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This paper deals with an analytical solution of oscillatory flow of an incompressible second grade fluid 
in a channel. The flow in the channel is driven by suction at the permeable walls, whereas small 
amplitude time harmonic pressure waves are responsible for oscillations in the velocity field. The time 
independent axial velocity and the time dependent oscillatory axial velocity are calculated analytically. 
The important physical quantities like the velocity profile, amplitude of the oscillation and penetration 
depth of the wave are given special emphasis. The effects of second grade parameter and suction 
parameter on these quantities are particularly examined. A comparative study of the oscillatory flow for 
second grade with viscous fluid is also made. 
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INTRODUCTION 
 
The history of channel flows goes back to the celebrated 
paper by Berman (1953) who initiated the study of two-
dimensional laminar flow of incompressible viscous fluid 
in a rectangular channel with permeable walls. Several 
attempts were later made under the assumptions of small 
and large cross flow Reynolds number. Majdalani (1998) 
introduced the oscillatory viscous flow between two 
parallel porous plates subject to sidewall injection for the 
first time. Later on, some studies extended their work of 
oscillatory channel flows to different flow configurations 
(Jankowski and Majdalani, 2000, 2002; Majdalani and 
Roh, 2000, 2001; Majdalani, 2001). We witness that 
these studies of oscillatory channel flows have been 
undertaken in viscous fluid.  

The oscillatory flows have special relevance in vibrating 
media with applications in oil-drilling, control of blood flow 
during surgical operations, manufacturing and processing 
of foods and paper, oil exploration and paper industry. In 
biology, it has applications in modeling of respiratory 
functions in lungs, modeling of chemical/blood dispensing 
in biochemistry/clinical labs, etc. Some other applications  
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of value are: to detect the intensity of underground 
explosions, chemicals and material processing, isotope 
separation, irrigation systems, rocket propulsion, filtration 
mechanism, sweat cooling, cooling of electronic device, 
heat exchanger and many others.   

It is now well established that the non-Newtonian fluids 
are more appropriate than viscous fluids in many 
practical applications. Examples of such fluids include 
certain oils, lubricants, mud, shampoo, ketchup, blood at 
low shear rate, cosmetic products, polymers and many 
others. Unlike the viscous fluids, all the non-Newtonian 
fluids (in terms of their diverse characteristics) cannot be 
described by a single constitutive relationship. Hence, 
several models of non-Newtonian fluids are proposed in 
the literature. Although, in general, the classification of 
non-Newtonian fluids is presented into three categories, 
namely, the differential, rate and integral types, but the 
differential type of fluids has been properly studied by the 
researchers in the field. In particular, there is a simplest 
subclass of differential type of fluids known as second 
grade which has attracted much attention in recent 
studies (Wenchang and Takashi, 2005; Yigit et al. 2007; 
Fetecau et al., 2008; Chunhong, 2009; Nazar et al., 2010; 
Naeem et al., 2010; Yuedong and Yanhua, 2010; 
Erdogan and Imrak, 2011; Norfifah et al., 2011). 

The purpose of the present paper  is to  investigate  the 
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oscillatory channel flow in second grade fluid. The 
mathematical modeling is based on the constitutive 
equations of second grade fluid. This model is preferred 
over other models of non-Newtonian fluid, since it 
describes the normal stress effects. The governing 
equations of the unsteady second grade fluid are very 
nonlinear in nature. These equations are linearized under 
small pressure wave amplitude (of oscillating wave) and 
small Mach number assumptions. The analytical 
solutions of the ensuing problem is developed using 
various analytic techniques, such as separation of 
variable, perturbation method and Wentzel-Kramers-
Brillouin (WKB) expansion method under small Mach 
number approximations. The transient nature of the field 
suggests separating the field into a time independent and 
time dependent parts. The solution of the time 
independent part is found using regular perturbation 
expansion. The time dependent part is further divided into 
an acoustic, irrotational, pressure-driven part and a 
vortical, rotational, vorticity-driven part. The solution of 
the acoustic part is straightforward and is solved in an 
exact fashion using separation of variable method. The 
solution of vortical part is obtained using perturbation 
method and WKB approximation. The time dependent 
part of oscillatory axial velocity, its amplitude and 
penetration depth are of particular interest in the study of 
oscillatory channel flows. The effects of suction and the 
second grade parameters on the axial velocity are 
analyzed and compared with those of viscous fluid. An 
increase in the suction parameter shows a decrease in 
the amplitude of the wave for the second grade fluid. The 
same is true for the viscous fluid; however, the rate of 
decrease of the amplitude with respect to suction 
parameter is faster in second grade fluid than in viscous 
fluid. The increase of second grade parameter witnesses 
a significant increase in the amplitude of the wave and a 
nominal decrease in the penetration depth. Comparing 

