. In real 
manufacturing environments, producing defective items is 
inevitable.   These   defective   items must   be    rejected, 



 
 
 
 
repaired, reworked, or, if they have reached the 
customer, refunded. In all cases, substantial costs are 
incurred. Therefore, it is more appropriate to take the 
quality related cost into account in determining the 
optimal ordering policy. In the literature, Porteus (1986) 
initially studied the effect of process deterioration on the 
optimal production cycle time. Tapiero (1987) links 
optimal quality   inspection   policies   and   the   resulting 
improvements in the manufacturing cost. 

With the assumption that imperfect items are removed 
from inventory, the production cycles are no longer 
identical (rather renewable points are defined at the 
beginning of every cycle), and the expected cost depends 
on both the mean and variance (second moment) of the 
amount of imperfect quality items in a lot. One 
contribution of this paper is deriving an expression for the 
variance of the number of imperfect quality items 
resulting from a two-state Markov process and 
incorporating this in the expected cost function (Maddah 
et al., 2010). 

Wahab and Jaber (2010) present models based on 
Salameh and Jaber (2000), Maddah and Jaber (2008) 
and Jaber et al. (2008) with different holding costs for the 
good items and defective items. 

An EPQ model is considered, where demand of the 
item is fuzzy random in nature with known probability 
distribution and the production process is assumed to be 
not 100% perfect, that is, a fraction of the produced items 
are defective. Further, it is assumed that the defective 
items are sold at a reduced price and the selling price of 
fresh units is taken as a mark up over the unit production 
cost. The model is formulated to maximize the expected 
average profit. Since demand is fuzzy random in nature, 
expected profit is a fuzzy number (Bag et al., 2009). 

In practice, as production defective items are inevitable, 
reworking process is often done. Gopalan and Kannan 
(1995) wrote: ‘‘All over the world, industries are 
concentrating in making quality an inherent in their 
products. In spite of these efforts, rework is becoming an 
unavoidable factor in many production systems. For 
example, glass manufacturing, food processing, etc.’’ 

An integrated EPQ model that incorporates EPQ and 
maintenance programs is presented. This model 
considers the impact of restoration action such as 
imperfect repair; rework and preventive maintenance 
(PM) on the damage of a deteriorating production system 
(Liao et al., 2009). Jaber et al. (2009) investigate 
production processes that generate defects requiring 
rework. It does this by using an EOQ model with entropy 
costs. Chiu et al. (2007) extend the prior works (Chung, 
1997; Chiu, 2003) and study the optimal run time problem 
of EPQ model with scrap, reworking of defective items 
and stochastic breakdowns. Since little attention was 
taken into the area of investigating joint effects of the 
aforementioned practical situations on optimal production 
run time, this paper intends to serve this purpose. 

In recent years, several researchers have applied genetic 
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algorithms (GAs) as an optimization technique to solve 
the production/inventory problems. For example. Rezaei 
and Davoodi (2008) introduce imperfect items and 
storage capacity in the lot sizing with supplier selection 
problem and formulate the problem as a mixed integer 
programming (MIP) model. Then the model is solved with 
a GA. There are several interesting and relevant papers 
related to the application of GA in inventory problems 
such as Stockton and Quinn (1993), Mondal and Maiti 
(2002), Hou et al. (2007), Gupta et al. (2009), Lotfi 
(2006), Pal et al. (2009) and Taleizadeh et al. (2009a, 
2009b). 
 
 
PROBLEM DEFINITION 
 
Consider a production company that works with more 
suppliers to produce more products. All of the produced 
items are inspected to be classified as perfect, imperfect 
(defective but repairable) and scrap (defective and not 
repairable) products. The situations by which the 
company and the supplier interact with each other are 
defined as follows: 
 
1) Required time of the inspection task is zero. 
2) All imperfect products are reworked to be perfect and 
the scrap products are sold with the reduced price. 
3) The work in process inventory (WIP) consists of three 
types of materials around the manufacturing machines: 
raw material, perfect products and imperfect products. 
4) The budget and warehouse space of the company for 
all products is limited. 
5) Shortage and delay are not allowed. 
6) All parameters such as the demand rate, the rate of 
imperfect and scrap items production, the setup cost, etc. 
are all known and deterministic. 
7) Transportation cost is fraction of raw material cost per 
unit. 
 
