

International Journal of the Physical Sciences Vol. 5(15), pp. 2236-2247, 18 November, 2010
Available online at http://www.academicjournals.org/IJPS
ISSN 1992 - 1950 ©2010 Academic Journals

Review

A biological model to improve PE malware detection:
Review

Saman Mirza Abdulalla1*, Laiha Mat Kiah1 and Omar Zakaria2

1 Department of Computer System and Technology, Faculty of Computer Science and IT, University of Malaya, 50603

Kuala Lumpur, Malaysia.
2 Department of Computer Science, Faculty of Defence Science and Technology, National Defence University of

Malaysia, 57000 Kuala Lumpur, Malaysia.

Accepted 29 October, 2010

Malwares control computer systems by infecting system files. They take advantage of system
compatibilities to ensure their survival from one version to another. The structure of the windows
portable executable (PE) files between available versions of the windows operating system (OS) makes
these files an easy target for malwares. Fields and codes of clean PE files are modified and changed
after infection. Checking both changes and modifications is necessary to detect malwares with a
minimum false alarm rate. This paper reviews models that propose to detect PE malwares. It discusses
PE structure and identifies the fields and locations that are vulnerable to malwares. It also explains the
use of the human immune system and co-stimulation signals as a way to build a biological model for
improving the ability of PE malware detection systems.

Key words: Malware detection, false alarm, PE files, immunity system, co-stimulation signals.

INTRODUCTION

Malware is a generic term used to define different types
of attack and threat codes that penetrate and infect
computer systems (Bradfield, 2010). Most malwares act
as an application inside a computer system (Jajodia,
2009). Applications are targeted by anti-malware
software to detect and prevent their activities. Detection
and prevention are difficult because malwares change
their behaviors and structures with every new generation
(Szor, 1998).

Periodically, technical reports from detection system
vendors warn about new malwares, displaying charts and
graphs to show how the number of malwares has
increased over networks. A report from Symantec (2010)
shows that the number of malwares has reached millions
(Security, 2010). In addition, numerous zero-day malware
infections are recorded and reported every day (Security,
2010). A 2010 report from McAfee shows that up to
55,000 new malwares are reported every day (McAfee,

*Corresponding author. E-mail: saman1969@siswa.um.edu.
my.

2010).
Current detection systems and anti-virus programs

scan computer systems to look for malware instances
that are already known (Clemens Kolbitsch, 2009). The
non-dissection malware codes cannot be captured by
available commercial detection systems. This means that
the valid detection systems are able to recognize only the
known patterns of malwares (Security, 2010). However,
for unknown malwares, malware analysts should extract
the behaviors and codes of malwares, after which they
should update detection systems. Only then could such
detection systems function properly (Zakaria, 2009).

Although some anti-malware applications that depend
on behavior detection techniques have the ability to
predict the presence of some malwares, they still face
two main challenges. First, available anti-virus programs
are only able predict the presence of new malwares
whose behaviors are closer to behaviors of known
malwares (Jajodia, 2009; Security, 2010). This means
that if there is a great difference between known and
unknown behaviors, such a technique would likely fail to
detect unknown malwares. With this inadequate ability to
detect new malwares, the second undesirable

characteristic of the behavior-based detection system is
the prevalence of false alarms, which only annoys users
(Bradfield, 2010).

This paper reviews the modifications and changes that
malwares inflict on system files, as well as how they
control the system’s execution and perform payloads and
functionalities. This paper also tackles malware call
functions of operating systems for execution and how
these calls are traced to detect the execution behaviors of
malwares. The work needs to include some explanations
about biological co-stimulation and to study windows
portable executable (PE) file structure to support
proposing a biological model that could improve Malware
detection and eliminate the False Alarm.

Malwares and executable file Infectors

Malicious code activities and functionalities infect
computer systems every day. Various ways have been
developed by virus writers to penetrate computer systems;
however, prevention proves difficult. Moreover, current
viruses have different types of payloads to perform
different functionalities that challenge detection (Bradfield,
2010). Many types of malicious codes perform different
activities; however, this paper will focus on just three
types:

(a) Virus: A computer program that is usually hidden within
another seemingly innocuous program, produces copies of
itself and inserts them into other programs, and usually
performs a malicious action (Zakaria, 2009).
(b) Worm: A small, self-contained, and self-replicating
computer program that invades computers on a network
and usually performs a destructive action (Khaled et al.,
2010).
(c) Trojan Horse: A seemingly useful computer program
that contains concealed instructions which, when
activated, performs an illicit or malicious action (Bradfield,
2010).

This paper has chosen these three types of malicious
codes because they represent 85% of the total infection
cases recorded in annual reports for 2009 to 2010 issued
by antivirus software vendors (McAfee, 2010; Security,
2010). In addition, the available antivirus programs still do
not have the ability to recognize all types of malwares and
detect zero-day malwares (Filiol et al., 2006; Sami et al.,
2010).

The execution of such types of malwares is similar to the
execution of any normal applications or programs that run
under Windows OS. Malwares use many Windows
functions stored in Kernel mode and user mode called
Application Programming Interface (API) (Oney, 2002). To
call these functions, malwares should have the physical
addresses of the needed APIs, which cannot be obtained
easily, and which Windows OS will not simply provide

Abdulalla et al. 2237

(Willems et al., 2007). Thus, malwares find ways to collect
these addresses from the Windows OS.

