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For several ailing water distribution networks in the world, during conditions of excessive withdrawals 
or insufficient water production, pressures fall to very low or even negligible values and consequently, 
no water can be supplied. Usually, most pipes have water which either fills or nearly fills their cross 
sectional areas but the pressure to push it out is absent. With conditions changing from pressurized to 
no pressure (free surface flow), existing water supply models are unable to simulate either free surface 
flow or the transition between free surface to pressurized flow. In this study, transient “low pressure-
open-channel flow” (LPOCF) conditions were analyzed. The interest of this research lies in the 
coexistence of free surface and pressurized flow regimes with the aim of understanding the 
pressurization process of pipes. This was represented by a flow regime transition from free surface to 
pressurized flow through a moving interface along the pipeline. Results revealed the merits of applying 
full dynamic wave equations in the solution of transient LPOCF conditions in water distribution 
networks. 
 
Key words: Free surface flow, full dynamic equations, low pressures, open channel flow, pressurization, water 
supply, flow regime transition, mixed flow. 

 
 
INTRODUCTION 
 
Growing demand for water as a result of increasing urban 
populations, industrialization and rising water consuming 
lifestyles puts stress on existing water supply systems. In 
order to cater for additional demand, distribution networks 
are expanded often beyond their design capacities, which 
creates bottlenecks such as development of transient 
flow conditions ranging from excessive pressures and 
fluctuating pressures to open-channel flow situations 
(Nyende-Byakika et al., 2010). This culminates into low 
pressures with low flows and sometimes no flow at all, 
thereby compromising service levels and giving planners 
and engineers a complicated task of supplying the addi-
tional resource in sufficient and reliable  quantities  in  the 
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most feasible way possible. Such problems would best 
be solved through infrastructural upgrades; however, this 
is an expensive option not easily affordable in many 
developing countries that are often faced with this 
problem.  

In order to meet regulatory requirements and customer 
expectations, water utilities are feeling a growing need to 
explain better the movement and transformations under-
gone by water introduced into their distribution systems 
(Rossman, 2000). If understanding of network behaviour 
under adverse conditions could be obtained and the 
impact of these conditions established, networks would 
be managed better, and more satisfactory customer 
service would be offered (Nyende-Byakika, 2011). 
However, modeling intermittent water supply systems of 
pipeline networks is a challenging task because these 
systems are not fully pressurized but networks  with  high 
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water demands, very low pressures and sometimes 
restricted by water supply hours per day. Many systems 
exhibit open channel flow behaviour due to excessive low 
transient pressure conditions when some sections 
operate as gravity flow systems under low reservoir 
conditions and get pressurized under high reservoir level 
conditions as force mains with low pressures. The 
alternate emptying and refilling followed by pressurization 
and depressurization of water pipelines make it proble-
matic to apply standard hydraulic models because of low 
transient pressures and pipes flowing partially full 
(Ingeduld et al., 2006). This type of situation is difficult to 
analyze using conventional approaches and may require 
special treatment different from that of fully pressurized 
systems, with more sophisticated/complex algorithms and 
robust scenario management to model. Ingeduld et al. 
(2006) notes that hydraulic models of intermittent water 
supply need to simulate the “charging” process in pipes 
and this requires integration of continuity and motion 
equations to indicate the positions of the water front in 
the network at any time.  

Due to the fact that most water supply models operate 
on the assumption that pressure is sufficient to deliver 
adequate flows, in situations of low transient pressures, 
the models do not give reliable results. Thus, in order to 
address this issue, a tool that treats transient pressures 
and flows which lie along the continuum between open 
and closed systems in both time and space has got to be 
developed. This research was aimed at augmenting 
existing knowledge on supply of water during transient 
low pressure open-channel flow (LPOCF) conditions. 
Knowledge obtained would aid the provision of water 
supply services even under extreme situations of low 
flows and low pressures. This will not only improve the 
understanding of piped water supply systems but also 
ensure sustainable supply of the basic need for survival. 