The objective is to determine the order quantity of the 
products for each supplier that the total inventory cost is 
minimized while the constraints are satisfied. It means 
what products order, in what quantities and with which 
suppliers. 
 
 
PROBLEM MODELING 
 
In order to mathematically formulate the problem at hand, 
we take advantage of the classical EPQ model and 
extend it to the problem to contain the perfect, the 
imperfect and the scrap items along with the warehouse 
and budget capacity. In order to model the problem, 
firstly, we define the parameters and the variables. 
Secondly, we pictorially demonstrate the situation by 
inventory graphs. Thirdly, we derive different costs. 
Finally, we present the model of the problem. 
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Figure 1. (a), Inventory graphs of row material; (b), perfect products; (c), scrap items; (d), the product 
in the warehouse. 

 
 
 
Variables and parameters 
 
For products mj ,...,1=  and suppliers ni ,...,1= , we 
define the variables and the parameters of the model as 
follows: 

n, Number of suppliers; m, number of products; Qij, 
order  quantity; Pij, production rate; Dij, demand rate; Aij, 
setup cost per cycle; hij, holding cost rate; Mij, the cost of 
raw material per unit; Sij, setup time; mij, machining time 
per unit; Rij, production cost rate per unit time; cij, average 
production cost per unit; vij, average value added per unit; 

ijW , average investment per unit of WIP; ijI , average 

amount of warehouse inventory; p1ij, imperfect production 
percentage; p2ij, scrap production percentage; s1ij, perfect 
production cost; s2ij, scrap production cost; Tij, cycle time; 
TPij, total time per cycle to produce; tij, average 
production time per unit; α, fractional of raw material cost 
for transportation cost; fij, required space per perfect unit; 
F, total available warehouse space for all products; Cij, 
providence cost per unit; X, maximum capital; TCPij, total 
procurement cost; TCOij, total set up cost; TCIij, total 
inspection cost; TCTij, total transportation cost; TCWIPij, 

total holding cost for WIP; TCHij, total holding cost for 
perfect products; TC, total annual cost of all products. 
 
 
Inventory graph 
 
In order to calculate all inventory costs, it is necessary to 
survey the WIP and warehouse inventory. For the 
problem at hand, the graph of raw material quantity 
versus time is demonstrated in Figure 1a. In addition, the 
graphs of the perfect and scrap WIP inventory versus 
time are illustrated in Figures 1b and c, respectively. In 
this problem, the rate of demand is constant and hence 
graph of the final product quantity in the warehouse is 
similar to the EOQ model and is given in Figure 1d. 

Costs calculations 
 
The total annual cost of all products (TC) is the sum of 

total procurement cost (
1 1

n m

Piji j
TC

= =∑ ∑ ), total set up 

cost (
1 1

n m

Oiji j
TC

= =∑ ∑ ), total inspection cost 

(
1 1

n m

Iiji j
TC

= =∑ ∑ ), total transportation cost 

(
1 1

n m

Tiji j
TC

= =∑ ∑ ), total holding cost for WIP inventory 

(
1 1

n m

WIPiji j
TC

= =∑ ∑ ) and the total holding cost for 

warehouse inventory (
1 1

n m

H iji j
TC

= =∑ ∑ ) for all products. 

Therefore, 
 

1 1
( )

n m

Pij Oij Iij Tij WIPij Hiji j
TC TC TC TC TC TC TC

= =
= + + + + +∑ ∑    

(1) 

 
In any cycle, since the set up time, the production time 
and the reworking time are equal to Sij, mijQij and 
mij(p1ijQij), respectively, the total time to produce product 
j, (TPij), is given in (2). 
 