Malwares are programmed to know that each normal
application that runs under Windows OS has a predefined
list of API names and addresses (Cheng, 2009). The listed
API is imported by the application during execution or
exported to other Windows applications (Oney, 2002).
Malwares attack these PE applications to collect API
addresses and control the execution of infected
applications (Willems et al., 2007). They change certain
fields and locations to direct the execution of the normal
application PE to their codes, and then return the
execution control to normal after performing their
functionalities (Clemens, 2009). They also modify the list
of needed API functions to include other functions required
during code execution (Schmidt et al., 2009).

The idea to insert codes in executable files originated in
1986, when a programmer named Ralph Burger found that
codes could be inserted into DOS executable file. He
programmed a virus, called “Vir Dem,” with an executable
infection capability. The virus has the ability to infect .com
executable file under MS-DOS (Szor, 1998).

When the Windows OS and Windows NT were released,
most MS-DOS executable viruses failed to replicate under
the new system. Only a few viruses were able to do so,
such as Yankee Doodle, a very successful old Bulgarian
virus (Merkel et al., 2010). Virus writers faced the new
challenge of investigating the new operating system and
creating new DOS executable viruses and boot viruses,
with special attention to Windows 95 compatibility
(Paquette, 2000). Since most virus writers did not have
sufficient in-depth knowledge of the internal mechanisms
of Windows 95, they looked for shortcuts to enable them
to write viruses for the new platform (Shevchenko, 2007).
They quickly found the first one—macro viruses, which are
generally not dependent on the operating system or
hardware differences (Skoudis and Zeltser, 2004). The
first system-dependent virus, Boza, which was compatible
with Windows 95, appeared on the same year that
Windows 95 was launched. This virus was written by an
Australian group called VLAD (Piccard, 2005)

A new system-dependent virus called Cabanas virus
was later written. Developed by Jaky/29A at the end of
1997, the virus can infect Windows 95. Later, it was found
to have the capability to infect other new Windows
platforms, such as Windows 9X, Windows NT, and Win32.
Soon the compatibility dream of the Windows platforms
became a nightmare (Szor, 2006). The key role of
Windows compatibility returned to the common file format
or PE file format. This also makes it possible for viruses to
jump from one 32-bit Windows platform to another easily,
as Cabanas did (Chappell, 2006).

In May 2000, the number of executable infectors
reached more than 500. However, the most important
Win32 development by virus writers was in Win32 worms
(Higgins et al., 2003).Worms can replicate, propagate, and
infect without a user interface (Szor, 2006). The virus

2238 Int. J. Phys. Sci.

writers moved from virus developers toward networked
worm development. Moreover, techniques such as “code
encryption” have made signature detection procedures
more difficult (Paquette, 2000). In addition, most Win32
infectors are unable to save the “entry point” of the PE
files; therefore, curing the infected files became difficult, or
even impossible (Ször, 2000). These activities prompted
virus researchers to spend more efforts on PE infectors.

The encryption techniques that hide signatures by
encrypted PE viruses became more developed. Virus
writers use polymorphic techniques to change the
signature of a PE virus each time it infects a new file
(Zakaria, 2009). The virus Win32.Driller, which was first
reported in 2003, uses the Polymorphic techniques to hide
its signature. The virus infects PE files that have .exe, .scr,
and .cpl filename extensions. When run, the virus infects
these files in current Windows and in Windows system
directories (Tyagi and Vyas, 2008). The polymorphic
technique gives the viruses the capability of changing their
signature with each new infection (Xu et al., 2004). In
2004, Symantec released a report showing that it received
17,500 PE infector samples (Turner et al., 2004).
Moreover, many strong malwares, such as Sassor and
Win32 virus 1408, were released, and the types of system
files that could be infected grew in number. Many data
files of several antivirus programs were targeted and
deleted by PE malwares (Fosnock, 2005).

In 2005 to 2006, the number of PE infectors and
malwares increased. Records show that the number of
malwares in 2006 increased by 41% from 2005. Records
further indicate that approximately 1,500 malwares are
being recorded every month, including worms that are
propagated through e-mail. In 2006, another malware,
Virus.Win32.Saburex.a, was recorded, which has the
capability to use a technique called Packer (Turner et al.,
2006). Packer is a software or a technique that is typically
used to minimize the size of files or data that are
transferred over networks or through e-mails (Wei and
Ansari, 2008). Unfortunately, virus developers misused
this technique to hide malicious codes inside PE files. The
problem with this technique is that malicious codes cannot
be scanned until the file is executed and the image of the
PE is saved to the memory. In addition, scanners cannot
mark any packed files as malwares because packers are
initiated as normal software for files and data compression
purposes (Wei and Ansari, 2008).

Increasing the complexity of PE malwares was come in
parallel with their steady increase in number.
Approximately 45,690 new malwares were recorded in
November 2008 and 46,014 in January 2009 (Coorp,
2008). Antivirus and detection system programs should be
aware of all these techniques and have adequate
information about the behaviors of malwares to properly
detect them. Complex malwares have many behaviors
that are similar to those of clean files. This leads to

increase the false alarm rate. Figure 1 shows the status of
false alarm rate of (2010) version for antivirus detection
softwares (AV-Comparative, 2010).

Files should be thoroughly checked to distinguish a
clean file from an infected one with zero error rates. This
work expected such improvement by inserting a double
checking process in the detection systems, as Immune
System does.