In this paper, the authors studied co-existence of 
pressurized and free surface flow regimes in a network; a 
situation sometimes referred to as mixed flow. Simulation 
of flow regime changes between pressurized and free 
surface flow was done; a condition which current water 
distribution models do not tackle. This aids in under-
standing the development and propagation of pressure 
surges in pipelines so that during the transient state while 
supply is low, pressures can be determined 
simultaneously with discharges that can be availed to 
consumers. 

 
 
Transient low pressure – open channel flow 
conditions 

 
It is worth noting that in water supply situations where 
intermittent    flow    is    manifested,     transient     LPOCF  

 
 
 
 
conditions can best be described as unsteady flow since 
flow depth and velocity vary with time and as gradually 
varied flow since the rate of change of flow depth and 
velocity along the channel is very low. Gradually varied 
flow is a non-uniform flow whose spatial rate of flow is 
sufficiently low to imply translatory wave motion of long 
wavelength and low amplitude (Chadwick et al., 2004) 
such that the assumption of parallel streamlines and 
hydrostatic pressure distributions is reasonable. In this 
research therefore, LPOCF conditions were modeled as 
unsteady gradually varied flow. 

In unsteady non-uniform flow, the discharge Q, varies 
as a function of time and length along the pipe and all the 
hydraulic parameters of a cross-section change as a 
function of time and length that is, water depth, cross-
sectional area and water surface width. Thus, unsteady 
flow equations are key to the understanding of the 
unsteady flows in pipelines. The (full dynamic wave) 
equations that are used to solve unsteady gradually 
varied flow are the Saint Venant / shallow water 
equations which were derived in 1871 by A.J.C Barre de 
Saint Venant based upon the following assumptions 
(Chadwick et al., 2004): 
 

(1) Flow is one-dimensional, that is, velocity is uniform 
over a cross section and the water level across the 
section is horizontal.  
(2) The streamline curvature is small and vertical 
accelerations are negligible, hence the pressure is 
hydrostatic. Gradually varied unsteady flow implies 
translatory wave motion of long wave length and low 
amplitude in which case the assumption of parallel 
streamlines and hydrostatic pressure distributions is 
reasonable.  
(3) Effects of boundary friction and turbulence can be 
accounted for through resistance laws analogous to 
those used for steady state flow.  
(4) The average channel bed slope is small so that the 
cosine of the angle it makes with the horizontal may be 
replaced by unity.  
 

During the transition from free-surface flow to pressurized 
flow, a moving water interface advances into the free-
surface region. There is need to track the interface in 
order to explain the development of pressures in a 
pipeline. This enables us to make a contribution in under-
standing the co-existence of pressurized and free-surface 
flows in a water supply network. The study of the flow 
regime transition also greatly enables understanding of 
the pressurization process in pipelines. However, a major 
problem with mixed flow analysis is the difficulty involved 
in treating the moving interface similar to surges (Song et 
al., 1983) and requires a considerable amount of 
computational effort to detect its generation and trace its 
movement.  



 

 

 
 
 
 
DEVELOPMENT OF MATHEMATICAL FORMULATIONS AND 
MODELS USED 

 
Analysis of unsteady flow in this study was carried out using 
conservation of mass and conservation of momentum principles 
which yielded two governing algebraic equations because the flow 
and depth of the water surface were both unknown. Each 
computational element in the governing equations was written in 
terms of elevations and flows at the ends of the element. A 
computational element with respect to time was also considered 
and due to this, the algebraic governing equations involved not only 
the unknown flow and depth at two points along the channel but 
also at two points in time (Chadwick et al., 2004; Franz and 

Melching, 1997).  
 
