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The present investigation aims to validate finite element method (FEM) in micromechanical analysis of a 
unidirectional continuous fiber reinforced composites and experimental verification of results in case of 
fiber-matrix debond. Available analytical models are reviewed, compared and are seldom in agreement 
with each other in case of transverse modulus of unidirectional continuous fiber reinforced composites. 
Reasons for variation of these models are analyzed and their limitations are discussed. FEM of a square 
representative volume element (RVE) are developed to simulate various conditions such as matrix/fiber 
dominated cases (in volume and stiffness) and fiber-matrix interface debond in ANSYS v12 to facilitate 
comparison with the available analytical results. Numerical results are compared with the approximate 
as well as exact analytical models and are found to be in very close agreement with exact analytical 
results. To simulate fiber reinforced composite behavior close to a mathematical model of square RVE, 
a specimen with a combination of two metals is designed, fabricated and tested to determine the 
transverse modulus. FEM of a regular square RVE is modified to suit the specimen conditions such as 
finite dimensions relative to fiber and possible fiber-matrix interface debond. FEM results are found to 
be in good agreement with the experimental results and thus the validity and applicability of FEM in 
predicting transverse modulus of fiber reinforced composites is established.  
 
Key words: Fiber-reinforced polymer (FRP) composites, micromechanics, transverse Young’s modulus, fiber-
matrix debond. 

 
 
INTRODUCTION 
 
The inherent anisotropy of composites makes it 
compulsive to test the components case by case based 
on the loading pattern and application. In this process, 
experimental methods not only demand higher levels of 
skills right from fabrication to testing of the specimen but 
also are time taking. Alternative empirical, semi-empirical, 
approximate and exact analytical models that are 
available in micromechanical analysis to determine the 
mechanical properties of composites are based on 
certain assumptions, for mathematical simplification, offer 

satisfactory results in some cases but do not cover the 
entire spectrum of material compositions. On the other 
hand, finite element method (FEM) that can cater to 
varying requirements in analyses is a convenient tool for 
providing quicker and economical solutions but needs 
validation by other means. The present study is a step 
made towards benchmarking FE, analytical and 
experimental analyses in case of transverse Young’s 
modulus.  