our results for 0k  shows a complete agreement with 

the results of viscous fluid. In the end, it is remarked that 
the present attempt will provide a base for future 
investigations in non-Newtonian oscillatory channel flows 
taking different fluid models and flow configurations. 
 
 
FORMULATION OF THE PROBLEM 

 
We consider the flow of a non-Newtonian second grade fluid 
between a long and narrow channel with porous walls separated by 

a distance 2h . The length of the channel is L  and width w . The 

suction is taking place from the porous plates with a uniform wall 

velocity wv . The assumption that w h  enables us to treat the 

problem as a two-dimensional one. The geometry and the flow 
configuration between the channels is as shown in Figure 1.  The 
equation of continuity and equation of motion for incompressible 
homogeneous second grade fluid are: 
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Figure 1. Geometry and flow configuration of the problem. 

 
 
 
 

 * * *

*

d
grad

dt
  

*
u

T b
                                            

(2) 

 

where 
*

u  is the velocity vector, 
*  is the density, b is the body 

force and 
*

T  is the Cauchy stress tensor for the second grade 

fluid. 
*

T in Equation 2 is defined by: 

 
* * * * 2*
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where 
*p is pressure, I is the identity tensor,   is the dynamic 

viscosity, 1  and 2  are the material constants, 
*

1A  and 
*

2A  

are  first two Rivlin-Ericksen tensors. In Equation 3, 
*

1A and 

*

2A are given by: 
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where 
d

dt
 is the material time derivative, grad is the gradient 

operator and T in the superscript denotes the transpose. 
Substitution of Equations 3 and 4 in Equation 2 gives: 
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where the subscript 
*t denotes the partial derivative with respect to 

time, 
2  is the Laplacian operator and (*)  denotes the 

dimensional variables. Equations 1 and 5 can be made 
dimensionless by introducing the following dimensionless 
quantities: 
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In Equation 6, sa ,
sp  and

s  are the stagnation speed of the 

sound, the stagnation pressure and the stagnation density, 

respectively, while   is the ratio of specific heats and s  is the 

frequency of the longitudinal pressure oscillation. Making use of 
Equation 6 in Equations 1 and 5, we arrive at the following non 
dimensional boundary value problem: 
 

  0
t


 


  


u                                                                (7) 

 

     

 
2

1

4

3

1

4

p M
t

k A k t

  

  

   
              

 
          

 

u
u u u u

u u u u u

     

 

 (8) 

 

0, 0; at 0,

, 0;       at   1,

u
v y

y

v M u y


  



  

                                         (9) 

 

where M is Mach number,   is the reciprocal of cross flow 

Reynolds number (suction parameter),   is the dimensionless 

wave frequency and k  is the second grade parameter. These 

quantities are defined as: 
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We perturb the pressure, density and velocity in terms of small 

pressure wave amplitude : 
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In what follows, we will be concerned with finding leading order time 
independent velocity and the time dependent perturbed velocity.   
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TIME INDEPENDENT SOLUTION 
 
We first determine the time independent part of the velocity that 

corresponds to the leading order system in  , Equation 12. For 

that, we make use of Equations 10 to 12 in Equations 7 and 8 to 
arrive at: 
 

0, 0u                                                                               (13) 
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where 0u  and 0v  are the two components of
0u . 