 
Conservation of mass 

 
The continuity equation for one-dimensional unsteady open channel 
flow can be expressed as (Chadwick et al., 2004; Franz and 
Melching, 1997): 
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where A is cross sectional area of flow, Q is flow rate; t is the time 
interval being considered and x  is the length of the reach being 

considered. All quantities in the equation are algebraic expressions 
and can be positive or negative therefore, a negative outflow is an 
inflow. The equation is a statement of the conservation of mass 

principle on a per-unit-length basis and can also be stated as:  
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where V and y are the velocity and depth of flow, respectively.  
 
 
Conservation of momentum 

 
The momentum conservation equation (Equation of motion) can be 
written in the form (Chadwick et al., 2004; Franz and Melching, 
1997): 
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where Q is discharge, A is the flow cross sectional area, h is depth 
of flow, g is gravitational acceleration, So and Sf are channel slope 
and friction slope, respectively and  is an energy coefficient 

normally equated to unity for SI units. 
Equations 2 and 3 are called Saint Venant equations. These 

governing equations for gradually varied unsteady flow in open 
channel can also be expressed as: 
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where T is the top width of flow. Equations 4 and 5 represent the 
continuity and dynamic equation, in non-conservation form, 

respectively. The friction slope is given by 

D

VfV
S f

2
  for 

pressurized flows and 
34

2

h

f
R

VVn
S   for free-surface flows, with 

f the Darcy-Weisbach friction factor, n  the Manning‟s Coefficient, 

D  the pipe diameter and hR the hydraulic radius.  

Different types of formulations can be given for the Saint Venant 
equations depending on the problem. Equations of continuity and 

motion for a one-dimensional unsteady flow in an open channel can 
be restated as (Song et al., 1983; Trajkovic et al., 1999; Leon, 
2007; Gomez and Achiaga, 2008): 
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and 
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in which c is the gravity wave celerity given by:  
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Corresponding equations for pressurized or closed conduit flow can 
be written as (Song et al., 1983):  
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in which a, the speed of the water hammer wave and y 
should be regarded as the piezometric head measured 
from the pipe invert rather than the flow depth.  
 
 
Solution of unsteady flow equations 
 
An important family of equations that is often encountered in 
hydraulics is based on the following equation (Chadwick et al., 
2004): 
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f , some variable/function such as velocity. If 042  acb  then 

a typical form is:  
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This is the hyperbolic equation which can be applied to unsteady 
flows. The Saint Venant/shallow wave equations are classified as 
partial differential equations of the hyperbolic type. All flow variables 
are functions of both time and distance along the channel. In other 
words, at a given location, the flow depth, discharge and the other 
flow variables vary with time. Likewise, at a fixed time, the flow 
variables change along the channel. For a given channel of known 
properties (cross sectional geometry, roughness factor and 
longitudinal slope), the unknowns are the discharge Q and flow 
depth y. The other flow variables such as the area A and the friction 

slope fS  can be expressed in terms of Q and y. The independent 

variables are time t and distance along the channel.  
 

 
Method of characteristics 

 
The differential equations of Saint Venant cannot be solved 

analytically unless certain simplifications are carried out such as the 
neglect of certain terms and simplification of boundary conditions as 
is the case in the kinematic approximation and diffusion analogy 
and this can lead to serious errors (Tucciarelli, 2003). With the 
advent of the digital computer, numerical solutions can be obtained 
and thus, no simplifying assumptions to the basic equations need to 
be made. Thus, unsteady gravity flows have been traditionally 
modeled by numerically solving the one-dimensional equations of 

continuity and momentum. A number of different numerical methods 
are available to solve hyperbolic differential equations. The best 
known is the method of characteristics (MOC) (Chadwick et al., 
2004; Chou, 2009). The method is widely used for transient flow in 
a closed conduit because it is simple and also provides good insight 
into behaviour of hyperbolic equations. In the method, the original 
set of partial differential equations (Equations 6 and 7) are 
transformed into two sets of simultaneous ordinary differential 
equations.  
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Equation 13 is known as characteristic equations and is valid along 
two different characteristic lines. The first one is called a positive 
characteristic line and the second one is a negative characteristic 