A  large  number  of   analytical   models   with   varying 
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degrees of accuracy are available for predicting the 
mechanical properties of unidirectional composites. They 
range from the simple rule of mixtures (ROM) to methods 
based upon the use of elastic energy principles. In 
general, they incorporate certain simplifications of the 
physical state of materials that resulted in theories which 
do not satisfactorily correlate with the experimental data. 
Unlike ROM that works perfectly for predicting 
longitudinal Young’s modulus, the inverse ROM (IROM) 
fails to give satisfactory results for transverse Young’s 
modulus (referred as transverse modulus in this paper) in 
all cases. This may be one of the reasons why 
researchers worked on developing several models for 
predicting the transverse modulus. Modified inverse 
IROM (MIROM) has taken into account the lateral 
contraction of matrix material under tension due to 
Poisson’s effect and accommodated it accordingly (Isaac 
and Ori, 1994; Robert, 1999; Autar, 1997). It is 
demonstrated that a combination of ROM and IROM can 
be adapted to suit theoretical modeling of a composite 
material by considering a combination of parallel and 
series orientation of rectangular elements of fibers 
scattered over entire area of representative volume 
element (RVE) and proposed two models: a horizontal 
and a vertical models to predict transverse modulus 
(Jacquet et al., 2000). Halpin-Tsai and Kardos (1976) 
have developed a semi-empirical equation to determine 
the transverse modulus by taking the shape of the fiber 
cross section into consideration as reinforcing efficiency 
factor. Neilson (1970) modified the Halpin-Tsai equation 
by introducing a packing factor (ϕmax) for square, 
hexagonal and random fiber packing arrays. Hirsch 
(1962) model is a combination of both ROM and IROM. 
When the value of x = 0, the relation reduces to IROM 
and when x = 1, it reduces to ROM. The value of x 
depends on the fiber orientation with respect to the 
direction of loading. Kalaprasad et al. (1997) mentioned 
Neilson and Hirsch models in their paper and compared 
the available experimental data with various analytical 
models for short sisal-LDPE composites. Alfredo (2000) 
derived a closed form of expression based on simple 
mechanics of a repeating square cell for predicting 
transverse modulus. Hui-Zu and Tsu-Wei (1995) have 
used elasticity theory and derived expressions for exact 
transverse modulus of a square RVE. Also, they have 
extended the theory to find a solution for the case of fiber 
matrix debonding by using an elastic contact model. 
Mistou et al. (2000) made a comparative study of elastic 
properties of composite materials by quasi-static as well 
as ultrasonic methods. It is observed that the ultrasonic 
method of testing is efficient, accurate and easy to 
conduct in comparison with tests on UTM. Stagni (2001) 
derived a formula for evaluating the effective transverse 
modulus of multilayered hollow fiber composites. The 
author observed that under certain conditions, increase in 
porosity results in increased transverse modulus. 
Muhannad et al. (2011) compared experimental results of  
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longitudinal and transverse moduli with the values from 
four micromechanical models of a unidirectional fiber-
reinforced polymer (FRP) composite (E-Glass/Epoxy) of 
37% volume fraction. However, none of the analytical 
results matched mutually and also with the experimental 
results. The reason behind analytical models not 
concurring with each other are obvious but the 
experimental results not agreeing with any one of the 
analytical results could be due to random arrangement of 
fibers. Li and Wisnom (1994) reviewed typical finite 
element formulations and models for unidirectional 
composite materials and shown that finite element 
analysis (FEA) provides more accurate and detailed 
characterization of composite properties for complicated 
geometries and constituent property variations. Theocaris 
et al. (1997) proposed a simple numerical 
homogenization method to predict effective transverse 
elastic modulus of fiber reinforced composites and the 
results are compared with existing analytical models. The 
authors observed that the results of homogenization are 
close to the results of mesophase concept and have only 
limited correlation with Hashin-Rosen model. Haktan and 
Dilek (2007) made a study of effective thermal expansion 
coefficients of composite materials by micromechanical 
FE modeling in ANSYS. The results are compared with 
other analytical and experimental data. While the results 
of all models are in close agreement with each other in 
case of α1, they differed well in case of α2 except that 
FEA results matched with some of the experimental 
results. The mismatch could be due to randomness of 
fibers in matrix. Bhaskar and Mohammed (2012) used 
FEA to study transverse modulus along with other 
mechanical properties of fiber reinforced composites. The 
numerical results are compared with analytical solutions 
of IROM and Halpin-Tsai and their FEA results are not in 
close agreement with Halpin-Tsai’s for all volume 
fractions at Ef/Em around 4. However, the authors have 
not validated the results by any other means.  

From this literature survey, it is apparent that available 
analytical models and FEA results are matching only in 
few cases and no evidence is available regarding 
validation of FEA results with exact analytical results. 
Also, the information about the basis for comparing 
analytical and FE models supported by subsequent 
validation is not available in the literature so far referred. 
The investigation regarding fiber arrangement in the test 
specimen as per RVE modeled in FEA seems to have 
been unexplored. In the present work, test specimens are 
specifically designed and fabricated to match the RVE 
modeled in FEA and transverse moduli results from 
experimental and FEA are compared with exact and 
other analytical models for mutual validation.  
 
 
REVIEW OF ANALYTICAL MODELS 
 
Of the available  analytical  models,  popular  models  are  
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considered for comparison and presented here for 
convenience. 
 
 
The IROM 
 
The classical ROM predicts the longitudinal Young’s 
modulus (E1) of a composite material accurately but the 
IROM (Isaac and Ori, 1994; Robert, 1999; Autar, 1997) 
fails to predict transverse modulus (E2) in general and 
particularly at higher fiber volume fractions. The IROM 
fails in the case of voids as well. Equation (1) works 
perfectly for those slab models (with negligible Poisson’s 
effect) that are placed in series which is not the case with 
fiber reinforced composites in reality and hence the 
inevitable failure. 
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Modified IROM (MIROM)  
 

Modifications to IROM are suggested by various 
researchers based on specific assumptions. The MIROM 
as suggested by Ekvall (Isaac and Ori, 1994; Robert, 
1999; Autar, 1997) and given as Equation (2) considers 
the Poisson’s effect of matrix and the relation does not 
attempt to take care of the actual geometry of the 
composite. Even then the equation fails in fiber 
dominated and fiber like void cases.  
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Jacquet’s horizontal and vertical models (JA-H and 
JA-V)  
 
Jacquet et al. (2000) made an attempt to assess the 
transverse modulus of a unidirectional composite by 
using two novel models (horizontal and vertical) based on 
classical ROM. The horizontal (JA-H) and vertical (JA-V) 
models are given as Equations (3a) and (3b). 
 

