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This article presents a new approach to car-like robot control for obstacle avoidance and target 
tracking. The proposed approach employs cooperative algorithms including artificial immune 
algorithms, fuzzy logic and Q-learning denoted shortly as IFQ-learning control. The article explains the 
artificial immune system and the proposed algorithms. The fuzzy Q-learning algorithms are also 
presented. The article elaborates the control design as well as extensive experimental results. Very 
satisfactory robot performances are achieved via the proposed IFQ-learning control. VDO clips 
illustrating the experiments are available on the website 
http://www.sut.ac.th/engineering/electrical/carg/.  
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INTRODUCTION 
 
In recent years, researchers on autonomous mobile robot 
systems have required controllers capable of solving 
navigation problems in uncertain environmental 
situations. Fuzzy logic control has been well received for 
such purposes since it has an ability to use expert 
knowledge expressed in the form of linguistic rules. 
Inference under an uncertain environment is also 
possible. To appropriately design a fuzzy rule-base and 
membership functions for a control system is tedious and 
quite often requires trial-and-error testing. The manually 
tuned fuzzy rules are not optimal, and they also cause an 
increasing number of variables in a fuzzy control system. 
Parameter tuning of membership functions is a time 
consuming task. Xu and Tso (1999) proposed a reactive 
behavior-based fuzzy logic controller with a virtual target 
technique. It tries to utilize the rules to define the robot 
reaction to unknown environments, and applies fuzzy 
inference to coordinate different reactive behaviors. 
However, the dead cycle problem (going around in circles 
or cycling between multiple traps) occurs in some cases. 
Er and Deng (2004) proposed dynamic fuzzy Q-learning 
for reinforcement fuzzy control for a mobile robot wall-
following.  Although  their  fuzzy  controller  is  active  in  an  
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online manner, some prior knowledge is introduced 
beforehand through an offline process. 

To improve the performance of a fuzzy controller, there 
are several techniques to develop and achieve their 
tunings of successive parameters. A hybrid intelligent 
controller is a common solution. Senthilkumar and 
Bharadwaj (2009) applied the hybrid genetic-fuzzy 
reinforcement learning in an autonomous mobile robot 
system. Their objective is to improve fuzzy rules governing 
the actions and behaviors of navigation and obstacle 
avoidance. Genes are represented in the form of distances 
and angles labels. The chromosomes are represented as 
a rule written in a Boolean algebraic form. Hagras et al. 
(2000) developed an online-learning genetic algorithm for 
learning the membership functions of behaviors of an 
autonomous mobile robot. The fuzzy controller is used to 
reduce the number of rules, while the genetic algorithm is 
applied to tune the membership functions. Juang and Lu 
(2009) presented the design of fuzzy controllers by ant 
colony optimization (ACO) incorporated with fuzzy-Q 
learning. Their simulation results show good performances 
in a small scale of pheromone trail limitation settings. In 
Juang and Hsu (2009), a reinforcement ant optimized 
fuzzy controller (RAOFC) applied to a wheeled mobile 
robot wall following control is described. The heuristic of Q-
value is used to improve learning for ant colony optimization. 
Experiment of RAOFC with the PIONEER 3-DX mobile robot 

illustrates  the  effectiveness   and   efficiency   of   the   robot 
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moving along a wall. Amin and Adriansyah (2006) 
proposed fuzzy membership functions and fuzzy rule-
base tunings using particle swarm fuzzy controller 
(PSFC). With this approach, the obtained fuzzy controller 
can govern the mobile robot to have smooth movements 
in simulated environments. Learning capability of a fuzzy 
controller has been achieved for a number of years by 
using neural networks (NNs). The NNs help optimize the 
fuzzy rules and the fuzzy memberships. As a result, 
robots with learning fuzzy controllers have better 
performances in terms of smoothness, and obstacle 
avoidance (Rusu et al., 2003; Zhu and Yang, 2007; Parhi 
and Sing, 2009; Garbi et al., 2007). Since several means 
are available to achieve robot learning control, this paper 
proposes a novel cooperative approach of artificial 
immune algorithm, fuzzy logic and Q-learning for 
autonomous mobile robot obstacle avoidance in unknown 
environments. In other words, the fuzzy-Q learning 
controller is enhanced by the artificial immune algorithm. 
Our investigation compares the fuzzy control, the fuzzy-Q 
learning control with the proposed method. Experimental 
results confirm that the proposed immune based fuzzy-Q 
learning control provides superior results to the other 
approaches. 

The introductory part of this article is followed by an 
explanation of the artificial immune system (AIS), the 
immune algorithm, the Q-learning, the fuzzy-Q learning 
(FQ) and the proposed immune fuzzy-Q learning (IFQ). 
Next is an explanation of the structure and hardware 
components of the car-like robot used, followed by an 
elaboration of the control design. Experimental results 
and discussions covering the comparisons between the 
simple fuzzy logic, the FQ and the proposed IFQ 
controllers can be found in this study. VDO clips are 
available on website 
http://www.sut.ac.th/engineering/electrical/carg/; and then 
conclusions. 
 
 
LEARNING CONTROL 
 
Learning has been an exciting research area in control 
for many years. Yet, a clear definition of learning control 
is still debatable. Albus (1991),  Antsaklis (1994), and 
Farrell and Baker (1995) agree with the definition of 
learning as gaining mastery through experience and 
fixing in mind or memory, then acquiring experience, 
ability or skill. Advantageously, learning control can lead 
to an autonomous dynamical system. Learning control 
can be classified as learning about the plant, learning 
about the environment, learning about the controller; and 
learning new goals and constraints (Antaklis, 1994). The 
implementation of a learning system requires performance 
feedback, memory, and training. Hence, learning system 
should be capable of evaluating its current and past 
performances, memorizing useful knowledge for a future 
use,  and  translating  the  quantitative   information   about  
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performance into a memorized form of knowledge. It can be 
said that learning is an estimation or successive 
approximation of unknown operations. 
 
