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The concept of non-linear pulse is a symptom of such physical phenomenon inherently non linear, and 
its history is intimately linked to the development of theories of equations of nonlinear waves. As such, 
we now know that the non-linear pulses occur naturally in most nonlinear systems. This paper is 
devoted to modeling the evolution of nonlinear pulse during its propagation in a nonlinear directional 
coupler (NLDC) in terms of intermodal dispersion (IMD) in order to show the impact of these 
phenomena on the propagation in the (NLDC). In this case modeling the propagation in a nonlinear 
medium is governed by a system of coupled nonlinear Schrödinger equations (CNLSE). This is a 
mathematical model using to describe the (NDLC). The study is focused on the propagation of 
fundamental solitary pulses.    
 
Key words: Nonlinear optic, dispersive medium, nonlinear medium, modeling, temporal widening, optical 
coupler, nonlinear pulses, nonlinear fiber, coupled nonlinear Schrödinger equation (CNLSE), intermodal 
dispersion (IMD). 

 
 
INTRODUCTION 
 
This Communication is now an essential value to human 
progress. The number of system users canceled and the 
amount of information conveyed is increasing (Stéphane, 
2002). The invention and development of amplifiers 
/regenerator’s erbium-doped fiber (Agrawal, 1989), and 
optical directional couplers then came the revolution in 
telecommunications fiber.  

This new all-optical technology, which combines the 
principle of Issue stimulated in erbium with the guiding 
properties of the fiber, allows, without the conversion 
steps optical-electronic and electronic-optical increase 
rates of transmission (Chiang, 1995). The fiber can be an 
optical amplifier, an optical switch converter wavelength, 
solitons in a source, a compressor noise, a filter, an 
optical memory...etc. 

The directional couplers optical fibers are widely used 
in modern optical communications systems (Sorin, 2002). 
Bandwidth in the directional coupler is usually limited by 
intermodal   dispersion  (IMD)  rather   than   the   velocity  
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dispersion group in the fibers (or guides) that form the 
coupler (Thibaut, 1999; Chang and Weiner, 1994; 
Chiang, 1997; Chiang, 1995). Nonlinear effects in 
directional couplers were studied starting in 1982. Fiber 
couplers, also known as directional couplers, constitute 
an essential component of light wave technology. They 
are used routinely for a multitude of fiber-optic devices 
that require splitting of an optical field into two Coherent 
but physically separated parts (and vice versa). Although 
most applications of fiber couplers only use their linear 
characteristics, nonlinear effects have been studied since 
1982 and can lead to all-optical switching among other 
applications (Jenson, 1982; Friberg et al., 1987).  

The transfer of optical power between the modes of the 
two cores of the coupler is explained as evanescent field-
coupling between the modes of the individual cores of the 
coupler. The mechanism is characterized by a parameter 
known as the coupling coefficient. In general, the coup-
ing coefficient is wavelength-dependent (dispersive). As 
far as the intermodal dispersion (IMD) is concerned, it is 
a phenomenon that arises from the coupling of the 
propagating fields inside the two cores. 
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Figure 1. The nonlinear directional coupler (NLDC). 

 
 
 

According to the normal-mode theory, on the one hand, 
the IMD arises from the group-delay deference between 
the two super modes of the composite fiber. On the other 
hand, according to the coupled-mode theory, the IMD has 
to do with the frequency dependency of the coupling 
coefficient. 

As far as previous works are concerned, the coupling 
coefficient in all approaches (Romagnoli et al., 1992; Chu 
et al., 1992; Akhmediev and Ankiewicz, 1993; Chu et al., 
1995) is considered as a constant with respect to fre-
quency: it is a parameter which depends on the geometry 
of the wave guides of the coupler and the proximity of the 
two fibers but is independent of the bandwidth 
coefficients of the pulse that is being transmitted in the 
device. 