2

11

(1 )

f f

mf f m f

V V

E EE V E V


 

 
                     (3a) 

 

2

.
(1 )

(1 ) /

f m

f m

m f f f

E E
E V E

E E V V
  

 
                      (3b) 

 
Though the treatment is simple, the assumption such as 
decomposing of fiber of any shape into small rectangular 
elements that are scattered in matrix in a regular array is 
unrealistic and correct results can never be expected 
from such models. 

 
 
 
 
Halpin-Tsai model (H-TSAI) 
 

The semi-empirical relation for transverse modulus 
suggested by Halpin –Tsai (1976) is given as Equation 
(4)  
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and ξ is reinforcing efficiency factor for transverse loading 
that depends on the fiber cross section and the kind of 
packing geometry. The value of ξ is suggested as lying 
between 1 and 2 by several authors (Muhannad et al., 
2011; Li and Wisnom, 1994; Theocaris et al., 1997) for 
prediction of ET. The selection of ξ value on empirical 
basis limits the usage of this equation for a generalized 
case. 
 
 
Modified Halpin-Tsai model (MH-TSAI) 
 

Neilson (1970) modified the Halpin-Tsai equation by 
including the maximum packaging fraction ϕmax of the 
reinforcement and the equation transformed to  
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where max
is packing factor and is given as 0.785 for 

square array, 0.907 for hexagonal array and 0.82 for 
randomly oriented. Though this relation is clear about 
fiber packing factor, the empirical value of ξ still limits its 
application for a generalized case.  
 
 
Hirsch model 
 
Hirsch (1962) model is a combination of parallel and 
series models and the transverse modulus is calculated 
according to Equation (6). 
 

E2 = x (EmVm + EfVf) + (1-x) f m

m f f m
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           (6) 
 
As can be seen from the structure of the equation, this 
model is a combination of ROM and IROM, and the value 
of x depends on the fiber orientation with respect to 
loading direction. For transverse modulus where the 
angle between fiber and loading directions is 90°, x 
becomes zero and hence this model reduces to IROM. 
 
 

Morais model 
 

Morais (Alfredo, 2000) derived a closed-form 
micromechanical expression for predicting the transverse 
modulus of  a  square  RVE.  He  claims  that  his  results  



Anne et al.          1529 
 
 
 

 
 
Figure 1. Specimen with holes drilled across thickness. 

 
 
 

match with 3-D FE result of a hexagonal unit cell. It is 
observed that Morais’ expression is a modification of 
Jacquet’s vertical model by introducing Poisson’s effect 
of matrix into the relation. 
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Hui-Zu and Tsu-Wei (1995) developed an elastic 
constant model to predict transverse modulus, Poisson’s 
ratio and shear modulus of unidirectional fiber 
composites with interfacial debond. The elastic 
deformation formula of the fiber under contact pressure is 
derived by using elasticity theory. Results are presented 
for two limiting cases of perfect bonding and fiber like 
void.  

In exact analytical approach, the whole body is 
considered as one entity and the equilibrium equations of 
one infinitely small element within the body are integrated 
to the boundaries to get an exact solution. However, in 
cases where integration is not possible due to 
mathematical limitations such as physical discreteness, 
the solution is not possible always. Apart from the 
geometric limitations of the material body, there are other 
issues such as material discontinuity, complex material 
combinations and loading pattern etc., which are difficult 
to idealize and the accuracy of the solution ultimately 
depends on the order of the equation making the 
analytical methods more and more case sensitive. 
 