1 1( ) (1 )ij ij ij ij ij ij ij ij ij ij ijTP S m Q m p Q S m Q p= + + = + +
  

(2) 

 
Hence, the average production time for each unit of 
product j is: 
 

1(1 )ij ij
ij ij ij

ij ij

T P S
t m p

Q Q
= = + +                        (3) 

 
Based on Rij which is the rate of production cost per unit 
time, vij and cij are obtained as: 
 

1( (1 ))ij
ij ij ij ij ij ij

ij

S
v R t R m p

Q
= = + +                      (4) 



 
 
 
 

1( (1 ))ij
ij ij ij ij ij ij ij

ij

S
c M v M R m p

Q
= + = + + +

         

 (5) 

 
Since delays are not allowed, the supply and the demand 
quantities are equal and we have: 
 

2
2

(1 )
(1 ) ij ij

ij ij ij ij ij
ij

p Q
p Q D T T

D

−
− = ⇒ =                 (6) 

 
As s1ij and s2ij represent the price of the perfect and the 
scrap items, respectively, the average revenue in unit 
time is obtained as: 

 

2 1 2 2 2
1 2

2

(1 )

1
ij ij ij ij ij ij ij

ij ij ij ij ij
ij ij

p Q s p Q s p
TR D s D s

T p

− +
= = +

−
  (7) 

 
Note that for the problem at hand the revenue in unit time 
does not depend on the lot size. 

Based on (2) to (6), the inventory costs of (1) are 
calculated as follows: 
 
 
Total procurement cost (TCPij) 
 
Since the annual rate of demand for each product is 
known, the total procurement cost for product j per unit 
time is obtained as: 
 

2(1 )
ij ij ij ij

Pij
ij ij

m Q m D
TC

T p
= =

−
                               (8) 

 
 
Total setup cost (TCOij) 
 
For each product, the setup process accrues only once 
and hence the set up cost per unit time of the jth product 
can be obtained as: 
 

2(1 )
ij ij ij

Oij
ij ij ij

A A D
TC

T Q p
= =

−                    (9) 

 
 
Total inspection cost (TCIij) 
 
Assuming 100% inspection and that all of the imperfect 
products transform to perfect ones after reworks, the 
inspection of each product occurs once and its 
associated cost per unit time is obtained as: 
 

21
ij ij ij ij

Iij
ij ij

I Q I D
TC

T p
= =

−                   (10) 
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Total transportation cost (TCTij) 
 
Here, we assume the transportation cost related to 
fractional of raw material cost. Thus: 
 

2(1 )Tij ij ij ijTC p M Qα= −
                              

(11) 

 
 
Total holding cost for work in process (WIP) (TCWIPij) 
 
In order to calculate the holding cost of WIP inventory of 

the jth product, since ijW denotes the average investment 

per unit of WIP inventory (including raw materials, perfect 
and imperfect items) and hij represents the holding cost 
rate of the jth product, then: 
 

WIPij ij ijTC h W=                 (12) 

 
The average raw material inventory of each product is the 
total amount of raw materials (the surface under its 
corresponding inventory graph) divided by the cycle time. 
Accordingly, the average investment value of the raw 
material is obtained by the product of the average raw 
material inventory and the price per unit of the raw 
material. The average investment value of the perfect 
and imperfect products can be calculated similarly. 
Hence, the average investment value per unit of the WIP 
inventory of product j is given in (13). 
 

2 2

1 1
2

1 1 1
(1 ) 12 2 2 ( )

2

[ (1 ) ][2 (1 )]
2(1 )

ij ij ij ij ij ij ij ij
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−
= + + = + =

+ + + + +
−

 (13)   

 
Hence, based on (12) and (13), the average holding cost 
of the WIP inventory of product j is: 
 

1 1
2

[ (1 ) ][2 (1 )]
2(1 )

ij ij ij ij
WIPij ij ij ij ij ij ij ij ij

ij ij

h D R S
TC S m p Q M R m p

p Q
= + + + + +

−
(14) 

 
 
Total holding cost for perfect products (TCHij) 
 
In order to calculate the holding cost of the warehouse 
inventory, we first need to estimate the average 
warehouse inventory. Figure 1d, we have: 
 

2

2

1
(1 ) 12 (1 )

2

ij ij ij

ij ij ij
ij

Q p T
I Q p

T

−
= = −                    (15) 

 
Hence,   using   (5)   and   (15),  the  holding  cost  of  the 
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warehouse inventory for product j becomes: 
 

1 2

1
{ [ (1 )]} (1 )

2
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Hij ij ij ij ij ij ij ij ij ij ij
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S
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Finally, the total annual inventory cost of all products 
described in (1) is given in (17). 
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Problem formulation 
 
The objective of the model is to determine the optimum 
value of Qij for each supplier such that the total annual 
cost is minimized and the following constraints are 
satisfied: 
 
1) The warehouse space to store the products is limited. 
2) Budget limitation 

Hence, the problem can be formulated as: 
 

2
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such that: 
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0; 1... , 1...ijQ j m i n= =f   (18) 

 
Since the model in (18) is a constrained non-linear 
integer program, in the study a GA will be proposed to 
solve it. 
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Figure 2. Structure of a chromosome. 