Malware detection models

Most reviewers and researchers agree that the significant
problems in current malware detection models have to do
with the accuracy of prediction and the ability to detect
unknown malwares (Bradfield, 2010). There are many
considerations for improving the ability of antivirus
systems. Current signature-based antivirus programs still
cannot detect unknown malwares, whereas behavior-
based detection systems are accompanied by the
annoying false alarm (Jajodia, 2009; Security, 2010).

Therefore, the time has come to go deeper into the
infected file, and to open and see, as the surgeons say,
what an external scan cannot identify (Cheng, 2009). Most
infected files are the executable and system files;
therefore, researchers aim to study the structure of these
PE files, determine the models that can compute the
differences between a clean and an infected case, and
refine malware detection (Khaled et al., 2010).

Using classical file scanning, the researchers find
difficulty in dealing with the sophisticated techniques used
by malwares, such as polymorphic and metamorphic
techniques (Xu et al., 2004; Mori, 2004). Xu et al. (2004)
introduced a model that traced and analyzed API
sequence for applications, using the API sequences as
signatures to detect new strains of known polymorphic
viruses. Xu et al. (2004) relied on a hypothesis that
polymorphic viruses can change their signature; however,
the sequence of their API did not change. The model can
detect instances of known polymorphic viruses and can
search for similarities to detect unknown strains. However,
there are some malwares using the metamorphic
techniques that have the ability to reorder the sequence of
API calls (Mori, 2004). During the evaluation, optimization
is needed to improve new sequence generation. Including
more than one feature, rather than considering just the
API behavior calculation feature, is necessary. With more
than one feature, the analysis result of the second feature
will support or correct the first one.

The same API sequence topic was proposed by Miao
Wang (2009) to build an abnormal intrusion detection
system. They saw that the domain used by Xu et al.
(2004) does not cover all types of APIs in case new
malwares are applied to the detection system. They
trained their proposed model to detect abnormal API

Abdulalla et al. 2239

Figure 1. False alarm rate for available detection systems.

sequences using both native and user mode API
functions, and found that monitoring the user API calls is
not sufficient to trace new malwares. This is because
many malwares can call API directly. Malwares can
expand their domain to include all API functions available
in the computer system in the training vectors, while the
window size of trained vectors remain the same six
elements used by Xu et al. (2004). This enables new
APIs within each vector to be seen as malwares that
somehow become included in the training set of normal
vectors. Distinguishing such vectors from normal vectors
is difficult and likely leads to a high false alarm rate
because there are many shared APIs between normal
vectors and abnormal vectors in the training set.

The API functions required by a PE file execution are
saved in the import table field (Essam, 2008). Malwares
simply make a few changes in the API calls inside the
“import table” of the PE by inserting the new API
functions needed to execute its payload (Szor, 2006).
The percentage or degree of changes in the API list in
import table shows if the file is infected or is still in the
correct status. This concept was used by Karmer and
Bradfield (2009) and (Bradfield, 2010) as a hypothesis to
describe malwares. The hypothesis states that any
changes in the correct software affect the correctness
measurement (that is, degree of changes); therefore,
malwares may be determined according to the degree of
correctness. The process involves measuring the

normality of a program that a malware requires to defeat
scanning programs. Such models are very sensitive to
any changes and have a high false alarm rate (Szor,
2006). They need verification to control and minimize this
rate, and further investigate the suspected PE files.

The PE file anatomy is not a new topic; in fact, it has
been used by many detection models to check for the
presence of malware codes or analyze malware behavior
(Father, 2004; Mori, 2004; Jajodia, 2009). (Khaled et al.,
2010) built an AMI model based on clonal selection
algorithm. They used the API call sequence to classify
malwares, using compression between some algorithms,
with acceptable results. They concluded that the false
alarm still exists.

Many techniques are applied to the API call sequence
to detect or classify malwares accurately. Sam et al.
(2010) used data mining techniques to analyze the API
call sequences. Although, they claimed that these
techniques minimize the false alarm, minimization could
be further improved and eliminated if they involved
changes behavior of malwares as features for
verification.

The verification method used by (Cheng, 2009) applied
probability rules such as conditional probability. They
classified the contents of PE fields into normal and
abnormal behavior groups, and used the same API
domain to identify the normal and abnormal probability
values. They also used both values to calculate the

2240 Int. J. Phys. Sci.

conditional probability on normality, and finally compare
the result with a predefined threshold. However, no
verification of normality or abnormality results is available
before applying the conditional probability. In addition, the
verification is built into the same domain. This is similar to
analyzing two half stories from the viewpoint of one type of
data. Building a verification process inside the malware
detection system is necessary. The principle of verification
is required to make a case meaningful or clear, which can
be achieved in different ways.

Towards this end, determining what malwares do inside
a PE file would be desirable, and discovering how
modifications of the API sequence or API list in import
table can confirm this information. Malwares make
changes in several locations inside the PE files to obtain
control of the program execution (Szor, 1998; Szor, 2006).
The system should record the changes to these entry
point locations made inside the PE files by malwares.
These changes could be considered as a starting point to
build a malware detection system (Mori, 2004).
(Nachenberg, 2001) explained that most possible
locations that a malware infects are changed. His model
scanned these locations and sent the results to an
emulation process to detect malwares. This action could
support the verification of what an API sequence scanner
will decide.

Biological models to detect malwares

In previous years, many biological models have been
proposed to improve computer security systems. Most of
them try to mimic the human immune system because of
its strong capacity to defend against viruses and bacteria.
Specifically, the immune system has the capability to
discriminate between self- and non-self cells, and to
update itself to launch unknown foreign cells inside the
human body (Julie et al., 2010).