 

EXPERIMENTAL INVESTIGATION 
 

Preparation of test specimen 

 

Analytical methods used for determining mechanical properties of 
composite  materials  require  a  reference   for   their   validity   and 

obviously experimental results provide the answer. Test specimens 
prepared invariably differ from theoretical models in many ways and 
there is bound to be disagreement between experimental results 
and analytical outcome. Fabrication of composites with 
conventional fibers and matrices close to the mathematical model is 
relatively difficult due to minute fiber diameter and since it is only for 
validation of methodology, metals are chosen as constituent 
materials for the present study. The isotropic nature of metals and 
the ease with which a given geometrical accuracy can be achieved 
on metals are reasons for choosing different metals to prepare a 
metal composite for the present study. The aim is to make a test 
specimen close to the mathematical model with a purpose to 
establish a verifiable relation between theory and practice. Alumi-
num, copper and mild steel are chosen for preparing the composite 

specimens with aluminum as matrix and the rest as fibers. 
Three categories of composite specimens are prepared viz., 

copper-aluminum, mild steel-aluminum, and voids-aluminum (fiber 
like voids). Aluminum flats of 175*25*10 mm dimensions are taken 
as specimen blanks. While maintaining the length and width of the 
specimen as per ASTM D 3039/D3039M-08 (2008), the thickness of 
the specimen is taken as per the machining requirements. 2 mm 
diameter holes are drilled across 10 mm thick faces (along 25 mm 

width) as shown in Figure 1. Drilling is done on an NC machine 
taking sufficient care to maintain spacing between the holes. Each 
sample accommodated 32 holes (16 in each row) and the spacing 
of holes is according to the machining limitations. The fiber volume 
fraction achieved by this arrangement is 12.566%. An initial attempt 
to drill 1 mm diameter holes to achieve higher fiber volume fraction 
resulted in breaking of too many drill bits even on numerically 
controlled machine and hence the decision to go for higher 
diameter. Before going for 2 mm diameter holes, it is ensured that 2 

mm diameter copper and mild steel wires are available 
commercially. 

Twenty-five millimeter long pieces are cut from copper and mild 
steel wire rolls in sufficient numbers. Wires are driven into the holes 
by gentle tapping with a nylon mallet. Moderate force was needed 
to drive each fiber piece into a hole that is an indication of generous 
contact between the male and female surfaces. This ensured 
sufficient gripping due to the interference fit of the assembly 

between fibers and matrix without any mechanical bonding. For 
each category of the composite three specimens are prepared 
bringing the total number of specimens  to  nine.  These  specimens  
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Figure 2. Test set-up on UTM. 

 
 
 

 
 

Figure 3. Stress-strain plot for one set of constituent materials. 

 
 
 
are tension tested on a micro-computer controlled electronic UTM 
of 400 kN capacity as shown in Figure 2 at a cross head speed of 1 
mm/min. An electronic extensometer of 1 µm least count is used to 
measure the extension and the test data is recorded automatically. 
 

 
Determination of Young’s modulus of constituent materials 

 
Though, Young’s modulus of constituent materials could be taken 
from the standard data, it is opined that the  values  once  again  be 

experimentally determined for closeness and subsequent 
substitution in analytical and FE models since the aim of the 
present study is validation. 175*25*10 mm aluminum blanks are 
tested on UTM and for copper and steel wires, three point bending 
tests are conducted on a 2-ton electronic tensometer (model: 
METM 2000 ER-I). For each material, three samples are tested and 
the value of E is calculated from the slope of linear portion of 

stress-strain plot obtained. The test data is tabulated in Table 1. 
Figure 3 shows one set of stress-strain plots for three types of 
specimens with corresponding trend line equations indicated along. 
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Table 1. Results of constituent materials tested for longitudinal Young’s modulus.  
 

Specimen description TEST 1 E1 (GPa) TEST 2 E1 (GPa) TEST 3 E1 (GPa) Average value 

Aluminum blank 67.501 65.521 66.418 66.48 

Copper wire 106.379 105.199 107.624 106.40 

Mild steel wire 195.966 191.416 192.908 193.43 

 
 
 

Table 2. Results of composite specimens tested for transverse modulus. 