 
Artificial immune system (AIS) 
 
The biological immune system is a complex adaptive 
system. In medical science, immunity refers to the 
condition in which an organism can resist disease, more 
specifically infectious disease. Cells and molecules 
constitute the biological immune system, which can be 
imagined as a multilayer protection system containing 
different types of defense mechanism for detection, 
recognition and action. There exist three main layers in 
an immune system namely anatomic barrier, innate 
immunity and adaptive immunity, respectively. The innate 
and adaptive immunities are inter-linked and influence 
each other (Abbas and Lichtman, 2000). The innate 
immunity is an unchanging mechanism that detects and 
destroys certain invading organisms. The most important 
cells for protecting the body from infections are white 
blood cells (or T-cells), and large lymphocytes (anti-
product cells or B-cells). There are three types of the T-
cells: the T helper cells essential to the activation of the 
B-cells, the killer T-cells seizing and destroying invaders, 
and the suppressor T-cells, preventing allergic reactions 
and autoimmune diseases. The B-cells are co-
responsible for the production and ejection of antibodies. 
In fact, they are specific proteins that catch the antigens 
and destroy them. The process can be represented by 
the diagram in Figure 1 proposed by de Castro and 
Zuben (2002), in which readers can find detailed 
explanation of medical immune system constituting of 
seven sub-processes shown by the diagram. 

A novel computational intelligence technique called 
artificial immune system (AIS) is inspired by the biological 
immune system under the framework of immune network 
theory (Jerne, 1974). Castro gives the definition of AIS in 
Castro and Timmis (2002) as “adaptive systems, inspired 
by theoretical immunology and observed immune 
functions, principles and models, which are applied to 
problem solving”. Based on the knowledge of the human 
immune system, immune algorithms for computational 
purposes have been developed. The algorithms regard 
the problem to be solved as antigen (Ag), and the best 
solution vector as antibody (Ab). Lymphocyte 
differentiation is regarded as the maintenance of elite 
solutions in the memory cells. The T-cell suppression is 
the elimination of surplus candidate solutions. An immune 
system detector (lymphocyte or B-cells) has a high affinity 
(high level of matching in computation) with an antigen 
(invader microorganism). When an antibody strongly 
matches an antigen, the corresponding B-cell is 
stimulated to produce its clones then produce more 
antibodies. This process is called the clonal enlargement 
since  new  cells  are  produced  by  cloning and mutating  
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Figure 1. The acquired immune system mechanism. 

 
 
 
existing cells. This clonal enlargement reaches to destroy 
or neutralize the antigen. The retention of some cells is 
memorized so that the immune system can act more 
quickly in future cases of the same antigens. An actual 
immune system has a specific sub-process called clonal 
selection that defines the reaction of system to antigens’ 
invasion. Computationally, it is represented by sub-
algorithm referred to as the clonal selection classifier. Li 
et al. (2009) presented a hybrid system namely an 
improved clonal selection classifier (ICSC) (Zhuang et al., 
2009). Their algorithms combine the clonal selection 
classifier with the fuzzy C-mean clustering (FCM) for data 
classification. This improvement decreases the time 
consumed by the data classification process. The multi-
layered immune inspired machine learning algorithm is 
also developed by Knight and Timmi (2003). They model 
many AIS algorithm units, and form an unsupervised 
learning system successfully used in classification 
applications. 

This research presents an application of the AIS by 
classification task of fuzzy rules for mobile robot 
navigation. AIS develops a population of antibodies each 
of which represents the precedence (“IF part”) of a fuzzy 
rule. Each antigen represents an experiment (record, or 
example case). The rule precedence is structured by a 
conjunction of conditions (attribute-value pairs). Each 
attribute can be structured either continuously or 
categorically. Categorical attributes are designed by 
expert, and continuous attributes are fuzzified by using a 
set of linguistic terms.  

The immune algorithm presented below follows the 
clonal selection classifier in Castro and Timmis (2002). 
The main idea of this algorithm is the classification of 
information which is involved in the training set. This 
information has not been properly used so that it could be 
employed to produce classification performance 
enhancements. The list of the algorithm is as follows: 
 
 
Immune algorithm 
 
(1) Initialization: The information data are normalized to 
ensure that the Euclidean distance range of information is 
in the interval [0, 1]. The distance between Ags and Abs 
can be calculated using Equation 1 
 

2
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                                    (1) 

 
Here Abi,k and Agi,k are the k

th
 attributes of the Abi and 

Agi, respectively, i = 1,…, Mc, where Mc is the number of 
memory Abs for related class. 
(2)  Create memory pool (M) in matrix form. 
(3)  Antigenic presentation: For each antigenic pattern Agi 

from the antigen population Ag do   1,..., , 1,..., ( )i n iAg f f i N Ag Ag  
; 

fi is the input feature. 
 
(3.1)  Based-on a uniform distribution, randomly assign 
centers of clustering to initial antibodies, Ab. 



 

 
 
 
 
(3.2)  Calculate affinity vector according to fi for all 
antibodies using the Euclidean distance between the 
vector Agi and the center Ab. 
(3.2.1) Select n highest affinity antibodies from Abs to 
compose a set Abn. 
(3.2.2) If the average affinity of the Abn is greater than a 
threshold value of 0.5 (Castro and Timmis, 2002) then go 
to (3.4). 
(3.3)  Proportionally proliferate n antibodies in Abn to 
their antigenic affinities. 
(3.3.1) Based-on a uniform distribution, randomly 
generate a set C of clones. 
(3.3.2) Generate a mutated antigen Agi in set C*.  
(3.3.3) Select C* to compose the set Ab, and return to 
(3.2). 
(3.4) Select the best affinity memory cell (Mc) of the same 
class for Agi, and the highest affinity antibody from Abn 
as a candidate memory (Mccand). (Remarks: The best 
affinity possesses the shortest distance between Agi and 
Abn. The distance is calculated using Equation 1. 
(3.5)  If the affinity of Mccand for Agi is better than that of 
the Mc, then add Mccand to the memory pool M.  
(3.6)  If the affinity between Mccand and Mc is below the 
affinity threshold (AT) then remove Mc from M. (AT can 
be set by Equation 2). 
 

AT a                              (2) 
 

where:  
  

a  = A constant real value between 0 to 1,  

  = The average distance between each Agi in Ags. 