 
 
 
GENETIC ALGORITHM 
 
GAs mimic the evolutionary process by implementing a 
‘‘survival of the fittest’’ strategy. GAs are probabilistic 
search and optimization techniques guided by the 
principles of evolution and natural genetics. This method 
provides global near-optimal solutions of an objective or 
fitness function by striking a remarkable balance between 
exploration and exploitation in complex, large, and multi-
modal landscapes. 

A more complete discussion of GAs including 
extensions to the general algorithm and related topics 
can be found in books by Davis (1991), Goldberg (1989), 
Holland (1975) and Michalewicz (1994). 
In each evolution step of a standard GA, a new 
population is created from the preceding one using the 
selection, crossover and mutation operators that are 
explained below. 

In the study, we demonstrate the steps required to 
solve the model given in (18) by a GA. 
 
 
Chromosome representation 
 
The first step of developing a GA is to encode the 
problem’s variables as a finite-length string called 
chromosome. Traditionally, chromosomes are a simple 
binary string. This simple representation is not well suited 
for combinatorial problems; therefore a chromosome 
consisting of integers is a solution in this paper. In the GA 
method, we select a two-dimensional structure to 
represent a solution. This matrix has n rows and m 
columns. The elements of each column show the number 
of products. In addition, the elements of each row show 
the number of suppliers. For example, when we have 2 
suppliers and 5 products, the chromosome matrix is 2×5. 
Figure 2 presents a typical form of a chromosome. 
 
 
Initialization of the population 
 
For any GA, it is necessary to initialize the population. 
The most common method is to randomly generate 
solutions for the entire population. Since GAs iteratively 
improves existing solutions the beginning population can 
be seeded by the decision maker with individuals from 
other algorithms or from an existing solution to the 
problem. The remainder of the population is then seeded 
with randomly generated solutions. 



 
 
 
 

 
 
Figure 3. An example of a crossover operation. 
 
 
 

Randomly generated chromosome 
 

 
Figure 4. A graphical representation of the mutation operator. 
 
 
 

In this research, the initial population is randomly 
generated regarding the population sizes that vary 
between 1 and maximum order. 
 
 
Constraint-handling and fitness evaluation 
 
The fitness value is a measure of the goodness of a 
solution with respect to the original objective and the 
‘‘amount of infeasibility’’. The fitness function is formed by 
adding a penalty to the original objective function in MIP 
model (Homaifar et al., 1994; Michalewicz and 
Schoenauer, 1996). 

Since finding a feasible solution (which will satisfy all 
constraints in MIP model) is a major problem and has 
difficulty in finding even one feasible solution, we use 
penalty approach to decrease fitness of infeasible 
solutions and toward the feasible region. 

In this study, we use the additive form of the penalty 
function (Pen(S)) and the fitness function (fitn(S)) with the 
following form: 
 

( ) ( ) ( )

( ) 0

( ) 0

fitn S f S Pen S

Pen S if S is feasible

Pen S otherwise

= +
=
>

            (19) 

 
Where, f(S) is the objective function in (18) and S 
represents a solution. In this approach, we search for the 
solution that minimizes fitn(S). 
 
 
Selection operator 
 
The selection of parents to produce successive 
generations plays an extremely important role in the GA. 
The goal is to allow the fittest individuals to be selected 
more often to reproduce. However, all individuals in the 
population have a chance of being selected to reproduce 
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the next generation. Each individual is assigned a prob-
ability of being selected with better individuals having 
larger probabilities. There are several schemes for 
determining and assigning the selection probability, for 
example, roulette wheel selection, tournament selection 
and its extensions scaling techniques and ranking 
methods (Goldberg, 1989; Michalewicz, 1994). 