line (Chadwick et al., 2004; Gomez and Achiaga, 2008). By 
discrediting the transformed equations we can obtain the velocity 

pv  and depth of flow py  at point P as: 
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drawn from P, respectively. They are known quantities (velocity or 

depth) at the beginning of time step t

 

and can be obtained by 

linear interpolation. If we are at a boundary then one of the 
characteristic equations is outside of the problem boundary, so we 
need a boundary condition that will be the pressure head at this 

boundary or a relationship between pressure and head. When 
converted into finite difference equations, the characteristic 
equations lead to a set of simultaneous algebraic equations for the 
unknowns.  
 
 
Interface tracking method of analyzing mixed flow 

 

This class of flow regime transition models is exemplified by the 
works of Wiggert (1983), Hamam and McCorquodale (1982) and Li 
and McCorquodale (1999) by introducing a moving interface 
between the free surface and pressurised flow regimes. The 
method treats the two flow regimes separately but joined together 
by an interface which is regarded as a shock wave. Song et al. 
(1983) used the characteristic method for both open channel flow 
and closed conduit flow regimes. Identical equations and solution 
techniques were used throughout the system except for a special 

treatment at the interface. These models solve the ordinary 
differential equations (ODE) based on a momentum balance in a 
rigid column represented by the pressurised portion of the flow. In 
each time step, the ODE is solved and the velocity of the rigid 
column, speed, location and intensity of the shock wave is updated. 
The location of the pressurisation front is obtained using the 
continuity equation across the moving interface. The flow conditions 
near the interface are thus, calculated using a mass and momen-

tum balance in a control volume. The free surface portion of the 
flow is solved by the method of characteristics. This model, also 
called a shock-fitting model is appropriate when the energy 
contained in the flow is sufficient to pressurize the flow through a 
hydraulic jump. The water depths and velocities near the interface 
are obtained using two shock-boundary conditions plus three 
characteristic equations (Politano et al., 2005).  

If velocity changes are more gradual, acceleration of flow 
between two adjacent sections can be neglected and the flow near 
the interface can be simulated using momentum and mass balance 
in a moving control volume. This method facilitates accurate 
tracking of the interface conserving mass and is the approach that 
was used in this study. 
 

 
Modeling flow discontinuities in the transition region 
 

While the MOC is a valuable approach in the sense that it provides 

a deep understanding of the nature of shallow water fronts, the 
approach is limited by its inability to handle flow discontinuities 
(Figure 1). The hyperbolic nature of mass and momentum partial 
differential equations allows discontinuities in the solution in form of 
hydraulic bores (Vasconcelos, 2005). Figure 1 shows a smooth 
interface for illustration purposes only. Actually, the interface is 
modeled as a steep, near-vertical shock wave (Song et al., 1983) 
since it behaves as a moving internal hydraulic jump of extremely 

large magnitude representing abrupt flow change because of 

c as 0T  (Equation 8) for both pressurization and 

depressurization.  
 

 
Solution of free surface side of the interface 
 

For flow downstream of the interface (free-surface flow), we need to  



 

 

 
 
 
 

 
 
Figure 1. Control volume for the interface. 

 
 
 
determine the flow depth and velocity. In the case of a surge that 
advances from upstream to downstream; the free-surface side of 

the interface can be solved separately to find the velocity 1v and the 

depth 1y at P1 (Figure 1), by using the characteristic flow 

equations in the free surface region. 

 
 
Solution of moving interface 

 
Analysis of the moving interface or surge front requires 
determination of the interface location x  and velocity w . In this 

region, the equations that should be applied are the conservation of 
mass and momentum quantities given in Equations 17 and 20, 
respectively (Fuamba, 2003; Politano et al., 2005; Gomez and 
Achiaga, 2008).  