 

Composite material description Test 1 GPa Test 2 GPa Test 3 GPa Average E2 

Mild steel-aluminum 51.668 51.364 51.429 51.487 
Copper-aluminum 51.036 51.109 51.261 51.135 
Void like fiber-aluminum  49.469 49.223 49.545 49.412 

 
 
 

 
 

Figure 4. Stress-strain plots for one set of composite material. 
 

 
 
Determination of transverse modulus of composite specimens 
 

Three samples for each category of composites are tested and the 
values of transverse moduli (E2) are calculated from the slope of the 
linear portion of stress-strain plots obtained from the recorded data. 
The test results are tabulated in Table 2. Figure 4 shows one such 
set of plots with corresponding trend line equations. 
 
 

Numerical approach 
 

In numerical approach, though approximate, the theme of treatment 
is same at local as well as global levels. Decomposing any shape 
and effectively encompassing the complete material geometry 
through finite number of fundamental elements is the basic principle 
behind the numerical method.  Formation of local governing 
equations in terms of geometry, material property and loading 

pattern while simultaneously maintaining local-global connectivity, 
numerical approach will always come up with a solution. However, 
validation of this  solution  requires  bench  marking  that  forms  the 

basis of the present work. Numerical errors are reduced by proper 
choice of the element and its size and the accuracy of the outcome 
can be checked by testing for convergence.    

An RVE in the form of a square unit cell in cross-section is 
adapted for analysis and a one eighth unit cell (one-fourth in cross-
section and half in longitudinal direction) is modeled by taking the 
advantage of symmetry. The geometry of FE model and the 
composite’s constituent properties are so selected to cover 

sufficiently a large range of fiber volume fractions (Vf = 0.1 to 0.72) 
and material combinations (Ef/Em = 100:1 to 1:100) in order to 
compare FE results with available analytical results. The 
dimensions of the cell are 250*250*10 mm and fiber radius is 
calculated as per the required volume fraction using the relation r 

=
4* *250*250 /fV 

. For convenience of analysis, scaling up of cell 
size is done without loss of proportionality. Processing of the 
required steps in FEM such as generation of element matrices, 

assembling of system equations and solving them under prescribed 
constraints for nodal deformations of any structural problem is a 
built in feature of ANSYS software, provided the  problem  is  clearly  
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Figure 5. FE model showing mesh with element edge length 4. 

 
 
 
defined and discretization is made to the satisfaction of results, 
which is a proven tool universally used by many researchers for the 
analysis of composite materials. Hence, the present problem is 
modeled in ANSYS straight away without resorting to any other 
programming routines. SOLID 20 NODE 95 element of ANSYS is 

used to create FE mesh which is a quadratic brick element that is 
best suited for curved boundaries. Mesh refinements are made with 
different element edge lengths and convergence is verified at 
maximum mismatch conditions (Ef/Em = 100:1 and Vf = 0.72). It is 
observed that at element edge lengths 4 and below the results have 
converged for this model. FE model with an element edge length 4 
is shown in Figure 5.  

Symmetric boundary conditions are applied on negative faces of 

the Cartesian coordinate system which can be observed in Figure 
5. Multipoint constraints are imposed on the boundary planes x, y 
and z to ensure uniform strain in respective directions. A uniform 
tensile load of 1 MPa is applied on the x-face to observe a uni-axial 
state of stress that facilitates usage of simple Hooke’s law for 
calculating Young’s modulus, while the fibers are parallel to z-axis. 
A similar model as above, with appropriate changes for fiber-matrix 
debond case, is developed. Boundary conditions and loading are 
kept without any change. This model is necessitated as the fibers in 

the specimen are not bonded to the matrix by any means.  
 