A ‘‘roulette wheel selection” procedure has been 
applied for the selection operator of this research. This 
selection approach is based on the concept of selection 
probability for each individual proportional to the fitness 
value. For individual k with fitness fk, its selection 
probability pk is calculated as follows: 
 

1

k
k PopSize

k
k

f
p

f
=

=
∑

                (20) 

 
Then a biased roulette wheel is made according to these 
probabilities. The selection process is based on spinning 
the roulette wheel PopSize times. The individuals 
selected from the selecting process are then stored in a 
mating pool. Moreover, in order to prevent losing the 
best-found solution, a simple elitist strategy is also used 
in which the best chromosome of each generation is 
always copied to the next generation without any modifi-
cation. This selection approach causes the algorithm to 
converge faster. 
 
 
Genetic operators 
 
There are two types of operators involved in the GA 
proposed: mutation and crossover. 

In this research, we use single point crossover with 
different values of the Pc parameter ranging between 
0.45 and 0.85. We note that an infeasible chromosome 
that does not satisfy the constraints of the models in (18) 
does not move to the new population. Figure 3 
demonstrates the crossover operation. 

In this research, different values between 0.05 and 0.35 
are chosen as different values of Pm. We note that an 
infeasible chromosome that does not satisfy the 
constraints of the models in (18) does not move to the 
new population. Figure 4 shows an example of the 
mutation operator for four products in which Pm is chosen 
to be 0.35. 
 
 
Stopping criteria 
 
The last step in the methodology is to check if the method 
has found a solution that is good enough to meet the 
user’s expectations. Stopping criteria is a set of 
conditions such that when the method satisfies them, a 
good solution is obtained. In this paper, the proposed GA 
is run for a fixed number of generations. 
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Table 1. The GA input parameter levels of the factorial design. 
 

Parameter Min Max 

Max Gen 100 500 
N 20 60 
Pc 0.45 0.85 
Pm 0.05 0.35 

 
 
 

Table 2. Data of the example. 
 

Product D1 D2 A1 A2 M1 M2 S1 S2 m1 m2 p11 p12 p21 p22 R1 R2 h1 h2 I1 I2 f1 f2 C1 C2 
1 20 22 21 28 8 10 0.017 0.02 0.01 0.03 0.24 0.1 0.05 0.1 15 10 0.1 0.38 15 6 15 9 55 36 
2 22 22 26 18 9 5 0.01 0.014 0.14 0.38 0.15 0.25 0.1 0.02 14 15 0.5 0.10 12 5 18 15 35 26 
3 19 28 23 31 5 7 0.02 0.018 0.15 0.2 0.25 0.09 0.01 0.06 13 9 0.98 0.28 14 7 13 32 40 29 
4 30 19 31 29 9 6 0.04 0.01 0.1 0.1 0.15 0.26 0.06 0.09 12 11 0.52 0.3 12 10 16 8 60 23 
5 21 20 18 21 7 4 0.013 0.011 0.18 0.19 0.1 0.19 0.06 0.12 15 9 0.24 0.16 7 12 10 16 45 28 
6 27 24 29 25 11 9 0.01 0.01 0.01 0.25 0.12 0.16 0.09 0.05 12 13 0.35 0.28 9 10 8 14 65 34 
7 30 21 26 22 8 10 0.011 0.024 0.1 0.23 0.21 0.15 0.05 0.07 14 8 0.16 0.24 26 10 21 10 80 26 
8 20 20 21 26 8 8 0.01 0.032 0.11 0.16 0.26 0.13 0.05 0.045 15 12 0.25 0.32 12 14 14 8 35 27 
9 20 17 28 24 10 9 0.01 0.04 0.05 0.25 0.18 0.21 0.08 0.065 12 9 0.42 0.18 11 4 16 15 50 25 
10 24 18 27 15 5 8 0.05 0.098 0.11 0.25 0.16 0.14 0.11 0.08 11 11 0.25 0.2 13 8 13 17 75 24 
 
 
 

SETTING THE PARAMETERS OF THE 
GENETIC ALGORITHM 
 
Response surface methodology (RSM) is a 
collection of mathematical and statistical 
techniques that are useful for the modeling and 
analysis of problems in which a response of 
interest is influenced by several variables and the 
objective is to optimize this response. Central 
composite design (CCD) is a response surface 
method that allows one to keep the size and 
complexity of the design low and simultaneously 
obtain some protection against curvature as 
described by Montgomery (2001). 