In the present work, a numerical approach of a set of 
generalized equations is presented. In Section 2 the 
mathematical model that represents the physical problem 
is discussed, the existing models are compared. The 
main focus is the evanescent-field NLDC, thus the 
coupled-mode theory is chosen as the underlying model.  

In Section 3 the split-step Fourier method is employed 
that solves the exact partial differential equations that 
represent the model (the CNLSE). Several simulations 
are executed aiming to determine the way intermodal 
dispersion influences. A coupler with specific (normalized) 
constant parameters is considered and only the IMD 
coefficient is left unbound to vary. Finally the main 
conclusion is summarized. 

THE STUDY OF PROPAGATION IN A DIRECTIONAL 
COUPLER 
 
The directional coupler is a device consisting of two 
parallel single mode optical fiber which are passive com-
ponents used in modern optical communication systems. 
Figure 1 reveals that fiber couplers are four port devices: 
they have two input and two output ports. In the frame 
work of the light wave technology, their operation is 
based on splitting coherently an optical field incident on 
one of the input ports and directing the two parts to the 
output ports. 

Since the output is directed in one of the two different 
directions, such devices are known as directional fiber 
couplers or simply directional couplers. Their full name 
nonlinear directional couplers (NLDC) are due to the fact 
that they exhibit nonlinear phenomena of Kerr type 
(Wang et al., 2006) 

The optical fiber is a very thin transparent thread which 
owns driving light and transmissions used in land and 
ocean data. Cylindrical, it is composed of a core of 
refractive index n1 of a diameter, surrounded by a 
cladding of index n2, all wrapped in a plastic coating 
(Figure 2) (Agrawal, 1989). 
 
 
Modeling the propagation of a pulse in a directional 
coupler 
 

Propagation in  a directional  coupler  is  modeled  by  the
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Figure 2. The anatomic description of optical fiber. 

 
 
 
equation system of coupled nonlinear (Agrawal, 2001)  
Schrödinger NLSE: it is a model that describes the 
propagation of the pulse inside the evanescent field 
coupling to a system of coupled equations of nonlinear 
Schrödinger (CNLSE) (Wang et al., 2006). 
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          The frequency carrier. 
�0n     the wave number calculated at � = �0. 
�1n      the inverse group velocity. 
�2n      the group velocity dispersion. 
          The linear coupling coefficient. 
 

nk1  The coefficient of dispersion Intermodal. 
 

nk21    Higher order term. 
 
                                        : Are the Kerr coefficients that  
 
Usually (for single-mode fibers) acquire the following 
values (Agrawal, 2001) 
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phase term depending on the refractive index of non-
linear and the power injected into the guide This term will 
result in a self phase modulation and a spreading of the 
optical pulse. 
 
 

12 21 XPMC C C= = : ((XPM) accounts for cross phase 
modulation). 
 
Usually the terms including C12, C21 are omitted, since 
these coefficients are associated with an overlap integral 
leading to extremely weak XPM. 
 
Adopting the transformations 
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02010 ββδβ −=

             (6)  
 
: phase velocity mismatch between the two propagating pulses. 
 
 
 12111 ββδβ −= : Velocity mismatch between the two 
propagating pulses. 
 
When the two pulses coincide in wavelength these two 
terms vanish from the equations, as long as the two 
fibers have the same material and geometrical 
characteristics. 

By applying the following transformations on (5) and (6) 
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The coupled-mode equations in normalized form are 
obtained. The quantities, are the reference time, distance 
and amplitude, respectively, that are chosen at will. 

Usually to coincide with the initial temporal width of the 
pulse, U0 with its initial amplitude and Z0 with the 
dispersion length. 

Hence the system of equations (5) and (6) under the 
transformations equations (7), (8) becomes 
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(10) 
  
The coupler in hand is symmetrical with identical cores 
through which pulses propagate operating at the same 
wavelength. 
  Therefore, the two pulses will not suffer from phase-
velocity or group velocity mismatch. Taking into consi-
deration that, due to the core separation, the XPM is 
extremely weak (Agrawal, 1989), the NLXPM coefficient 
can be set to zero. One last adjustment concerns the 
coefficients K21, K22 which are usually very small 
compared with the rest of the coefficients. 