Forrest et al. (2002) proposed the self- and non-self
discrimination process. In his research, Forrest showed
how problems of computer security could be solved by
making the computer system recognize the normal files
and distinguish them from the abnormal ones. Other
researchers have used mathematical approaches to prove
his hypothesis. Theoretically, they obtained good results;
however, no explanations or details have been provided
regarding how this proposal could be validated. When an
infected file that looks like a normal one is executed, for a
few seconds or less than a second, it becomes harmful as
it achieves its functionalities.

The normal file is considered as abnormal after insertion
of malicious codes into normal one by a malware
(Bradfield, 2010). The detection systems and antivirus
programs should recognize the binary representation of
these malicious codes or their execution behaviors.
D'haeseleert et al. (2002) proposed the negative selection
algorithm to build detectors that can recognize unwanted

patterns. To build these detectors, they focused on
information taken from the self set without referencing any
information about the non-self set. This has led to an
increase in the computational cost of this algorithm
because the number of detectors is exponentially related
to the size of the self set. Even if the relation improved
linearly, as shown by Stibor et al. (2005), the number of
required detectors remains too large; in addition, these are
not guided detectors.

Most immune system-based models that work using
pattern recognition utilize either clonal selection algorithm,
negative selection algorithm, or the danger method
(Srinivasan, 2009; Jieqiong et al., 2010) to build detectors.
However, the discrimination process in the immune
system is completed and confirmed only when the co-
stimulation signal is found. A survey conducted by Bo-yun
(2006) classified the applications that could be achieved
by the artificial immune system. The survey included
models that propose to build different security and
detection systems. The algorithms used by detection
models are built upon the processes that were already
used to generate perfect detectors. These models
presuppose the cases to be already abnormal and then
simply attempt to create suitable detectors for the
abnormality. The authors of all the proposed work agree
that the key task of any AMI is discrimination; however,
they built their models on algorithms that occurs during the
proliferation stage, which comes after a confirmation
signal from the co-stimulation process has confirmed the
discrimination between self and non-self (Smith, 2006).
Without the verification and confirmation process, the
negative selection algorithm generates a false alarm. In
their investigation, Kim and Bentley (2001) used NSA in
the anomaly detection system. They found that this
algorithm can work similarly to a filter for anomaly cases
and cannot generate competent detectors. The result they
obtained implicitly shows that models that mimic NSA are
expected to have a high false alarm rate; thus, they
proposed to extend the NSA model.

Other researchers, such as Stibor et al. (2005),
proposed that the detection set in NSA should contain
negative and positive elements in order to work properly.
They suggested applying two classes to the support vector
machine (SVM) to build an anomaly detection model. The
suggestion did not mention any characteristics of the
features of elements in each class, thereby affecting the
accuracy of the model. The self and non-self discrimi-
nation by NSA was reviewed in detail by Aickelin et al.
(2004). They explained many suggestions made by other
researchers and showed the ability of AIS in the field of
“intrusion detection system”. They encouraged doing
further research in this area, applying a wider data set and
samples in training and testing stages to minimize the
false rate obtained during discrimination.

Apparently, the filtration of self from non-self performed
by NSA needs optimization to improve the accuracy of the
detection procedures. Researchers have worked to mutate

elements to predict new patterns. Towards this end, the
clonal selection algorithm proposed by many researchers
has been widely used as an extension and an
improvement to the NSA. The algorithm has been
described by Yu and Hou (2004) as a practical and
simple tool for simulation and experiments. The steps of
this algorithm, described biologically by Edge et al.
(2006) as the self-organization, adaption, diversification
and then positive selection and negative selection of an
element, relate to self and non-self. The algorithm was
investigated by De Castro and Timmis (2002), who
showed how active detectors could be used to activate
other detectors and maintain the ability of detection
systems. The clonal selection algorithm reduces the time
spent on detection. The algorithm achieves mutation to
increase the affinity degree of matching, and allows the
pattern recognition to be faster when the next infection
occurs (Dasgupta, 2007). In addition, the mutation of the
clonal selection algorithm helps the prediction of new
patterns and new computer viruses within the range of
the training domain. Biologically, this stage depends on
the co-stimulation signal that has already identified a
foreign cell as a non-self (Khaled et al., 2010).

Another survey done by Hart and Timmis (2008) on
applications was inspired by the artificial immune system
where anomaly detection and computer virus is one of
the minor applications. They stated that problems in all
research studies come from the information used to
represent training sets, such as depending on one source
in building set and how many elements should be
inserted. The studies attempted to solve the issue of
fitting the detectors with some anomaly or virus cases.
This implies that unknown cases are already considered
as viruses or anomaly cases. All these issues are defined
from the viewpoint of negative selection and clonal
selection. However, Aickelin and Cayzer (2002) noted
that negative selection algorithm has a false alarm rate,
and clonal selection algorithm has many shared areas
with self and non-self sets. He tried to propose the
Danger Theory to overcome the problems of previous
algorithms. Matzinger’s Danger Theory debates the self
and non-self point of view (Kim et al., 2005). The theory
agrees that the discrimination of self and non-self should
occur, then negative selection and clonal selection
algorithms can be achieved correctly. However, all
programmers who used Danger Theory agree that this
theory can work correctly only if the data set is limited
(Glaser and Strauss, 2007).

As summarized in Table 1, the subject of using a
biological model to promote security and analyze
malwares is not new. However, there is a biological
phenomenon in “human immune system” activities, called
co-stimulation, which has not inspired work in security
issues. This phenomenon is responsible for improving
the accuracy of discrimination between self and non-self.