Regarding this, a = 0.8 is used as suggested by Castro 
and Timmis (2002).  
(4) Classify information by performing in a K-nearest 
neighbor (KNN) approach from training set of memory pool 
M. 
 
 
Q-learning 
 
This research proposes reinforcement learning based on 
the Q-learning technique for fuzzy inference system. The 
technique works by learning an action value function 
(Wakins and Dayan, 1992). It gives the expected utility of 
a given action in state form. Q-learning can be embedded 
into the fuzzy rules to reduce training (Jouffe, 1998). The 
Q-function is used to estimate the future performing 
actions, and select a proper action for a particular state. 
The present state, ( )x t


, of a robot is executed by an 

action a(t) according to the evaluation of the feedback 
value. The Q-function is used to evaluate and estimate 
the discounted cumulative reinforcement for taking 
actions from given states. The Q-function is a mapping 
technique from the pairs of the state-action to predict 

feedback value. Its output for state vector x


 and action 

(a) is signified by the Q-value ( ( , )Q x a


). 
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Equation 3 represents the updating expression of the Q-
function. Let ( 1)x t 


 be the obtained state from ( )x t


 after 

the current action of a(t), ( 1)r t   is the scalar 

reinforcement signal that depends on environment,   is 

the learning rate,   is the discount factor, t is the t
th
 

iteration, and  ( 1)
b

Q x t 
 is the best estimated Q-value 

that the agent assumes to reach the state ( 1)x t 


. The 

best estimation  ( 1)
b

Q x t 
  can be defined by 
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where  ( 1)P x t 


 is the possible action sets at the state 

( 1)x t 


. The learning rate , (0 1  ), is a constant 

step-size parameter between 0 and 1, and considered as 
the updating speed of the Q-function. It determines to 
what extent the newly acquired information will override 
the old information. A factor of 0 means no learning. A 
factor of 1 makes responding on the most recent 
information. The discount factor   determines the 

importance of future rewards. A factor of 0 will make an 
opportunity by only considering current rewards, while   

approaching 1 will make it strive for a long-term high 
reward. If the discount factor meets or exceeds 1, the Q-
value will diverge. The objective is to take the future 
rewards into the evaluation process more strongly. The 
Q-function updates its evaluation value of the action while 
catching into the process of an immediate reinforcement 
( r ) and the Q-value estimation of the new best state 

 ( 1)bQ x t 
 . The speed up in Q-learning has been studied 

in terms of the eligibility trace of an action (Sutton and 
Barto, 1998). In order to speed up learning, it needs to 
combine the Q-learning and the temporal method to 
achieve the eligibility of an action (Jouffe, 1998; Sutton 
and Barto, 1998). 
 
 
Fuzzy Q-learning 
 
The basic Q-learning works in the discrete forms of the 
state-action pairs. As enhanced by fuzzy mathematics, 
the fuzzy Q-learning can handle continuous state-action 
pairs (Jouffe, 1998). Fuzzy Q-learning (FQ) algorithm is a 
model-free reinforcement learning algorithm with an 
online learning characteristic where the Q-function 

represents a fuzzy inference system. Define  
1
, ...,

N
P p p  

the set of possible actions of each rule. The Q-learning 
function   is   able   to   choose    one   among   N  actions  
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according to their Q-values. Each fuzzy rule is a local 
representation on input space definitions and memories. 
The Q-values are related to the selected actions, such 
that they could maximize the discounted sum of rewards 
obtained while achieving the task. The fuzzy rules can be 
presented in the IF-THEN form as in Equation 5, where 

1,..., nx x  are input variables, inA  is the fuzzy set, and 

( , )ˆ i ja  is the output action variable. The learning ability 

aims to search for the best action for each rule. 
 

Rule i
th
: 

 1 1

( ,1) 1 1

2 2

is and and

then action with

with

with

    , . . .,   is ,  

ˆ  is   

                        or   

                                    

                        or   
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i i
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If x A x A

a p q

p q

p q
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                        (5) 
 

The 
in

q  is a Q-value corresponding to an action ( )( ,ˆ i ja ) 

where i is the rule index, and j is the possible action 
index. Assign *iiq  to be the maximum Q-value for rule 

i by  1* max j Nii ijq q  . The greedy action *ip  acquires 

experience through reinforcement signal (Sutton and 
Barto, 1998). During the learning process, the action of 
each rule is based on exploration and exploitation 
policies (Juang and Lu, 2009). In an exploration process, 
the non-greedy action is applied to produce a better 
reward, while the greedy action in an exploitation 

process. At time step t, let  ( ) 1,...,i t N be the identified 

action chosen by the rule i, the system output is given by 
Equation 6 
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where i  is the firing strength of rule i, and M is the total 

number of rules in the fuzzy system. To identify the 

practical Q-value for the inference output â , the 

expression (7) is used  
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After the action state  ˆ ( )a x t


, at time step t, the new 

state is ( 1)x t 


. The Q-value is regarded as the best 

action inferred from the fuzzy inference system. In 
previous state, for each rule, the greedy action ( *iq ) 

enhances the maximum Q-value *iiq . Hence, the 

maximum anticipated Q-value (
*

Q ) at the state ( 1)x t 


 is 

achieved by using Equation 8: 
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The FQ algorithm can be summarized as follows: 
 
STEP 1: Initialize parameters. 
STEP 2: For the current state, compute the membership 
values of the current state in the neighboring states for all 
rules. 
STEP 3: Compute the current action *iiq by 

max [ ]* 1q qj N ijii
   . 

STEP 4: Execute the current action and receive a reward 
  from the environment. 

STEP 5:  Compute the current Q-value using (7). 
STEP 6: Compute the Q-value of the new state using (8) 
for each rule. 
STEP 7: Choose and update the current state and output 
action using (6) based on the Q-table model. 
STEP 8: Return to STEP 2 for a new trial. 
 
Remarks: (i) the Q-table is constructed offline to be used 
onboard the controller to save CPU time, and (ii)  = 0.9 

is adopted (Juang and Lu, 2009; Juang and Hsu, 2009; 
Wakins and Dayan, 1992). 
 