Under all these assumptions, the system of coupled 
equations (9), (10) reduces to the following: 
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Figure 3. Profile of initial pulse and the pulse after propagation in a directional coupler. 

 
 
 
Furthermore, if Z0, U0 are chosen as 
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Then for the case of anomalous dispersion ( 02 <β ) the  
following results are obtained: 
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A numerical approach is often necessary to simulate the 
propagation of pulses in the couplers. Many numerical 
methods can be used for this purpose. One method that 
has been used extensively for dispersive media and non- 
linear method is the Split-Step Fourier (SSFM) because 
of its speed and accuracy (Agrawal, 2001)) . 
 
 
SIMULATION RESULTS  
 
The numerical method used to model the evolution of 
pulses in directional coupler. 

Either a directional coupler (both single mode optical 
fibers in pure silica) of length L =11835 �m and 140 m 
width. Where the parameter value of group velocity: �2 = 
−10.2 ps2/km at wavelength � =1.55�m. The value of 
linear coefficient is used k0 = 1.  The value of non-linear 
coefficient is used: K1 = (-0.15, -0.8, -2). 
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(ps)  
 
Figure 4. The evolution of the envelope u1 (z, t) in a directional coupler 
for k1 = -0.15. 
Blue curve : the envelope of the pulse before the propagation.  
Green curve: the envelope of the pulse after propagation. 

 
 
 

(ps)  
 
Figure 5. The evolution of envelope u2 (z, t) in a directional coupler for k1 = -0.15. 

 
 
 
The input pulse is given in the form: U (0, t) = N sech (t), 
with N = 1 are nonlinear pulse solitary fundamental. The 
simulation results are shown in figures. 

Figure 3 represents the initial pulse profile and pulse 
after propagation in an optical directional coupler. This 
figure shows that the pulse is changed, the question 
arises why this change? In order to answer to this 
question, now we will study the evolution chart of pulses 
in the coupler for the three characteristic values of k1, k1 

= (-0.15, -0.8, -2) and are normalized intensity without 
unit. 

The two Figures: Figures 4 and 5. It is obvious that for 
small values of K1= 0.15, the switching is not affected 
significantly since the major part of the pulse power 
manages to switch. For this value the IMD is rather weak 
and the effect of dispersion and nonlinearity is strong slightly 
distorted entity.  

The two Figures: Figures 6 and 7. For the value K1 = - 0.8 



 
 

 
 
 
 

(ps)  
 
Figure 6. The evolution of the envelope u1 (z, t) in a 
directional coupler for k1 = -0.8. 

 
 
 

(ps) 
 

 
Figure 7. The evolution of the envelope u2 (z, t) in a 
directional coupler with k1 = -0.8 

 
 
 
the IMD is rather strong and its effect is almost equal to 
that of the combination of dispersion and nonlinearity. As 
a result of this equally combined action the pulse 
deteriorates and spreads without being able to reshape.  

The two Figures: Figures 8 and 9. Finally, for K1 = - 2 
the intermodal dispersion is so strong that the combi- 
nation of dispersion and nonlinearity does not manage to 
maintain the pulse. 

The  nonlinearity of  the  intermodal  dispersion  has  an 
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Figure 8. The evolution of the envelope u1 (z, t) in a 
directional coupler for with k1= -2. 

 
 
 

(ps)  
 
Figure 9. The evolution of the envelope u2 (z, t) in a 
directional coupler for k1 = -2. 

 
 
influence on the propagation of pulses in the optical 
directional coupler; (Figures 10, 11, 12).  
 
 
Remark 
 
At this point, it is worth mentioning that simulations 
showed that the sign of K1 does not play any role as far 
as the total power of the  pulses  and the  way  this power 
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Figure 10. Three-dimensional evolution of the pulses in the 
optical directional coupler with (k1 = -0.15). 
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Figure 11. Three-dimensional evolution of the pulses in the optical 
directional coupler with (k1 = -0.8). 
 