Abdulalla et al. 2241

This activity is responsible for not attacking self cells as
non-self cells.

Immunity System Co-stimulation (ISC): Biological
verification

The human body’s immune system is an excellent
defense system. It performs complex activities to keep
the body clean from antigens, and adapts itself to detect
and memorize unknown antigens (Health, 2003). Its key
role is to distinguish between the normal (self) cells and
abnormal (non-self) cells. The distinguishing process is
achieved through cooperation between immune cells with
the presence of some enzymes that work as
communication signals between those cells (Hofmery,
2000). These signals control the activities of the immune
system. They direct the defense process correctly and,
in perfect situations, they instruct the immune cells in
performing their functions, such as the proliferation
process, when a specific antibody has been generated
and memorized for an antigen (Naik, 2003).These signals
are controlling the activities of the immune system. They
are directing the defense process correctly and only in
perfect situations they instruct immune cells to do their
functions, such as the proliferation process, when a
specific antibody has generated and memorized for an
antigen (Naik, 2003).

As a first response, B-cells will engulf a suspected body
and analyze it. Pieces of engulfed body as activate the
major histocompatibility complex (MHC) in peptides on
the surface of B-cell. The MHC rising in the B-cell signals
to two types of T helper cells (that is, Th- CD+4 and Th-
CD+8) to be stimulated the MHC (Michael, 1997; Naik,
2003).

When receptors of Th- CD+4 are activated with MHC,
the first signal (Signal 1) detecting an abnormal case is
satisfied. The degree of activation differs as not all
receptors have the same shape as MHC. The degree of
such activation represents the affinity. The Th-cell will
bind with the MHC protein in another form using (CD+8)
to confirm (Signal 1). The incorrect activation of (CD+8)
Th-cell will not generate the confirmation signal (Signal
2). This means that Signal 1 is generated incorrectly and
the engulfed B-cell will be marked as anergic cells
(Health, 2003). However, correct activation will result in
the co-stimulation signal. In this situation, the immune
system will decide to build an arsenal of a certain type of
antibody and killer cell through the proliferation of B and
T cell to kill the antigens, thereby cleaning the body, and
to memorize the built antibodies (Michael, 1997). Figure 2
illustrates the co-stimulation and its effects (Naik, 2003).
Co-stimulation signals, sometimes called two-signal
messages, come from simultaneous activation of two
different Th- cell types with an antigen (Naik, 2003). This

2242 Int. J. Phys. Sci.

Table 1. Summary of malware detection system’s works.

References / Researchers Method used Contribution Analysis

(Forrest et al., 2002)

First one used mathematical approach
to design biological model for detection
system. They depend on negative
selection algorithm.

They proved that
malwares could be
detected even they are
unknown.

Their work needs to be validated.

(D'haeseleer, 2002) They used negative selection algorithm
to build a biological model.

They proved NSA
statistically. They
proved that malwares
can be detected as
they will not be within
the normal domain.

They just depended on the self set
information. This leads to increase
computational cost.

(J-Y. Xu et al., 2004)
Tracing suspected file’s API sequence
and using similarity measurement
between two sequences.

Their model could find
new strains of
polymorphic infections.

They assume that the sequence of the
API polymorphic malwares will not
change, although the signature
changed. However, there are some
malwares, such as metamorphic one,
will change this sequence.

(Bo-yun Zhang, 2006)
They used support vector machine to
build a method to detect computer
viruses.

They can minimize the
dataset size with
keeping detection of
virus on good rate.

However, it takes more time to scan
strings and hence more cost
computational.
The survey not included the co-
stimulation process for discrimination.

(Stibor et al., 2005) They applied two sets to the support
vector machine.

They making the
relation between the
detectors and set size
became linearly.

The detectors were not guided
detectors.

(Hart and Timmis, 2008) Did Survey on artificial immune system
models

Reviewed many
applications.

No touch found to co-stimulation
process.

(Cheng, 2009) They applied Byase algorithm on API
sequence to detect malicious codes.

The work able to detect
malwares based on
known behaviors.

Conditional probability for a case
obtained and compared to a threshold
to decide if a case is malware or not.
Some errors will records due to the
threshold value.

(Miao Wang, 2009) Tracing API using support vector
machine

They included the
native APIs in training
set to find abnormality
of a suspected file.

The wider area of API will lead to
increase the false alarm of the model.

(Bradfield, 2010) The used Formal method to define
Malwares and to find their anti.

Tried to detect
malwares based on the
degree of correctness
of a suspected file.

The method needs validation. It has
been checked only on the malwares that
already known. However, the
correctness of unknown Malwares could
not be measured.

(Khaled et al., 2010) They used clonal selection algorithm in
the work as malware classifier.

Their work can classify
unknown malwares.

However, they already predefined some
group of malwares and accordingly a
malwares lays in one. Problems will be
with malwares that have different group
characteristics.

This work

Will use artificial Intelligence (ANN) or
(Fuzzy logic) as a machine learning to
implement immune system co-
stimulation

Munising false alarm
and error rate.

Biological model will mimic co-
stimulation process to do confirmation
so that false rate could be eliminated.