 
CAR-LIKE ROBOT STRUCTURE 
 
The car-like robot is a testbed agent based on the TLT-1 
(Tamiya a little Truck), a one-eighteenth scale radio-
controlled (RC) 4×4 Pickup Truck from TAMIYA, Inc. The 
robot is aimed for an operation in a laboratory with flat 
terrain. Its loading ability is adequate to support 3 kg-load 
of various electronic devices including sensors, AVR 
controller board, ATOM main board and other 
accessories. The list of the robot’s components and 
associated vendors can be found in Figure 2. Its 
mechanical specifications are shown in Table 1. The 4 
wheel steering gives better moving ability for obstacle 
avoidance. The robot is recommended for laboratory 
experiments but robust enough for outdoor operations. 
Onboard sensors consist of two infrared sensors 
(GP2Y0D020F), an ultrasonic range finder (SRF05), and 
a pinhole camera. 

The pinhole camera sensor is used for vision purposes, 
when the car-like robot attempts to avoid the obstacle 
and find the target. Moreover, the robot applies the 
camera in various tasks, for instance recognition and 
obstacle size calculation, obstacle localization, obstacle 
detection, and route identification. The camera is plugged 
on the ATOM D510MO main board via a USB interface 
that provides visual information to the control system. The 
HIS  images  from   the   camera   are   processed   using  
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Vehicle Tamiya TLT-1 

(www.tamiya.com) 

Speed encoger melexis 90217 

(www.tamiya.com) 

Ultrasonic SRF05 

(www.robot-electronic.co.uk) 

Infrared (GP2Y0D02YK) 

(www.robot-electronic.co.uk) 

Pinhole camera  

 

Arduno AVR 

(www.aliexpress.com) 

Intel Atom D510MO 

(www.intel.com) 

 
 

Figure 2. The car-like robot structure. 

 
 
 

Table 1. The car-like robot’s mechanical specifications. 
 

Dimensions 

Length 30 cm 

Width 22 cm 

Height 25 cm 

   

Weight 
Load (Max) 3 kg 

Unload 1.5 kg 

   

Max speed   1.6 m/s 

Max torque  55 N/m 

Carry capacity  2.5 kg 

Min steering radius 4 wheel steering 30 x 30 cm
2
 

 

 
 
MATLAB for RGB colour filtering and edge detections. 
The sampling time of the vision system is chosen 
sufficiently higher than the average image processing 
time interval. The information received from the pinhole 
camera is always available on time. The sampling time of 
the vision system is set at 250 ms, while the sampling 
time of the control system is set at 25 ms. Two infrared 
(IR) arrays (GP2Y0D020F, 24 cm range) are mounted on 
the front part of the robot to detect the obstacle range. 
Each IR range sensor produces an output in binary 
format proportional to the detected distance against the 
obstacle. The IR range sensor transmits the distance 
information via an I

2
C bus in real time. One ultrasonic 

range finder (SRF05) is mounted on the front part of the 
robot. This sensor offers a measurement range of 0 to 3 m   
with  a    wide   viewing   angle   of   60°   beaming.    The 

measurement range is set at 0 to 1.5 m for the car-like 
robot. 
 
 
CONTROL DESIGN 
 
Figure 3 represents the robot control system. Motion 
control of the robot at low level is accomplished by the 
ordinary PI control of 3 DC motors, one of which is 
dedicated to forward and backward motion. The other 2 
motors are for turning of the front and rear wheels, 
respectively. To achieve an environmental learning 
capability, the system employs visual feedback via a 
pinhole camera with conventional colour and edge 
detection algorithms such that the target and the 
obstacles  could  be  recognized.  The  image  processing  
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Figure 3. Car-like robot control system. 

 
 
 

 

 

 

 

Fig. 4 Navigation of the robot. 
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Figure 4. Navigation of the robot. 

 
 
 
results in distance and angles information to be used by 
the IFQ-learning control. An ultrasonic range finder is also 
used to ensure the correctness of the distance 
measurement. 
 
Object detection: There are two types of objects in the 
scenario. A red cylinder with 40 cm diameter represents 
the target. Several blue cylinders each having 20 cm 
diameter are obstacles. An image captured is processed 
using conventional colour coding on RGB and HSI 
formats as well as edge detection. The image is updated 
every 250 ms, and processed on an Intel ATOM D510MO 
board. For the robot to begin its motion, it firstly performs 
a counter-clockwise turnaround to seek for the target. 
The distance between the target and the robot is 
measured by an ultrasonic range finder. A captured 
image  also  contains  the  pictures of obstacles.  Using  a 

similar approach, the robot can recognize the obstacles. 
The ultrasonic sensor also provides the distance 
information between the robot and the obstacles. 
 
Obstacle avoidance: Once the target is found, the robot 
attempts to move towards it in a straight path at a 
constant speed of 18 m/min. It stops by the target with a 
40 cm clearance distance. Along the travelling course the 
robot may encounter some obstacles. Under the control 
by a learning FLC, it may either turn away at once or 
move backward and turn away from the obstacle. To 
navigate the robot towards the target needs to know the 
orientation angle. Referring to Figure 4, the target (T) is 

always placed at the center of the processed image. v


 

represents the velocity and the current direction of the 
robot. θ0 and θt represent the measured angles between  
and the target and the nearby obstacle (O), respectively.  

With such information, the orientation angle (θot) can be 
obtained, that is, θot = (θ0 - θt)/2. The plus and minus 
signs represent right and left orientation, respectively. 

 
 
Fuzzy control rules 
 
The proposed learning control employs fuzzy rules as the 
robot navigation aid. There are two groups of rules 
namely towards the target or FLC1, and robot turning or 
FLC2. The fuzzified input variables are distance measure, 
obstacle orientation to the robot and orientation angle 
(θot), respectively. The fuzzified output variables are robot 
moving distance and turning command, respectively. 
Figure 5 shows the membership functions of these 
variables. The design of the fuzzy rules is heuristic, and 
employs the maximum height inference technique. 
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Figure 5. Membership functions of input and output variables: input variables (a) distance measure, (b) obstacle 
orientation and (c) orientation angle (θot); output variables (d) moving distance and (e) turning command. 