 
 
Continuity equation 

 
The conservation of mass equation for the surge is: 
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where 1A , 1v
 
are respectively, the cross sectional area of flow and 

velocity at the upstream (pressurized) end of the interface; 2A , 2v  

are respectively, the cross sectional area of flow and velocity at the 

downstream (free-surface) end of the interface; x , the length 

of the control volume that contains the interface; w , surge velocity; 

subscripts 1 and 2, locations at the free-surface and pressurized 

zones, respectively. If 
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dt

AAd 21 
 is taken as zero as is 

practically expected during pressurization, then: 
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Motion equation 

 
In the derivation of the equation of motion, the momentum equation 

maF   was used where F  is the net force causing 

acceleration, a , while m  is the mass of the fluid. Also,

gAhF 
 
where h  is the depth of fluid;   is the fluid density; 

g  is gravitational acceleration and A  is cross-sectional area of 

fluid. Therefore: 
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where 11vAQ   that is, mass is constant at 11vA . The velocity 

at point 2, velocity at point 1 and the time between these velocities 

are represented as 2v , 1v and t , respectively. Vol is volume and 

Q is discharge. This implies that: 
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in which  cancels out giving 
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after incorporating the interface velocity. h
 
and y  are depths from 

the water surface to the centre of gravity of the flow cross-sectional 
areas of the pressurized and free surface ends of the interface, 
respectively. The new interface position is found from the kinematic 

condition twx  . .  

 
 
Solution of the pressurized side of the interface 

 
For flow upstream of the interface (pressurized flow), we need to 

determine the velocity 2v  and pressure head 2h . The velocity of 

water at point P2 (Figure 1) is obtained from continuity Equation 17 
as: 
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The pressure at P2 is obtained from the characteristic equation for 

pressurized flow that does not cross the interface trajectory 
Equation 22 derived from Equation 15 for the reason that, in the 
transition region of two different flows (Figure 1), there are no valid 
characteristic equations that cross the interface trajectory  
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Table 1. Model input parameters. 
 

Input parameter Value 

Flow depth at the start of the pressurized characteristic equation (m) 0.08 

Pressure at pressurized interface side (m) 1.1 

Velocity at the start of the pressurized characteristic equation (m/s) 2 

Friction slope 0.0008 

Pipe length (m) 1000 

Pipe diameter (m) 0.1 
 
 
 

 
 

Figure 2. Behaviour of pressure surge. 

 
 
 
where a is the celerity of the pressure wave; hL2, vL2 and SfL2 are the 
head, velocity and friction slope at the beginning of the 
characteristic curve, respectively. 

There is need to ensure that the size of the time step conforms to 
Courant‟s stability condition that ensures convergence of the finite 
difference equations (Chadwick et al., 2004). As we want 

information along the pipe to travel along the characteristic lines, 

we select the time interval t  such that 
cv
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surface flow and the one for pressurized flow has c  replaced with

a . Thus, the size of x and the wave celerity c  determine the 

size of the time interval. The parameter a is much greater than c  

so 
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 is the stability condition that is applied to the whole 

grid. 

 
 

Programming 
 

The    aforementioned   system    of    equations    developed    was  

programmed in MATLAB to simulate the pressurization of a 
pipeline. The model equations were discretised using a fixed-grid 
method with a first-order finite difference approximation. The 
resulting nonlinear equations were solved using the Newton-
Raphson method.  

 

 
RESULTS 
 
This section presents the results of the simulation of the 
pipe pressurization process. The simulation involved the 
following inputs: pipe length, pipe diameter, flow depth, 
pressure, velocity and friction slope. Flow depth and 
pressure values were obtained from initial boundary 
conditions (typical field values) and were measured from 
the pipe invert. The velocity was obtained from the initial 
conditions that were assumed. For the programme inputs 
in Table 1, the outputs are shown in Figures 2 and 3. 
Table 2 summarizes key model outputs that are analysed 
subsequently. 