Abdulalla et al. 2243

Figure 2. Process of co-stimulation and proliferation.

is a basic and essential condition for considering an
antigen as a non-self cell. Without this message, the
popular stage, which is the proliferation of antibodies, will
not be activated. Even if activated, theoretically, this will
generate improper antibodies that may possibly attack self
cells. The process of self-attack means activating a self
cell as an antigen (Julie et al., 2010). Such a case is
similar to the process of generating a false alarm when a
normal file is identified as a malware by a computer
detection system (Nachenberg, 2001).

(PE) structure and infected locations

The suspected file in this work is a Windows PE file. The
structure and the format of these files, as illustrated in
Figure 3, play a key role in achieving the compatibility of
Windows OS with its versions (Pietrek, 1994). They use
the same format in linking, loading, and memory imaging
of a program file executed under this environment. This
also explains why virus writers spend more time in
learning the PE file structure (Father, 2004).

Malware writers and detection builders should have
sufficient knowledge about the structure of PE files.
Malware writers use these files to hide their infection
codes and payloads. Therefore, the detection system
builders should know the locations of possible malware
infections to modify them (Miao Wang, 2009).

Before identifying the locations and fields that malwares
have probably infected, explaining the functionalities of
important locations in the PE structure is more desirable.

The PE structure consists of headers and sections that
explain the logical and physical information of file storage
and execution. The physical part is called ‘file header”,
which contains such information as number of sections
and size of optional header. The logical part, known as
“optional header’, has information such as “relevant virtual
address, file or section alignments, address of entry
points”, and many others (Wei and Ansari, 2008).

The third header, “section header”, is also called
“section table”. It is a structure that contains information
concerning the PE sections that follow this header. It is
one of the important layers that scans for malware
detection because each PE file is described in specific
directory in the section header (Szor, 1998).

In general, sections are used to store data and codes
of the file separately. Windows applications have nine
predefined sections: .text, .bss, .rdata, .idata, .rsrc, .edata,
.pdata, reloc, and .debug. Some applications may not
need all of these sections, whereas others may require still
more sections to suit their specific needs (Miao Wang,
2009).

Codes and instructions of the PE file are stored in the
.text section, whereas data of the PE file are stored in
.bss, .rdata, or .data, sections based on their types (Ye et
al., 2008).

2244 Int. J. Phys. Sci.

Figure 3. A typical structure of a (PE) file.

Table 2. PE locations need checking.

References Locations scanned Purpose of scan
(Cheng, 2009) e-ifanew As indicating the address where PE execution started.

(Khaled et al., 2010) Number of sections Malwares modify this section because mostly they add new
section/s to the file.

(Cheng, 2009) Address of entry point Malware uses this address to point to its code address.

(Essam, 2008) Size of image It is indicating the memory size needed to execute the PE file.
Malware will change this location.

(Essam, 2008) Check sum Sometime, malware modify it to indicate their presence.

(Jajodia, 2009) Section table – size of section code
(.text)

The .text section is containing codes and additional jump table for
all Dll calls. Malware will insert their code in this field. The size of
code increased and means changing it also in section table.

The most important sections that malwares always scan
are .edata and .idata. These sections contain information
about the physical addresses of the Windows functions,
which are called application programmable interface (API).
The .edata section contains information about APIs that
the file exports, whereas .idata features information about
APIs that the file imports. The “import table” in the .idata is

used by malware analysts to identify whether or not a PE
file is infected (Ye et al., 2008).

To build an active and efficient detection system, this
paper identifies the important locations that have likely
been changed by malwares. Table 2 discusses these
fields and locations. This paper also explains why these
locations are important and what changes malware

Abdulalla et al. 2245

Figure 4. The (AISC) framework.

perform during infection.
One or more of the above locations and fields should be

changed by malwares so that they can control the
execution of PE files and execute their payloads
(Clemens, 2009).

The framework of the proposed model.

Based on my best knowledge, the pervious AMI works
have just depended on three types of immune system
algorithms; negative selection algorithm, clonal selection
algorithm and danger theory. However, the biological
defense system will not activate these algorithms until the
co-stimulation signals will confirm the discrimination
process. The co-stimulation process will eliminate self
attacking cases in the body. Self attacking process is
attacking self cells and considered them as viruses. This
is, somehow, like the false alarm in computer security
systems when normal file detected as abnormal and vice

versa.
Therefore, the inspiration of co-stimulation process in

biological based detection systems could improve the
accuracy of such systems.

To do that, this work proposed a model that checked
fields inside the PE files that probably malware will change
them during infection. Meanwhile, the execution behavior
of the same file will be checked too. Both results will be
compared so that the first result will confirm the second.

As illustrated in the Figure 4, the framework that
suggested by this work is consist of three stages. The
stages are “co-stimulation unit, scanned suspected file
and prediction stage”. The part related to this work is co-
stimulation unit. It performs two tasks:

Controlling: In the scanning section there are two nodes
that scanned the suspected file, each in different direction;
execution behavior and modification behavior. The control
part of co-stimulation unit will instruct these two nodes to
start scanning the identify locations in the PE file to extract

2246 Int. J. Phys. Sci.

information. The information passed to stage three for
analyzing.

Verification: Stage three will generate two results. These
results will send as feedback to verification part of the co-
stimulation unit. Depending on these results the output of
the co-stimulation unit will generate and discrimination of
the suspected file could confirm.

The analyzer stage will use a Feed forward back
propagation neural network. The number of nodes at input
layer depended on the number of features that extracted
from PE file. Features will cover the modifications made
on some locations by malwares and changes in execution
behaviors of the infected file.