 
 
 

The FLC1 composes of 3 sub-groups according to the 
following rules: 
 
i) if (obstacle is close) then (temporarily stop, execute 
sub-group 1 rules). 
ii) if (obstacle is near) then (keep moving in the same 
direction and execute sub-group 2 rules) 
iii) if (obstacle is far) then (temporarily stop, execute sub-
group 3 rules). 
 
Rules of sub-group 1: Summary of the rules is presented 
in Table 2. A rule can be read as “if (obstacle orientation 
is left) and (angle of orientation is right) then (move 
backward   with   a   moderate    distance)”,   for instance. 

Table 2. Sub-group 1 rules of FLC1. 
 

θo                    θot L CL Cr CR R 

L M Lg VLg Lg M 

Cr M Lg VLg Lg M 

R M Lg VLg Lg M 

 
 
 

Rules of sub-group 2: Table 3 summarizes the rules. As 
an example, a rule can be read as “if (obstacle orientation 
is center) and (angle of orientation is left) then (move 
forward with a very short distance) and (call FLC2)”. Rule 
of  sub-group  3:  The  rule  summary  is in Table 4. A rule 
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Table 3. Sub-group 2 rules of FLC1. 
 

θo                    θot L CL Cr CR R 

L M S VS S M 

Cr VS S M S M 

R M VS S VS M 

 

 
 
Table 4. Sub-group 3 rules of FLC1. 
 

θo                    θot L CL Cr CR R 

L VLg Lg M Lg VLg 

Cr Lg Lg M Lg VLg 

R VLg Lg M Lg VLg 

 
 
 
can be read as “if (obstacle orientation is right) and (angle 
of orientation is left) then (move forward with a very long 
distance)”, for instance. 
 
The FLC2 for turning of the robot consists of a few rules 
as follows: 
 
i) If (obstacle orientation is left) then (turn right), 
ii) If (obstacle orientation is center) then (turn right), and 
iii) If (obstacle orientation is right) then (turn left). 
 
 
FQ-learning control 
 
Robot control algorithms are represented by the flow 
diagram in Figure 6 in which the switch (sw) is at (a) for 
the FQ-learning, while at (b) for the IFQ-learning. 

The microcontroller onboard the robot initializes the 
states, and successfully recognizes the positions of the 
target and the obstacles using the conventional image 
processing techniques. The robot starts moving 
according to the FLC1, and executes the FQ-algorithm 
according to the 8 steps described in “Learning control”. 

Assume that the initial { ( ), ( )}aQ x t a t


= {3,3}Q  = 0.5,  = 

0.5,  = 0.9, ( 1)r t  = -0.04 and  ( 1)bQ x t 


= 0.11, the Q 

value can be calculated using Equation 3 as follows: 

 
1

st
: ( ,(3,3))Q    = 0.5+0.5(-0.04+0.99-0.5)           = 0.725 

 
2

nd
: ( ,(3,3))Q   =  0.725+0.5(-0.04+0.99-0.725)  =  0.838 

 
3

rd
: ( ,(3,3))Q   =  0.838+0.5(-0.04+0.99-0.838)   =  0.894 

  
n

th
: ( ,(3,3))Q   =  0.947+0.5(-0.04+0.99-0.947)   =  0.947. 

 
The value of Q = 0.947 is mapped to a rule of each sub-
group in order to active a better performance of the FLC1.  

 
 
 
 
Such mapping is drawn from the robot training phase. To 
reduce the CPU burden during real-time operation, the Q 
values are calculated offline for the rules of each sub-
group of the FLC1, and stored in the onboard memory as 
a table denoted as the Q-table. The robot continues 
moving unless an obstacle blocks its path. The FLC2 is 
called for the robot to turn away from the obstacle if its 
path is blocked. The functions are repeated until the robot 
reaches the target. 
 
 
IFQ-learning control 
 
Referring to Figure 6, the switch (sw) is at (b). The 
immune algorithm described in “Learning control” is 
incorporated into the robot control. After the robot 
encounters an obstacle, moves backward and retries, the 
immune algorithm adjusts the vertices of the membership 
functions of the distance measure variable (Refer to 
STEPs 2 to 9 in “Fuzzy Q-learning”). This mechanism is 
represented by the diagram in Figure 7. The tuned 
membership functions are regarded as the clones of the 
original ones. As an example, before cloning the vertices 
of the close, near and far are at 0.175, 0.525 and 0.825, 
respectively. After cloning, they may be shifted to 0.275, 
0.475 and 0.775, respectively. 

The immune algorithm stated in “Artificial Immune 
System (AIS)” is combined with the FQ-learning algorithm 
stated in “Fuzzy Q-learning”. The cooperative algorithm is 
denoted as the immune fuzzy-Q learning or IFQ 
algorithm. The immune algorithm helps adjust the 
membership functions of fuzzy descriptors in an online 
manner subject to environment changes. It is expected 
that the proposed IFQ algorithm can learn and act quickly 
to the problems and changes. The proposed algorithm is 
listed as follows: 
 
 
Proposed IFQ algorithm 
 
STEP 0: Initialize parameters: Ag, Abj,k, Agi,k, Abn, C, D, 
IR_left, IR_right, M, Mc, Mccand , AT, C*, Cd, C’, Nd, N’, 

Fd, F’,  , θo , θot, *iiq , and i . 

STEP   1: Normalize information antigens (Ags) of d0, θo , 
and θot in the Euclidian distance range [0, 1] and 
calculate distances between Ags and Abs using (1). 
STEP   2: Create memory pool (M) in matrix form. 
STEP 3: For each antigen Agi from the antigen population 
Ag, calculate affinity vector according to input for all 
antibodies using 
 

1

affinity( , ) = 1/ 1
L

i i
i

Ag Ab Ag Ab


 
 
  

    

 

i
i

nc
Ab

S
  ; i = 1,2,…,L, and L is a real number. 
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Figure 6. Flow diagram of robot control. 
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Figure 7. Membership functions tuning by immune algorithm. 