The stream function of the problem is defined as (Jankowski and 
Majdalani, 2006): 
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With this value of stream function, Equation 13 is identically 
satisfied and Equation 14 takes the following form: 
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where '  in the superscript denotes the derivatives with respect to 

y . Splitting Equation 16 into component form, differentiating the 

thi and the 
thj components with respect to y  and x , respectively 

and subtracting the resulting equations, we obtain: 
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The boundary conditions in F  takes the form: 
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The solution of Equation 17 subject to Equation 18 is given by: 
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The effects of the second grade parameter on the time independent 

part of the velocity 0u  computed from Equation 17 are shown in 

Figure 2. For 0k  , the result matches with Jankowski and 

Majdalani (2006) and an increase in the second grade parameter 

shows an increase in the velocity distribution 0u . After having found 

the time independent part, we proceed to find time dependent part 
subsequently. 
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Figure 2. Effects of second grade parameter k on velocity profile 

0u . 

 
 
 
TIME DEPENDENT PART (THE OSCILLATORY VELOCITY) 

 
Utilizing Equations 10 to 12 in Equations 7 and 8 and taking the 

terms at  O  , the time dependent part of the velocity field u , 

can be written as: 
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The velocity u1  satisfies no-slip boundary condition at the wall 

 1 , 1 0x u  and symmetry at the midsection of the channel 

 1 , 0
0

x

y






u
. To proceed further, we decompose  1 ,x yu  into 

an acoustic, irrotational, pressure-driven part 
u  and vortical, 

rotational, vorticity-driven part u as: 
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Using Equation 22 in Equations 20 and 21, separating acoustic and 
vortical parts yields the following set of four equations (Equations 
24 to 27). 
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and 
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Solution of the acoustic part (
u ) 

 
The axial acoustic pressure and velocity are dominant for the 
purpose of oscillatory channel flow under consideration (Majdalani 
and Roh, 2000). For perfect gas undergoing isentropic oscillations, 

we know that
 p  . The Equations 24 and 25 can thus be seen 

as two coupled equations in pressure 
p  and velocity 

u . 
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u  from these equations, the resulting equation in 

p can be readily solved upto  O M . This gives axial acoustic 

pressure 
p and velocity 

u  as: 
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Solution of the vortical part ( u ) 

 

Writing u  in component form as    1 2,u uu , assuming that 
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
  is the dimensionless Strouhal number. The x  

dependent function in Equation 30 is written as: 
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where 
nk  are so far unknown eigenvalues and will be determined 

using no slip boundary condition.  Solving this equation, we get the 

eigenfunctions   nk
X x x . The axial component of acoustic 

velocity can be expressed in terms of these eigenfunctions as: 
 

       1, , .n
n n

n

k
x y u x y c x Y y  u                       (31) 

 

From no slip condition, at  1y    the vortical solution is equal to 

the negative of the acoustic solution giving: 
 

     , 1 , 1 ,x x u u  

 
Substituting Equation 31 in the aforementioned condition, we 
conclude that: 
 

 

 
 2

2

2 1
1

2 1 , 1 , 1 1
2 1 ! 1

n

n n n

n

k n c i k Y
n k







 

      
  

 

Using the aforementioned values of nk  and nc , Equations 31 and 

30 take the form: 
 

  
 

 
 

2 1

2

2
0

1
, 1 .

2 1 ! 1

nn

n

n

x
x y i k Y y

n k











 
    

  
u     (32) 

 

 

 

2

2

3 2

3 2

2 2

'' '''
2 2 2 .

d Y dY
F iS n F Ytdy dy

d Y d Y dY
k F iS nF F n F Ytdy dy dy


 

    
 

  
        

  

 (33) 

 

where Y satisfies the following boundary conditions. 
 

   '1 1 , 0 0.Y Y                                                          (34) 

 
In order to determine the complete solution of the vortical, part we 

proceed to find Y appearing in Equation 32 and defined by 
Equations 33 and 34. The methods adopted are perturbation 
method and the WKB approximation. 
 