DISCUSSION

The theory that this work has just presented takes its
inspiration from the co-stimulation process of human
immune system. This process takes a strong and an
important role to build a right decision about the normality
or abnormality for a case by the immune defense system
of human. It will identify the type of responses that
immune system should take against unknown case and
controls the respond system to not attack normal cases.
The work contributed in this review could improve the
following issues in detection systems.

The model could improve the accuracy of detection
systems, because it will check the suspected files with two
different groups of API.

a. Improving the false alarm rate for detection systems.
b.Improving the prediction rate for unknown malwares, as
the system will not depend on a threshold value or other
probability application.
c. Minimizing the cost of computation for detection
systems.
d. Building direct detectors that not need optimization.

There is no doubt that the above improvements will make
detection systems to perform their functionalities better.

CONCLUSION

Many biological models proposed to bring solutions to
computer detection systems. They are touched many
algorithms such negative selection, clonal selection and
danger theory. All algorithms used to build detectors and
to maturate them in order to activate with a suspected
case perfectly.

Most works followed with error rate in detection as they
checked the suspected cases only with one dataset and
sometimes with two small size dataset. Even with using
two datasets, there is no verification process used

between them to confirm their results.

This review work has found that there is a missed link in
all proposed works to improve the detection process by
decreasing the false alarm rate, which is building a
confirmation system between these two datasets that
extracted from the suspected case.

This work will inspired the co-stimulation process in our
proposed model to perform the confirmation process,
which expected to increase the accuracy of the detection
processes as it does in human immune system.

REFERENCES

Aickelin U, Cayzer S (2002). The danger theory and its application to

artificial immune systems, Citeseer., pp. 141-148.
Aickelin U, Greensmith J, Twycross J (2004). "Immune system

approaches to intrusion detection–a review." Artificial Immune
Systems, pp. 316-329.

AV-Comparative (2010). "Report Anti-Virus Comparative February
2010." 2010, from www.av-

comparatives.org/images/stories/test/.../avc_report25.pdf.
Bo-yun Z, JPY, Jin-bo H, Ding-xing Z, Shu-lin W (2006). "Using Support

Vector Machine to Detect Unknown Computer Viruses." Int. J. Compu.
Intelli. Res., 2(1): 100-104.

Bradfield S, K a JC (2010). "A General Definition of Malware." J. Com.
Virol., 6(2): 105-114.

Chappell D (2006). Understanding .NET, Addison-Wesley Professional.
Cheng WJP, Rongcai Z, Xiaoxian L(2009). Using API Sequence and

Byase Algorithm to Detect Suspicious Behavior. International
Conference on Communications and Networking in China, Information
and Coding Theory Symposium Xi'an, China, IEEE Computer Society,
pp. 26-29.

Clemens KPMC, Engin K, Xiaoyong Z, XiaoFeng W (2009). Effective
and Efficient Malware Detection at the End Host. 18th USENIX
Security System Montreal, Canada, USENIX Security System

Coorp S (2008). "Symantec Internet Security Threat Report Volume XIII."
Whitepaper, Apr. 23.

Dasgupta D (2007). "Advances in artificial immune systems."
Computational Intelligence Magazine, IEEE, 1(4): 40-49.

De Castro L, Timmis J (2002). "Artificial immune systems: a novel
approach to pattern recognition" 16: 7.

D'haeseleer P, Forrest S, Helman P (2002). An immunological approach
to change detection: Algorithms, analysis and implications, of IEEE
Symposium on Research in Security and Privacy, Oakland, CA, pp.
110-119.

D'haeseleer P (2002). An immunological approach to change detection:
Theoretical results, IEEE, pp.18-26.

Edge K, Lamont GB, Raines RA (2006). A retrovirus inspired algorithm
for virus detection and optimization, ACM, pp. 103-110.

Essam AlD, Ja BZ (2008). "Computer Virus Strategies and Detection
Methods." Int. J. Open Prob. Com. Sci. Math. (IJOPCM), 1(2).

Father H (2004). "Hooking Windows API - Technics of hooking API
functions on Windows." COD.Break-J., 1(2).

Filiol E, Helenius M, Stefano Z (2006). "Open problems in computer
virology." J. Com. Virol., 1(3): 55-66.

Forrest S, Perelson SA, Allen L (2002). Self-nonself discrimination in a
computer, IEEE, pp. 202-212.

Fosnock C (2005). "Computer Worms: Past, Present, and Future." East
Carolina University. 8.

Glaser B, Strauss A (2007). The discovery of grounded theory: Strategies
for qualitative research, Aldine Transaction.
portal.acm.org/citation.cfm?id=1864376.

Hart E, Timmis J (2008). "Application areas of AIS: The past, the present
and the future." Appl. Soft Comput., 8(1): 191-201.

Health NIO (2003). "Understanding the Immuney System How it Works."
Science Education. 9.

Higgins M, Ahmad K, Jacobs D, Balckburn H (2003). "Symantec Internet
Security Threat Report—Attack Trends for Q3 and Q4 2002."

Symantec, Feb 2003.
Hofmery SA (2000). An interpretative introduction to immune system.

Design Principles for the Immune System and Other Distributed
Autonomous Systems, CiteSeer Bata., 96: 890.

Jajodia S (2009). Identifying Malicious Code Through Reverse
Engineering. Advances in Information Security. A. Singh. USA,
SpringerLink. 44.

Jieqiong C, Zheng Y, Wei Z (2010). "A Survey of artificial immune
applications " Artificial Intelligence Review 34(1 / June, 2010): pp. 19-
34.