 
 
 
STEP 4: Select highest affinity antibodies from Abs to 
compose a set Abn. 
STEP 5: Randomly generate a set C of clones. 
STEP 6: Generate a mutated antigen Ag in set C* 
STEP 7: Calculate affinity threshold AT using (2).  
STEP 8: Update memory pool (M) 
 If  |Mccand | < AT then 
    If M is not filled up then store Mccand in M. 
    If M is filled up then replace the oldest  
   Mccand by the current Mccand. 
 else  
    go to STEP 9.  
 endif 
STEP 9: Check the signal from the infrared sensor 
 If (IR_left or IR_right) = “1” 

 then update vertices of input distance member 
functions: C’= Cd + C , N’ = Nd + C  and  F’= Fd + C ; 

    go to Step 5. 
 else (IR_left and IR_right) = “0” 
    then go to STEP 10. 
 endif 
STEP 10: For the current state, compute the membership 
values of the current state in the neighboring states for all 
rules. 
STEP 11: Compute max [ ]* 1q qj N ijii

   . 

 
 
 
 
STEP 12: Execute the current action and receive a 

reward   from the environment. 

STEP 13: Compute the current Q-value using (7). 
STEP 14: Compute the Q-value of the new state using (8) 
for each rule. 
STEP 15: Choose and update the current state and the 
output action using (6) based on the Q-table model. 
STEP 16: Go to STEP 10 for a new trial. 
 

Remarks: (i) the Q-table is constructed offline to be used 
onboard the controller to save CPU time, and (ii)  = 0.9 

is adopted (Juang and Lu, 2009; Juang and Hsu, 2009; 
Wakins and Dayan, 1992). 
 
 
EXPERIMENTS 
 
The effectiveness of the proposed IFQ algorithms for controlling a 
car-like robot is illustrated. The task of the robot is to reach the 
target while avoiding obstacles. The robot must be able to cope with 
environmental changes, that is, configurations of the obstacles and 
the target change. The robot seeks the target, designs its path to 
the target then moves directly towards the target as the shortest 
path. When the robot senses obstacles directly in front, it makes a 
turning action. If the center of obstacle gravity, CGO, is on the left 
side of the center of target gravity, CGT, and the target is behind 
the obstacle, the robot turns right (Figures 8a and 8d). On the 
contrary, the robot turns left if the CGO is on the right side (Figures 
8b and 8e). The robot moves straight according to no presence of 
an obstacle (Figures 8c and 8f). 

During the training phase, the robot moves and turns under 
supervision. The goal is to achieve an adjustment of the 
membership functions, and a smoothed trajectory. The training 
scenarios are designed for left turns, right turns, and straight moves 
with the different sizes of obstacles. If a blocking obstacle is found, 
the transmitted image from the camera system is used for 
extracting the edges, the CGO and the CGT. In this case, the fuzzy 
control rules make decision for appropriate turning direction and 
distance. Once the robot approaches the target, it will stop with a 
clearance of 40 cm (Figure 8f). 

The illustrations in Figure 9 represent 9 experiments under 5 
different obstacle setups. The blue and red cylinders represent the 
obstacles and the target, respectively. 

The robot experiences different situations that cause turning 
problems regarding sizes and locations of the obstacles. In the first 
experiment, an obstacle is directly in front of the robot, and the 
target is located behind the obstacle for various start positions A, B, 
and C (Figure 9a). In the second situation, the robot faces two 
attached obstacles for the start position A but no obstacle for B and 
C (Figure 9b). In the third situation, three obstacles are arranged to 
block any straight path to the target (Figure 9c-f). In the fourth 
situation, the robot is challenged with two turning behaviors 
imposed by four obstacles as shown in Figure 9g for the start 
positions A, B, and C. In the fifth situation, the robot faces more 
challenging tasks as shown in Figure 9h-i. These five situations are 
designed to study the comparative effectiveness of the fuzzy 
control, the FQ- and the IFQ-learning control algorithms under 
complicatedly unknown environments. 

Note that, these comparison studies use the same fuzzy rules. 
According to the IFQ algorithm, the robot keeps adjusting its turning 
distance every time it navigates a new environment. Hence, the 
learned information keeps evolving all the time. Chronologically 
experienced information is removed every 30 min by the “first-in-
first-out” concept. To reduce computational burden the Q-value 
table is used instead of online Q-learning calculation. 
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     (d) turn right        (e) turn left               (f) straight           

 

Figure 8. Basic robot turning rules. 

target 

obstacle 

CGT 

CGO 

CGT 

CGO 

targe
t 

obstacle 

target 

camera

Target

obstacle

camera 
camera camera 

 
 

Figure 8. Basic robot turning rules. 

 
 
 
RESULTS AND DISCUSSION 
 
The robot motion is kept at a constant speed of 18 m/min. 

Four-wheel turning is used to achieve 30⁰ left/right turns. 

Regarding previous experiences, the more training the 
robot gets, the better performances the robot has and 
hence the success rate improves. In this research, the 
robot is trained using 30 different setups with random 
starting positions to study the effectiveness of the control 
algorithms. The effects of the obstacle sizes, the number 
of obstacles and the starting positions of the robot are 
studied to compare the control algorithms on the rates of 
retry turning and goal achievement. 

Figure 9a depicts the simplest obstacle arrangement 
with 3 different robot starting positions (A to C). In this 
experiment 1, the robot employs the simple fuzzy control 
rules and the FQ-learning rules. For all starting positions, 
the robot fails with a few turning retries before achieving a 
successful path to reach the target. From observation, the 
FQ-learning rules assist the robot on memorizing the 
failed paths and not repeating them. This is not the case 
with the fuzzy control that produces success rates of 40 
to 60%. 

Figure 9b depicts the second arrangement of the 
target-obstacle map in which 2 obstacles are attached to 
form one large obstacle regarded as obstacle #1. The 
obstacle #1 blocks a direct path of the robot from the start 
position A to the target. With the fuzzy control and the 
FQ-learning, the robot starting at the B and C positions 
immediately finds direct paths to  the  target  as  shown in 

Figure 10a. However, it fails to avoid colliding with the 
obstacle #1 after leaving the start position A (Figure 10a). 
The robot attempts several retries as shown in Figure 10b 
and c, but still fails. The reasons are that the fuzzy control 
cannot adapt to the environment changes, and the FQ-
learning inadequately covers the environment changes, 
particularly the obstacle size in this case. The same 
target-obstacle map is applied further for the robot 
embedded with the IFQ-learning rules. When the robot 
senses the obstacle #1 blocking the desired path, the 
immune algorithms adjust the fuzzy turning rules by 
adding cloning parameters. In effect, the robot realizes 
more spaces for turning, and eventually seeks its way to 
avoid colliding with the obstacle to reach the target. 
Figure 11 represents the robot paths in this case (VDO-
clip available at 
http://www.sut.ac.th/engineering/electrical/carg/robot.htm) 

Figure 9c-i depicts different target-obstacle maps for 
more difficult experiments designated as experiments 3 to 
9 accordingly. Relative distances among the obstacles 
and the target raise the levels of difficulty of the problems. 
From these pictures, the readers can notice different 
paths made by the robot to reach the target. 