 

The solution for Y   
 
We express the solution of Equation 33 in regular perturbation 

expansion in k :  
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       2

0 1,Y y k Y y kY y O k                                  (35) 

 
Using Equation 35 into Equations 33 to 34 and equating like powers 

of k , the leading order system is given by: 

 

2

0 0
02

(2 2) 0
d Y dY

F iS n F Ytdy dy


 
     

 
               (36) 

 

   0 0

'1 1 , 0 0.Y Y                                                        (37) 

 

This system is now solved using WKB approximation for small . 

For that, we write the general expression for the WKB 
approximation as: 
 

0

0

1

.j

j
j

S
Y e









                                                                      (38) 

 
Making use of the aforementioned expression into Equation 36 and 

expanding up to 1S , we have: 

 

2

0 0 1 0 0 1

1
2 (2 2) ( ) 0,t

F
S S S S S FS iS n F O 

 

      
        

 

where we assume 
1 ,tS


  and  .   Collecting the terms of 

1( )O


 in the aforementioned equation, we write: 

 

2

0 0 0.S FS iSt
 
                                                             (39) 

 
Equation 39 is recognized as eikonal equation and its solution is 
expressed as: 
 

2

0 0 0.S FS iSt
 
                                                            (40) 

 

 2

0

1

1
4

2

y

tS F F i S d     

 
The one term WKB solution is thus written as: 
 

2 2

1 1

0 1 2

1 1( 4 ) ( 4 )
2 2

y y

t t
F F i S d F F i S d

Y c e c e
   

 
     

  (41) 

 

The boundary conditions (Equation 34) and the observation that the 
second term is of no physical interest (being wave propagating into 

the surface) implies  1 1c   and 2 0c  . Equation 41 thus 

becomes: 
 

2

1

0

1 ( 4 )
2 .

y

t
F F i S d

Y e
 


 

                                   (42) 

 

The system of order  O k  is written as: 
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   
2

1 1 1

2
2 2t

d Y dY YF
iS n F g y

dy dy 

 
     

 
     (43) 

 

where 
 

   
3 2

0 0 0
03 2

'' '''
2

2 2
iS nFd Y d Y dYF F Ftg y n Y

dy dy dy   




     

 
 

and the corresponding boundary conditions are: 
 

   '

1 11 0 , 0 0.Y Y                                                      (44) 

 
 
The solution of this system is provided by the variation of parameter 
method. For the complementary solution, we write: 

 

 
2

1 1
12

2 2 0.t

d Y dY
F iS n F Y

dy dy




     
 

            (45) 

 
The solution of this differential equation is readily found to be: 
 

1 1

2 2

1 3 4

1 1( 4 ) ( 4 )
2 2 .

y y

t t

c

F F i S d F F i S d
Y c e c e

   
 

     
  46) 

 

If we substitute 0Y  from Equation 42 in  g y and work to the 

terms of 
1

O


 
 
 

, we get: 

 

 
1

2 2

1 2 4
2

( ) 3

y

n

F F i S d
t

g y e

 


 
 
 
 
 

 
     (47) 

 
Omitting the straight forward details, the particular solution of 

Equation 43 is finally written as: 
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1
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2

2

1 1
1

2

2

2
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1 2

6 1 1 1 48 2.
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4

y
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p
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y
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t
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F
n F F i S di S
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F
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d e
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

  



 
 
 

 
 
 
 

  
          
 

  

  
         

 
 

  



                         

                                                                                                 (48) 
 
The general solution of the first order system is thus given by: 
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 

  

  
         

 
 

  


d
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 (49) 

 
Using boundary conditions (Equation 44), and the argument as 

given for 0Y , we have: 
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1

2

2

1 1
1
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6 1 1 1 48 2.
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y
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t

t

F
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Y d e

i S

  



 
 
 

  
          
 

  

 (50) 

 
Thus, the two term perturbation solution of Equation 33 is given by: 
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 

   
             
  

    

 (51) 

 
Substitution of Equation 51 into Equation 32, gives the following 

expression of vortical velocity: 
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   
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  

 
   

u

 (52) 

 
After calculating both acoustic and vortical velocities, we revert 
back to the time dependent oscillatory velocity. Thus, Equations 29, 
52 and 22 together gives the time dependent  oscillatory velocity 
as: 

 

        3 2

1 0 1 0

1 1
sin 1 sin sin 1

2 2
i x Y k x Y x x Y    
   

        
   

u
            

                                                                                                     (53) 
 

where 0Y and 1Y  are given by Equations 41 and 50, respectively. 