Julie W, Greensmith A, Uwe A (2010). Artificial Immune Systems. School
of Computer Science, University of Nottingham, Engineering and
Physical Sciences Research Council (EPSRC), pp. 81-85.

J-Y Xu AHS, Chavez P, Mukkamala S (2004). Polymorphic Malicious
Executable Scanner by API Sequence Analysis. 4th International
Conference on Hybrid Intelligent Systems (HIS 2004), Kitakyushu,
Japan, IEEE Computer Society 2005.

Khaled A, Abdul-Kader H, Housam R, Weiss H, Davis D, Gregory R,
Gebretsadik T, Shintani A (2010). "Artificial Immune Clonal Selection
Classification Algorithms for Classifying Malware and Benign
Processes Using API Call Sequences." IJCSNS, 10(4): 31.

Kim J, Bentley P (2001). An evaluation of negative selection in an
artificial immune system for network intrusion detection, Citeseer.
GECCO, pp. 1330-1337.

Kim J, Greensmith J, Twycross J, Aickelin U (2005). Malicious code
execution detection and response immune system inspired by the
danger theory, Citeseer, pp. 72-75.

McAfee Internet Security (2010). McAfee Threats Report: Second
Quarter 2010. n. Q. 2010: 20.

Merkel R, Hoppe T, Kraetzer C, Dittmann J (2010). Statistical Detection
of Malicious PE-Executables for Fast Offline Analysis, Springer, pp.
93-105.

Miao Wang CZ (2009). Native API Based Windows Anomaly Intrusion
Detection Methods Using SVM. International Conference on Senser
Networks, Ubiquitous, and Trustworthy, Taichung, Taiwan, IEEE
Comput. Soc., pp. 514-519.

Michael AH (1997). "Ageing, defence mechanisms and the Immune
System." Age and Ageing Oxford J., 26-S24: 15-19.

Mori A (2004). Detecting Unknown Computer Viruses – A New
Approach –. Lecture Notes in Computer Science, Springer Berlin /
Heidelberg, 3233/2004: 226-241.

Nachenberg CS (2001). Histogram Based Virus Detection. I. A. P. U. t.
P. C. T. (PCT). Northride, CA 91326 (US).

Naik S (2003). "Introduction to The Immune System." J Indian
Rheumatol Assoc 11(1, March 2003): 6.

Oney W (2002). Programming the microsoft windows driver model,
Microsoft Press Redmond, WA, USA. Microsoft Press.

Paquette J (2000). "A history of viruses." Security Focus, January 16:
2004.

Piccard P (2005). Systems and Methods for Identifying Malware
Distribution, US Patent App. 20,090/144,826.

Pietrek M (1994). "Peering Inside the PE: A Tour of the Win32 Portable
Executable File Format." Retrieved 5/5/2010, 2010.

Sami A, Yadegari B, Hossein R (2010). Malware detection based on
mining API calls, ACM, pp. 22-26.

Abdulalla et al. 2247

Schmidt A, Bye R, Schmidt HG, ksel KAY, Kiraz O (2009). Static

analysis of executables for collaborative malware detection on
android, IEEE.

Security SE (2010). Symantec Global Internet Security Threat Report -
Trends for 2009, Fond in
http://securityresponse.symantec.com/business/theme.jsp?themeid=t
hreatreport. XV.

Shevchenko A (2007). "The evolution of self-defense technologies in
malware." Available from webpage: http://www. viruslist.
com/analysis.

Skoudis E, Zeltser L (2004). Malware: Fighting malicious code, Prentice
Hall PTR. pp. 15-24.

Smith DF (2006). The Immune System. INDIANA, USA, University of
Evansville, 6: 6.

Srinivasan SRS (2009). "Intelligent agent based artificial immune
system for computer security—a review " Artif. Intelleigence Rev.,
32(1-4: 13-43.

Stibor T, Mohr P, Timmis J (2005). Is negative selection appropriate for
anomaly detection?, ACM. GECCO, pp. 321-328.

Szor P (1998). Attacks on Win32. Virus Bulletin Conference, Munich,
Germany, Virus Bull., pp. 57–84.

Ször P (2000). "Attacks On Win32–Part II." VIRUS 47.
Szor P (2006). The Art of Computer Research and Defence, Addison

Wesley Profesional. pp. 02-05.
Tumer D, Entwisle S, Fossi M (2006). Symantec internet security thread

report trends for January06-June06, Volume X. Symantec Inc., 2006.
9.

Turner D, Entwisle S, Fossi M (2004). "Symantec Internet security
threat report." Trends for January 1.

Tyagi N, Vyas A (2008). "Data security from malicious attack: Computer
Virus." 7: 11.

Wei YZZ, Ansari N (2008). "Revealing Packed Malware." Security and
Privacy, IEEE, 6(5): 5.

Willems C, Holz T, Felix F (2007). "Toward automated dynamic
malware analysis using cwsandbox." IEEE Security & Privacy: 32-39.

Ye Y, Wang D, Gao Y, Chen G, Gao H, Dai X (2008). "An intelligent PE-
malware detection system based on association mining." J. Comput,
Virol., 4(4): 323-334.

Yu Y, Hou C (2004). A clonal selection algorithm by using learning
operator, pp. 26-29.

Zakaria SMAO (2009). Devising a Biological Model to Detect
Polymorphic Computer Viruses Artificial Immune System (AIM):
Review. 2009 International Conference on Computer Technology and
Development, Kota Kinabalu, Malaysia, IEEE Computer Society.