One   important  decision     to    make     when 

implementing a GA is how to set the parameters 
values. In order to satisfy this condition, a CCD is 
selected. Since there are four factors, a fractional 
factorial design with 24 factorial points, 2×4 axial 
points and seven central points, requiring 31 
experiments are required. 

In this research, the factors that affect the 
response are the population size (PopSize), the 
maximum number of generations (MaxGen), the 
crossover probability (Pc) and the mutation 
probability (Pm).  

The selected design factors each with three 
levels are listed in Table 1. The selected optimum 
parameters are the ones with the best fitness 
value obtained by GA. 

Genetic algorithm parameters results 
 
In order to evaluate the GA parameters, an 
example with parameters (F=10000, X=150000, 
α=0.1, n=2 and m=10) is presented. The data of 
this example is given in Table 2. 

The design matrix of the selected CCD along 
with the experimental results is shown in Table 2. 
The PtType column of Table 3 represents the type 
of the design points (‘‘-1” for the axial points, ‘‘0” 
for the central points and ‘‘1” for the factorial 
points). The last column of Table 3 represents the 
best fitness value for each problem obtained in 
the last generation of GA. In order to fit the data   
to a regression model, an independent analysis for
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Table 3. Design matrix of the central composite design. 
 

Std. order Run order PtType Blocks PopSize(N) MaxGen Pc Pm Fitness 

21 1 -1 1 40 300 0.100 0.550 29286 
4 2 1 1 50 400 0.325 0.325 29184 
24 3 -1 1 40 300 0.550 1.000 29105 
30 4 0 1 40 300 0.550 0.550 29141 
15 5 1 1 30 400 0.775 0.775 29048 
31 6 0 1 40 300 0.550 0.550 29080 
2 7 1 1 50 200 0.325 0.325 29524 
12 8 1 1 50 400 0.325 0.775 29032 
20 9 -1 1 40 500 0.550 0.550 29117 
7 10 1 1 30 400 0.775 0.325 29328 
18 11 -1 1 60 300 0.550 0.550 29120 
16 12 1 1 50 400 0.775 0.775 29092 
14 13 1 1 50 200 0.775 0.775 29251 
9 14 1 1 30 200 0.325 0.775 29147 
22 15 -1 1 40 300 1.000 0.550 29217 
25 16 0 1 40 300 0.550 0.550 29227 
13 17 1 1 30 200 0.775 0.775 29174 
10 18 1 1 50 200 0.325 0.775 29267 
11 19 1 1 30 400 0.325 0.775 29090 
19 20 -1 1 40 100 0.550 0.550 29749 
26 21 0 1 40 300 0.550 0.550 29088 
5 22 1 1 30 200 0.775 0.325 29731 
3 23 1 1 30 400 0.325 0.325 29242 
29 24 0 1 40 300 0.550 0.550 29240 
1 25 1 1 30 200 0.325 0.325 29700 
6 26 1 1 50 200 0.775 0.325 29225 
23 27 -1 1 40 300 0.550 0.100 29536 
28 28 0 1 40 300 0.550 0.550 29145 
17 29 -1 1 20 300 0.550 0.550 29406 
27 30 0 1 40 300 0.550 0.550 29244 
8 31 1 1 50 400 0.775 0.325 29164 

 
 
 

response, fitness, is required. Second-order coefficients 
were generated by regression with stepwise elimination. 
The first step is to identify significant factors in the model, 
for that purposes a multiple regression analysis and an 
analysis of variance (ANOVA) are developed for both 
responses. The ANOVA is a partition of the total 
variability into its component parts. The regression 
coefficients, standard error, p-values and coefficient of 
determination (R2) are presented in Table 4. 

The ANOVA for fitness is shown in Table 5. This 
analysis was carried out for a level of significance of 5%, 
that is, for a level of confidence of 95%. The (R2) value of 
89.76% and the F-value for the regression was significant 
at a level of 5% (p<0.05), while the lack of fit was not 
significant at the 5% level (p>0.05), indicating the good 
predictability of the model. It should be noted that the 
high value of R2 is due to the fact that all sources of 
randomness in a GA (the population size, the maximum 
number of generations, the crossover probability and the 

mutation probability) are taken into account and that a 
second-order model was used to model the performance. 
 