 

RESULTS AND DISCUSSION 
 

Comparison of analytical and FE models in fiber 
dominated cases 
 
Variation of normalized transverse modulus (E2/Em) with 
respect to Vf for Ef  to  Em  ratios  of  100:1,  50:1,  21.19:1 

and 5.5:1 (Hui and Tsu-Wei, 1995) are shown in Figures 
6 to 9. It is observed that, in Figures 6 and 7, the 
analytical models predict lower values of E2 with 
increasing Vf in comparison to FE model. IROM model 
predicts the least value for E2, while FE model predicts 
the highest and the rest of the models are positioned in 
between. It is also observed that the differences in values 
of E2 between each of these models and FE model is 
progressively increasing with increasing Vf. As mentioned 
earlier, IROM works with assumption of slab models 
where fiber and matrix are assumed to be placed in 
series, which is why this model predicts least values and 
obviously fails to give accurate results. Though Poisson’s 
effect of matrix is considered in MIROM, the basic 
assumption of IROM remains within and hence the 
results are marginally improved in this case. JA-H and 
JA-V models (Jacquet et al., 2000) decompose fibers of 
any shape into minute sqare or rectangular blocks to 
overcome the deficiencies of IROM that resulted in 
mariginal improvement. However, these results are still 
below FEM values.  

Halpin-Tsai model (Halpin-Tsai and Kardos, 1976) has 
an empirical term ξ introduced into the relation whose 
value depends on the fibers’ cross sectional shape, fiber 
volume fraction and fiber packing. It is suggested in the 
literature that the value of ξ be found from experiments 
for a given set of known constituents of a composite 
which   varies   from   1   to  2.   The   values   of   E2    for 
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Figure 6. Variation of normalized E2 with Vf  (for Ef /Em = 100:1). 

 
 
 

 
 

Figure 7. Variation of normalized E2 with Vf (for Ef /Em = 50:1). 

 
 

Halpin-Tsai model in the present study are calculated 
by taking ξ=2 as suggested in the literature for circular 
fibers. It is observed that Halpin-Tsai predicts higher 
values than all other analytical models considered so far 
here. Since the value of ξ provided here is not for a 
particular case, these values cannot be treated as exact 
for any general case. MH-Tsai (Neilson, 1970) relation 
takes care of the fiber packing due to the term  ϕ  but  the 

Vf still has no role in it and hence the values of E2 
obtained cannot be accurate at all volume fractions. 
Morais’ model (Alfredo, 2000) which appears to be in line 
with JA-V equation by considering the Poisson’s effect of 
matrix has shown further improvement, but the 
assumptions regarding decomposition of fibers that form 
the basis of JA-V makes this model still unrealistic. It is 
also observed  that  the  magnitude  of  E2  has  not  been  
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Figure 8. Variation of normalized E2 with Vf (for Ef /Em = 

21.19:1, bonded). 
 
 
 

 
 

Figure 9. Variation of normalized E2 with Vf (for Ef /Em = 5.5:1, 
bonded). 

 
 

 

affected by the variation of Ef/Em from 100 to 50 in 
analytical models as much as it has been in FE model. 
Rather, it could be stated that FE model responds more 
sensitively to variation of Ef/Em compared to all analytical 
models referred here in case of transverse modulus. 

The mutual disagreement of analytical models with FE 
one necessitates verification of the genuinity with an 
exact analytical model or experimental result. Hui-Zu and 
Tsu-Wei (1995) have evolved an exact elasticity model 
for two composites and deteermined E2 for a range of 
volume fractions from 10 to 70%. The composite 
combinations are glass/epoxy with Ef/Em = 73.1/3.45 
(21.19:1) and alumina/aluminum with Ef /Em = 379/68.9 
(5.5:1). Accordingly, E2 has been determined, for the 
same combinations of Ef/Em used by Hui-Zu, with FE and 
other analytical models. Figures 8 and 9 show the 
comparison of all the available models in these two 
cases. Interstingly, for all values of Vf, Hui-Zu and FE 
models are in very close agreement for both the 
composites, whereas other analytical models are not so 
in general and at higher volume fractions in particular. It 
can be inferred that FE model is a reliable model for a 
perfectly bonded case. 

 
 
 
 

 
 
Figure 10. Variation of normalized E2 with Vf (for Ef /Em = 

5.5:1, fiber like void). 
 
 
 

 
 
Figure 11. Variation of normalized E2 with Vf (for Ef /Em = 5.5:1, 

total debond). 
 