 
 
fluctuates between the two cores are concerned. The 
only impact that the sign of K1 has is that it reverses the 
pulse profiles in terms of the time axis. The three-
dimensional plots would have as plane of symmetry the 
plane and the contour plots would have as line of 
symmetry the line t = 0. This fact can be explained in two 
ways: from the perspective of the normal mode theory, an 
opposite sign at the K1 parameter imposes actually an 
inversion at the propagation constants  of  the  two  super 
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Figure 12. Three-dimensional evolution of the pulses in the 
optical directional coupler with (k1 = -2). 

 
 
 

 
 
Figure 13. Schematic illustration of nonlinear switching in a fiber 
coupler Input. 

 
 
 
modes (Ramos and Paiva, 1999). The increase of IMD 
tends to accelerate power (as soon as intensity) splitting 
as it can be observed in Figures 10, 11, 12. 
 
 
The Influence of the nonlinear effect in term of power:  
 
Pulses appear at different output ports depending on their 
peak powers. 

Several different techniques can be used to make fiber 
couplers (Thibaut, 1999). Figure 13 shows schematically 
a fused fiber coupler in which the cores of two single 
mode fibers are brought close together in a central region 
such that the spacing between the cores is comparable to 



 
 

 
 
 
 
their diameters. A dual-core fiber, designed to have two 
cores close to each other throughout its length, can also 
act as a directional coupler. In both cases, the cores are 
close enough that the fundamental modes propagating in 
each core overlap partially in the cladding region between 
the two cores. It will be seen in this section that such 
evanescent wave coupling between the two modes can 
lead to the transfer of optical power from one core to 
another under suitable conditions. An important applica-
tion of the nonlinear effects in fiber couplers consists of 
using them for optical switching. As shown in figure 13, 
an optical pulse can be directed toward different output 
ports depending on its peak power. 

Figure 2 showed schematically how an optical pulse 
can be directed toward different output ports, depending 
on its peak power.  We consider a symmetric coupler with 
identical cores to simplify the discussion (Jenson, 1982). 

The physics behind all-optical switching can be under-
stood by noting that when an optical beam is launched in 
one core of the f iber coupler, the SPM induced phase 
shift is not the same in both cores because of different 
mode powers. As a result, even a symmetric fiber coupler 
behaves asymmetrically because of the nonlinear effects. 
The situation is, in fact, similar to that occurring in 
asymmetric fiber couplers where the difference in the 
mode-propagation constants introduces a relative phase 
shift between the two cores and hinders complete power 
transfer between them. Here, even though the linear 
propagation constants are the same, a relative phase 
shift between the two cores is introduced by SPM. At 
sufficiently high input powers, the phase difference-or 
SPM-induced detuning-becomes large enough that the 
input beam remains confined to the same core in which it 
was initially launched. 
 
 
Conclusion  
 
The numerical analysis of solitary pulses propagation 
along coupler optics allowed us to understand the 
behavior of dispersive and nonlinear effects. 

In this work the impact of intermodal dispersion IMD on 
the propagation of fundamental solitons in the NLDC has 
been studied. As long as IMD is kept weak the propaga-
tion of the solitons is slightly distorted. In general, even 
when IMD is present the system remains reliable up to a 
certain value for the IMD parameter. 

The dominant nonlinear effect just affects the propaga-
tion is the effect Kerr (self phase modulation) and chro-
matic dispersion and intermodal both finally concluded 
that the intermodal dispersion IMD plays an important 
role on the stability of solitary pulses in optical directional 
couplers. Nonlinear effects have been studied and can 
lead to all-optical switching among other applications. We 
can conclude from this work that coupled-mode theory is  
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a useful model (CNLSE) describing nonlinear optical 
phenomena in fiber couplers. 
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