 
Discussion 
 
Based on the results of Table 4, the estimated regression 
function is: 
 
 

2 2 2 2

29166.7 53.9 129.3 13.1

119.1 15 57.6 12.2 29.4

15.5 23.6 67.9

21.3 42.7 14.4

c

m c m

c m

c m c m

FitnessFunction N MaxGen P

P N MaxGen P P

N MaxGen N P N P

MaxGen P MaxGen P P P

= − − −

− + + + +
+ × − × + ×
+ × + × + ×

     
                                                                             (21)           
 
Since the most significant GA parameters are defined so 
far, the next step is to determine the best values of these 
parameters that lead to the best value of the fitness function



270          Int. J. Phys. Sci. 
 
 
 

Table 4. Multiple regression analysis for fitness. 
 

Term Coefficient SE Coef t-Value p-Value 

Constant 29166.7 32.77 890.136 0.000 
Main (linear) effects     
PopSize -53.9 17.70 -3.045 0.008 
MaxGen -129.3 17.70 -7.306 0.000 
Pc -13.1 17.70 -0.743 0.469 
Pm -119.1 17.70 -6.731 0.000 
Squared effects     
PopSize×PopSize 15.0 16.21 0.928 0.367 
MaxGen×MaxGen 57.6 16.21 3.556 0.003 
Pc×Pc 12.2 16.21 0.755 0.461 
Pm×Pm 29.4 16.21 1.816 0.088 
Interaction effects     
PopSize×MaxGen 15.5 21.67 0.714 0.486 
PopSize×Pc -23.6 21.67 -1.087 0.293 
PopSize×Pm 67.9 21.67 3.134 0.006 
MaxGen×Pc 21.3 21.67 0.982 0.341 
MaxGen×Pm 42.7 21.67 1.971 0.066 
Pc×Pm 14.4 21.67 0.663 0.517 
S = 86.6923 PRESS = 561011 R-Sq = 89.76%   

 
 
 

Table 5. Analysis of variance for fitness. 
 

Source DF Seq SS Adj SS Adj MS F P 
Regression 14 1054135 1054135 75295 10.02 0.000 
Linear 4 815512 815512 203878 27.13 0.000 
Square 4 112362 112362 28091 3.74 0.025 
Interaction 6 126261 126261 21044 2.80 0.047 
Residual error 16 120249 120249 7516   
Lack-of-fit 10 90327 90327 9033 1.81 0.241 
Pure error 6 29922 29922 4987   
Total 30 1174384     

 
 
 
function. The estimated regression function (the objective 
function) that needs to be minimized along with the 
constraints within the GA parameter ranges is solved by 
Lingo software. Table 6 shows the optimum results. 

In the next section a numerical example is given to 
demonstrate the applicability of the proposed parameter-
tuned GA. 
 
 
A NUMERICAL EXAMPLE 
 
Consider a multi-product inventory control model with ten 
products and general data are given in Table 2. In this 
example, F=10000, X=150000, α=0.1 and the initial 
parameters of GA (PopSize, MaxGen, Pc and Pm) were 
set according to Table 6. The optimal solution of this 
problem, gained by the proposed algorithm, is as follows: 

44 55 40 55 48 52 56 47 53 60

55 44 58 43 51 46 42 52 45 38

 
 
 

 

Fitness, 29122 
 
This solution indicates that for example, order quantity for 
product five by supplier two is 51 or order quantity for 
product ten by supplier one is 60. Furthermore, based on 
the fitness values, the graph of the convergence path is 
presented in Figure 5. 
 
 
CONCLUSIONS 
 
In this paper, a multi-product and multi-supplier EPQ 
model with limited warehouse space and budget were 
presented in which defective items and reworking are 
considered.  Under  these  conditions,  the  problem   was
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Table 6. The Lingo optimum solution. 
 

N* MaxGen* Pc* Pm* Cost 

60 500 0.85 0.35 14896990 
 
 
 

 
 
Figure 5. The graph of the convergence path. 

 
 
 
formulated as a non-linear integer-programming model 
and a parameter tuned GA was proposed to solve it. At 
the end, a numerical example was presented to 
demonstrate the application of proposed methodology. In 
this example, the optimum values of the GA parameters 
were obtained using RSM. 
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