 Location along pipe (m) 
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Figure 3. Behaviour of pressure surge velocity. 

 
 
 

Table 2. Sample model outputs. 

 

Pressure (m) Water velocity (m/s) Interface velocity (m/s) Time (s) Location (m) 

0.4367 2.0035 2.0056 0 0 

0.4358 2.1212 2.1935 60 131.6089 

0.4332 2.2389 2.3814 120 285.7622 

0.429 2.3566 2.5692 180 462.4551 

0.423 2.4742 2.757 240 661.6828 

0.4154 2.5919 2.9448 300 883.4408 

 
 
 
Surge front characteristics 
 
The plot in Figure 2 reveals the rate of movement of the 
hydraulic bore (pressure surge or interface) along the 
pipeline with time. After approximately 45 s, the surge 
front had travelled 100 m giving a velocity of 2.2 m/s and 
after 250 s it had travelled 700 m giving a velocity of 2.8 
m/s (Figure 3). This is a good indication of the rate of 
development of pressures along the pipeline and shows 
that the interface accelerates during pressurization as a 
result of the net force from the water that overcomes its 
gravitational and frictional resistance.  
 
 
Pressure characteristics 
 
The plot in Figure 4 reveals development of pressure 
along a length of pipe at an instant. It can be observed 
that pressure builds up gradually along the entire pipeline 

in accordance with the propagation of the pressure surge 
or interface. Pressurization occurs in the direction in 
which the interface moves. As the interface advances 
forwards along the pipeline, whichever point it touches 
starts to get pressurized and the pressure at this point 
continues to increase ahead of the pressure at the 
subsequent points along the pipeline. It can be 
interpreted that pressure will increase with time at this 
point on the pipeline at the same rate as that of the 
propagation of the interface along the pipeline. It should 
be noted that the pressure values in Figure 4 and Table 2 
are measured from the pipe bottom.  
 
 
Velocity characteristics 
 
The plot in Figure 5 reveals the variation of water velocity 
(not interface velocity) as the interface moves along the 
pipeline   during   initial  pressurization.  This  shows  that 
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Figure 4. Pressure variation along pipeline. 

 
 
 

 
 

Figure 5. Velocity variation along pipeline. 
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Table 3. Comparison of surge front and water velocities. 
 

Location (m) 
Velocity (m/s) 

Surge front Water 

100 2.2 2.09 

700 2.8 2.5 

 
 
 

 
 

Figure 6. Pressure variation along pipeline. 

 
 
 
water accelerates. It can be reasonably explained that 
the velocity is highest at the points that the interface just 
touches because it encounters no flow resistance at 
those points of free surface flow apart from friction. From 
Figures 3 and 5, it can be observed as would be 
expected that the surge velocity is higher than the water 
velocity. A comparison of surge velocity with water 
velocity is shown in Table 3 for values picked at two 
locations; 100 and 700 m along the pipeline. 

The results obtained highlight the advantages of 
developing a fully dynamic and transient model. Not only 
is the surge front location and propagation accurately 
predicted during the transient flow phase between free 
surface and pressurized flows but flow conditions as well. 
 
 
Pipe size and pressurisation 
 
It is shown that the pressure values  obtained  during  the  

pressurization of the pipeline increase with pipe size. For 
example, the pressures at the various points are higher 
with a 200 mm pipe (Figure 6) than with the 100 mm pipe 
used in Figure 4. Table 4 illustrates a comparison of 
pressures along the pipeline in Figures 4 and 6. Figure 7 
shows a comparison of both pressure results in one 
graph. The bigger the pipe size, the lower the frictional 
head losses arising from interaction of water with pipe 
walls. This consequently leads to higher pressures and 
further justifies the use of bigger diameter pipes in water 
supply.  
 