Figure 9c-d represent similar situations in a symmetrical 
form. A large obstacle #1 formed from two attached 
obstacles and a small obstacle #2 block a direct path 
from the start position A to the target. Another small 
obstacle #3 imposes a constraint on a possible route to 
the target. With the fuzzy control and the FQ-learning, the 
robot completely fails to avoid the obstacle #1 as indicated  
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Figure 9. Experimental target-obstacle maps: (a) Experiment 1 (b) Experiment 2, (c) Experiment 3, (d) Experiment 4, (e) Experiment 5, (f) 
Experiment 6, (g) Experiment 7, (h) Experiment 8 and (i) Experiment 9. 
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Figure 10. Path tracking by using fuzzy control and FQ-learning algorithm (a) start positions A, B and C, (b) start 
position A and right turn, and (c) start position A and left turn. 

 
 
 
in Table 5 of the Experiments 3(3) and 4(3). The robot 
retries once to successfully recognize a large obstacle 
and    turn   away   from   it    under    the     proposed    

IFQ-learning. The situations are shown in Figure 9c-d 
with the summary in Table 5. The chance for the IFQ-
learning   control   to   decide  for  left  or  right  turning   is  
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Figure 11. Diagram representing robot behaviors with the 
IFQ-learning. 

 
 
 
approximately equal. Similar experiments designated as 
5 and 6 are also conducted with 4 different start 
positions. The situations are represented by the pictures 
shown in Figure 9e-f. With the fuzzy control and the FQ-
learning, the robot only at the start positions B and C 
successfully reaches the target. Again, it partially fails to 
recognize a large obstacle #1 when this obstacle is 
directly in front of the traveling path (the robot at the start 
positions D and E). With the IFQ-learning, the robot 
successfully avoids all obstacles and reaches the target 
without any retry. The data in Table 5 for the experiments 
5(3) and 6(3) summarize such results.  

Figure 9g depicts one complicated target-obstacle map 
designated as experiment 7, and 7(4) in Table 5 
accordingly. With the proposed IFQ-learning, the robot at 
the start positions A, B, and C successfully travels to the 
target and avoids colliding with all obstacles without any 
retry. In contrast, the robot with the FQ-learning needs 
some retries to recognize and avoid the large obstacle 
#1. When the start position is at A, the success rate is 
only 20% with the FQ-learning, but the robot completely 
fails with the simple fuzzy control. The success rates 
become 40% for the robot with the fuzzy control when the 
start positions are at B and C. 

 
 
 
 
More complicated experiments are represented by the 
pictures in Figure 9h-i. There are 4 small obstacles and a 
large one. The relative distances among these obstacles 
and the target are set differently. Referring to Figure 9h 
and experiment 8(5) in Table 5, the robot with the fuzzy 
control and the FQ-learning at the start positions B and C 
completely reaches the target without any retry. This is 
not the case for the start positions A, D and E, in which 
the robot completely or partially fails to reach the target. 
With the proposed IFQ-learning, from all the start 
positions the robot successfully moves to the target 
without any retry except that 2 retries are performed at 
the start position A. Referring to Figure 9i and experiment 
9(5) in Table 5, similar results are observed. Without the 
immune algorithm, it is difficult for the robot to learn a 
changed environment. 

The experimental results discussed so far are 
summarized in Table 5. With the fuzzy control and the 
FQ-learning, the success rates of the robot reaching the 
target are 20 to 40% or null when the robot faces a large 
obstacle blocking a direct path to the target. The reasons 
are that the simple fuzzy control does not have adaptive 
mechanism, hence cannot learn or adapt to environment 
changes, and the FQ-learning algorithm, although works 
well to some extent, is not adequate to cope with 
complicated environment changes. In the contrary, the 
proposed IFQ-learning provides 100% success rates 
with only a few retries. Moreover, the robot consumes a 
shorter traveling time to the target indicated by the average 
time values in comparison with the other approaches. The 
artificial immune algorithm assists the fuzzy controller to 
adapt to environment changes by adjusting the 
membership functions. As a result, the IFQ controller 
decides for the robot to turn away from the obstacles with 
longer turning distances, and hence not hitting the 
obstacles. The experimental results confirm the 
effectiveness of the proposed IFQ-learning algorithms. 
 
 
Conclusion 
 

This article has proposed an artificial immune fuzzy Q-
learning controller for obstacle avoidance and target 
tracking of an autonomous car-like robot. Simple fuzzy 
control rules are employed to supervise the low-level PI 
control loops of 3 DC servo motors for driving and turning 
the robot. The fuzzy rules are firstly enhanced by the Q-
learning technique denoted as the FQ-learning control. 
Secondly, the artificial immune algorithms have been 
incorporated into the controller to achieve a new strategy 
denoted as the IFQ-learning control. The article has given 
the details of these algorithms and control design. 

Experimental setup has been constructed on a TLT-1 
(Tamiya a little truck). The car-like robot is equipped with 
various sensors including the pinhole camera to provide 
visual feedback. It uses an AVR controller board with 
the ATOM D510MO. Nine complicated experiments have 
been  conducted  to  investigate  the  effectiveness  of the  
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Table 5. Summary of experimental results. 
 