 
 

Further investigation into the cases of fiber like void and 
fiber-matrix debond is done and the results are 
compared. Figures 10 and 11 show similar comparisons 
made for fiber like void and fiber-matrix debond cases, 
respectively. Those analytical models which ever can 
yield results in case of fiber like void are compared in 
Figure 10. Since the other analytical models excepting 
Hui-Zu’s have no provision for total debond, they do not 
appear in Figure 11. IROM and MIROM have no 
provision to deal with these two cases and hence do not 
appear for comparison in both these cases. It is observed 
that, even in cases of fiber like void and fiber-matrix 
debond, there is very close agreement between FE and 
Hui-Zu models that further confirms FEM’s reliability.  
 
 
Comparison of analytical and FE models in matrix 
dominated cases 
 

Very close agreement between FE and Hui-Zu  results  in  



 
 
 
 

 
 
Figure 12. Variation of normalized E2 with Vf  (for Ef /Em = 1: 50). 

 
 
 

 
 
Figure 13. Variation of normalized E2 with Vf (for Ef /Em = 1: 100). 
 
 
 
all cases viz., perfectly bonded, fiber like void and total 
debond, confirms the consistency and dependability of 
these two models. This outcome leads the discussion 
towards the necessity of comparing FE model with 
experimental results for further confirmation of its validity. 
Analytical models’ disagreement with FE and Hui-Zu 
models in cases of Ef/Em>1 prompted the authors to 
study their behavior in matrix dominated cases (Ef /Em<1) 
as a matter of academic interest. Figures 12 and 13 show 
the variation of normalized E2 with Vf for cases where Ef 
/Em<1. It can be observed that in matrix dominated cases 
also IROM and MIROM fail to predict values anywhere 
near other analytical models’ which is their built-in 
deficiency. Other analytical models are predicting values 
either above or below but not close to FE model that 
further raises the ambiguity regarding their consistency. 
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                              (a)                                                   (b)  
 
Figure 14. Modified RVE (a) Highlighted on the specimen; (b) 

Modified FE model. 

 
 

 

Verification of FE with experimental results in case of 
fiber-matrix de-bond 
 
Though square RVE is acceptable for the present FE 
analyses, further discussions have led to a situation that 
prompted the authors to go for suitable modifications of 
RVE. Thus, FE model of a regular square RVE is 
modified to suit the specimen conditions such as finite 
dimensions across the thickness and width and for 
possible fiber-matrix interface debond. Figures 14(a) and 
(b) show the modified FE model used for final analysis. 
Table 3 shows the transverse moduli of the subject 
composites (Vf = 0.12566) determined from experimental 
and FE studies. Since the fibers are only inserted into the 
matrix and not glued, the composites in the present 
experiment fall into the category of debonded fiber-
matrix. Hence, the experimental results are compared 
with debond case of FE results. The error in case of fiber 
like void is within the acceptable limits. However, the 
errors in the cases of other two composites (MS/AL and 
CU/AL) are slightly higher but not too objectionable. This 
could be attributed to the type of fit effected between the 
fiber and matrix surfaces during assembly of fibers in 
matrix. 

Relative closeness of experimental and FE results 
confirms the dependability of FEM in predicting 
transverse modulus of fiber reinforced composites. Also 
this study enables the authors to state that FEM can be 
extended in micromechanical analysis of composites to 
study those cases where conventional analytical models 
are unable to address.  Summing up, it can be said that 
the study not only verifies FEM with experimental results 
for validation and vice versa as well. 
 
 

Conclusions  
 

A test specimen that can be exactly modeled in analytical 
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Table 3. Experimental and FEA results of transverse modulus (GPa) of the subject composites. 
 

Composite material Experimental results (average) FEA modified debond case %  error 

Mild steel-Aluminum 51.487 49.270 4.30 

Copper-Aluminum 51.135 49.217 3.75 

Fiber like void-Aluminum 49.412 48.437 2.01 

 
 
 
form is designed, fabricated and tested for transverse 
Young’s modulus for three different material 
combinations viz., mild steel-aluminum, copper-aluminum 
and fiber like void-aluminum. Identical conditions are 
simulated using application 3-D FEM in ANSYS soft 
ware. FE results are found to be in close agreement with 
exact analytical results available in the literature and also 
in good agreement with experimental results. Hence, the 
aim of exploring the capability of FEM for 
micromechanical analysis of fiber reinforced composites 
is accomplished. 
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