 
DISCUSSION 
 
Results show that if we can track the movement of the 
hydraulic bore in the pipelines, and by obtaining the 
pressures along the pipeline in the network, we are able 
to   predict   what   pressures  are  available  at  particular 
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Table 4. Comparison of pressures along pipelines for different pipe diameters. 
 

Pipe diameter (mm) 
Location along pipeline (m) 

0 200 400 600 800 

100 437.0 434.5 430.5 425.0 418.5 

200 442.8 442.3 441.0 439.2 437.0 

 
 
 

 
 
Figure 7. Pressure comparison for different pipe sizes. 

 
 
 
locations in the network and the subsequent flows that 
can be enabled by these pressures. Pragmatic 
management decisions can then be made to ensure that 
water is available at different sections of the network. 
Such decisions can include closure or opening of valves, 
installation of adequate pipe and reservoir sizes in the 
network or a logical rationing program for water supply 
(Nyende-Byakika et al., 2010). In addition, if downstream 
conditions are adjusted accordingly, for example, by 
varying the valve aperture, then the model can predict the 
various pressures and flows that are enabled by the 
implemented actions while the network undergoes 
pressurization and depressurization.  

Pressurization in a pipe occurs due to a variety of 
reasons. If the supply head is sufficiently high, or if inflow 
rate is significantly larger than the outflow rate, the speed 
with which the pressurization wave moves can be very 
significant. It should be noted that pressurization does not 
always occur when the pipeline is full; it can also occur 
when the pipeline is not completely full as long as the 
initial head and discharge can allow sufficiently rapid 
filling. It can be realized that if the initial discharge and 
head are insufficient, lower water depths cannot produce 
the transition to pressure flow, but only an increase in 
water depth. On the other hand, greater water depths 
may   not   show   a   pressure    front    but    almost    an 

instantaneous transition to the pressure flow for the 
whole pipeline (Gomez and Achiaga, 2008), a case that 
is not envisaged under normal conditions because of the 
large pipeline lengths, diameters and slopes. In all cases, 
the transition occurs (and was modeled) through a 
moving interface that advances into the free surface 
portions of the system.  

During rapid filling, a surge moving against the flow 
may develop a steep front but in cases of gradual filling, 
gentle slopes or depressurization, the surge may have a 
very smooth interface. Even if the interface is smooth, the 
transition between free-surface flow and pressurized flow 
cannot be continuous because the gravity wave speed 
(Equation 8) would be infinite at the point of transition 

where 0T  i.e. c as 0T and this represents 

an area of abrupt flow change creating a discontinuity 
which gives the Saint Venant equations their hyperbolic 
character (Fuamba, 2003). For this reason, it is always 
necessary to assume a discontinuity at the interface.  
 
 

Conclusion 
 
In this paper, the pressurization process of pipes was 
studied and involved tracking the movement of the 
interface with the  aim  of  determining  where  and  when  



 

 

 
 
 
 
pressures would start to build up along the pipes. The 
process was analyzed and modeled in this work with a 
view of clearly understanding what happens during this 
phenomenon and consequently aiding engineers in 
ultimately designing systems and operations that take full 
advantage of this phenomenon. The motivation to study 
this flow phenomenon arose from the fact that it is the 
„pressurization‟ stage that leads to the „pressurized‟ state 
that is of profound interest to water supply managers and 
engineers. As a management tool, this would help inform 
when particular sections (nodes) of the pipes would build 
pressures thereby starting to release water and conse-
quently, what actions should be taken for this to happen.  

The results obtained highlight the advantages of 
developing a fully dynamic and transient model in the 
solution of transient LPOCF conditions in water distri-
bution networks. Not only was the surge front location 
and propagation accurately predicted during the transient 
flow phase between free surface and pressurized flows 
but flow conditions as well.  

Further studies should target setting up experiments 
and field tests to validate the results. They should also 
consider production of commercial models that tackle the 
dual character exhibited by several water supply 
systems, that is, co-existence of pressurized and free-
surface flow conditions in the same network.  
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