Experiment 
(number of 
obstacles) 

Start 
position 

Fuzzy control Fuzzy Q-learning Immune Fuzzy Q-learning 

Trial 
 (times) 

Retry  
(times) 

Success 
(times) 

Success 
rate (%) 

Average 
time (s) 

Trial 
 (times) 

Retry  
(times) 

Success 
(times) 

Success 
rate (%) 

Average 
time (s) 

Trial 
 (times) 

Retry  
(times) 

Success 
(times) 

Success 
rate (%) 

Average time 
(s) 

1 (3) 

A 5 5 2 40 28.33 5 2 4 80 19.47 5 0 5 100 17.56 

B 5 5 3 60 25.15 5 2 4 80 18.11 5 0 5 100 18.00 

C 5 5 2 40 27.42 5 2 4 80 18.35 5 0 5 100 17.55 

                 

2 (3) 

A 5 5 0 0 ∞ 5 5 0 0 ∞ 5 1 5 100 34.24 

B 5 0 5 100 17.54 5 0 5 100 17.22 5 0 5 100 17.33 

C 5 0 5 100 19.44 5 0 5 100 18.39 5 0 5 100 18.11 

                 

3 (3) A 5 5 0 0 ∞ 5 5 0 0 ∞ 5 1 5 100 36.15 

                 

4 (3) A 5 5 0 0 ∞ 5 5 0 0 ∞ 5 1 5 100 40.53 

                 

5 (3) 

B 5 0 5 100 18.40 5 0 5 100 17.55 5 0 5 100 17.45 

C 5 0 5 100 17.29 5 0 5 100 17.41 5 0 5 100 16.75 

D 5 5 0 0 ∞ 5 2 4 80 31.05 5 0 5 100 18.38 

E 5 5 0 0 ∞ 5 5 0 0 ∞ 5 0 5 100 21.15 

                 

6 (3) 

B 5 0 5 100 17.30 5 0 5 100 16.44 5 0 5 100 16.53 

C 5 0 5 100 17.47 5 0 5 100 17.01 5 0 5 100 16.72 

D 5 5 0 0 ∞ 5 5 0 0 ∞ 5 0 5 100 25.04 

E 5 5 0 0 ∞ 5 1 4 80 28.30 5 0 5 100 19.49 

                 

7 (4) 

A 5 5 0 0 ∞ 5 5 1 20 73.20 5 0 5 100 32.10 

B 5 3 2 40 21.23 5 1 5 100 16.53 5 0 5 100 17.02 

C 5 3 2 40 19.21 5 1 5 100 17.26 5 0 5 100 17.32 

                 

8 (5) 

A 5 5 0 0 ∞ 5 5 0 0 ∞ 5 2 5 100 38.16 

B 5 0 5 100 17.23 5 0 5 100 17.05 5 0 5 100 17.21 

C 5 0 5 100 17.00 5 0 5 100 18.29 5 0 5 100 17.72 

D 5 3 1 20 22.40 5 1 2 40 24.34 5 0 5 100 20.30 

E 5 2 2 40 24.11 5 1 2 40 28.10 5 0 5 100 19.55 

                 

9 (5) 
A 5 5 0 0 ∞ 5 5 0 0 ∞ 5 1 5 100 37.22 

B 5 4 2 40 17.22 5 1 5 100 18.34 5 0 5 100 16.47 
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fuzzy, the FQ- and the IFQ-learning controllers for 
comparison purposes. The setups are illustrated in 
“Experiments” with some VDO-clips available at 
http://www.sut.ac.th/engineering/electrical/carg/robot.htm. 
As a result, the success rates of the robot reaching the 
target are 43.70% as average using the fuzzy control, 
and 62.96% as average using the FQ-learning control, 
while 100% success rates are achieved via the proposed 
IFQ-learning approach. Applying such algorithms to a 
convoy of robots will be our future research issues. 
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Notation list 
 
a(t) =  The action at time state (t) 
Ab =  An antibody 
Abn =  The set of antibodies with high affinities 
Abs =  Antibodies 
Abi =  The attribute of antigen (i = 1,…, Mc) 
Abi,k =  The k

th
 attributes of the Abi 

inA  =  Fuzzy set 

Ag =  An antigen 
Ags =  Antigens 
Agi =  The attribute of antigen (i = 1,…,N) 
Agi,k =  The k

th
 attributes of the Agi 

AT =  The affinity threshold 
C =  The set of clones 
C* =  The mutated antigen 
C’ = The vertex parameter of triangular membership 
function describing close after adding the set of clones 
Cd = The vertex parameter of triangular membership 
function describing close 
D =  The distance between Ags and Abs  
F’   = The vertex parameter of triangular   
membership function describing far after adding the set of 
clones 
Fd  = The vertex parameter of triangular membership 
function describing “far” 
IR_left   =  The infrared distance finder signal (left) 
IR_right =  The infrared distance finder signal (right) 
M =  The memory pool 
Mc =  The number of memory 
Mccand =  The candidate memory 

inc    =  The number of recognized patterns to be 

classified in the i
th
 subset  

N’ = The vertex parameter of triangular membership 
function describing near after adding the set of clones 
Nd  = The vertex parameter of triangular membership 
function describing “near” 

( 1)r t   =  the  scalar  reinforcement  signal  that depends  

 
 
 
 
on environment 

nx  =  The fuzzy input variables 

( )x t


 =  The present state 

( 1)x t 


= The obtained state from ( )x t


 after the current 

action of  a(t) 

â  =  The inference output 

 ˆ ( )a x t
  =  The action state at time step t  

*
Q  =  The maximum anticipated Q-value 

( , )Q x a


  =  The output for state vector x


and action (a) 

 ( 1)Q x t 


 = The possible action sets at the state ( 1)x t 


 

 ( 1)
b

Q x t 


 = The best estimated Q-value that the agent 

assumes to reach the state ( 1)x t 


 

S  =  The antibodies space 

( , )ˆ i ja  =  The output action variable 

  =  The average distance between each Agi in Ags 

  =  The learning rate, ( 0 1  ) 

  =  The discount factor 

θt =  The target angle 
θo =  The obstacle angle 
θot =  The orientation angle 
n =  The highest affinity antibodies from Ab 

*ip  =  The greedy action 

P =  The set of possible actions of each fuzzy rule 

in
q   =  The Q-value corresponding to an action 

*iiq  =  The maximum Q-value for rule i  

i   =  The firing strength of rule i 
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