The integrals in these solutions cannot be calculated analytically 

and hence numerical integration is performed. Mathematically, the 

viscous fluid results are obtained for 0k  , and are found to 

match with Jankowski and Majdalani (2006).  



 

Ali and Asghar          8041 
 
 
 

 
 

Figure 3. Plot of oscillatory axial velocity 
1 exp( )u it against y for viscous fluid 

0k  and 1, 1, 20, 10t

x
m S R

l
     at dimensionless time ,  180 ,  270  and 360o o o ot = 90 .   

 
 
 

 
 

Figure 4. Effects of suction parameter R on oscillatory axial velocity 

1 exp( )u it for viscous fluid 0k   and 1, 1, 20t

x
m S

l
   at time phase 0180t   

and
0360t    

 
 
 
RESULTS AND DISCUSSION 
 
Here, we would like to discuss the behavior of time 
dependent part, which is the crux of our discussion for 
oscillatory channel flow. To add credibility and to sub-
stantiate our results for the second grade fluid (Equation 
53), we first plot the real part of oscillatory axial velocity 

 1 expu it  for viscous fluid ( 0k  ). Figure 3 represents the 

velocity distribution at four time lines (
 0 0 0 090 ,180 ,270 and 360t   

 0 0 0 090 ,180 ,270 and 360t 
) while Figure 4 shows the amplitude and 

penetration depth of the oscillatory wave for different 
values of suction parameter. The two graphs are found to
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Figure 5. Effects of suction parameter R on oscillatory axial velocity 

1 exp( )u it for 1, 1, 20, 0.6t

x
m S k

l
     at time phase 0180t   

and
0360t  . 

 
 
 

 
 A 

 

 
 B  
 

Figure 6. Effects of second grade parameter k on oscillatory 

axial velocity 
1 exp( )u it  for 1, 1, 20, 10t

x
m S R

l
    at time 

phase 0180t   and
0360t  . 

match identically with Jankowski and Majdalani (2006). 
The effects of suction parameter on the oscillatory axial 

velocity for the second grade fluid ( 0.6k  ) are as 

shown in Figure 5. The graph shows the amplitude of 
oscillation and the penetration depth decreases as the 

suction parameter R  increases. However, the rate of 
decrease of the amplitude with respect to suction 
parameter is faster in the second grade fluid than in the 
viscous fluid.   

The effects of second grade fluid on the oscillatory axial 

velocity are as shown in Figure 6. Starting from 0k  , 

the amplitude of the wave is found to increase 

substantially as the second grade parameter k  increases 

(Figure 6a). The penetration depth of the wave decreases 
nominally with the increase in second grade parameter. 
This fact is separately highlighted in Figure 6b. 
 
 
Conclusion  
 
The aim of this paper is to study the analytical solution of 
oscillatory channel flow in second grade fluid. The 
velocity distribution is decomposed into time independent 
and time dependent parts. The solution for the time 
independent part is readily obtained using perturbation 
method. Amplitude of the time independent velocity 
profile is found to increase with the increase of second 
grade parameter. The time dependent oscillatory velocity 
distribution is realized by determining acoustic and 
vortical waves. The axial solution for the acoustic part is 
obtained using standard separation of variable method. 
The vortical part is more involved and a number of 
techniques, such as separation of variable, perturbation 
method and WKB approximations are used to reach the 
result. The analytical solution for oscillatory axial  velocity 



 

 
 
 
 
is then  built  from  the  acoustic  and  vortical  parts. The 
effects of second grade parameters on the oscillatory 
velocity are shown with the help of graphs. We observe 
significant increase in the amplitude of the wave and a 
small decrease in the penetration depth as the second 
grade parameter increases. Furthermore, the suction 
decreases the amplitude of the velocity distribution. 
These observations are as expected from the physics of 
second grade fluid and agree with those of viscous fluid 

in the limit as 0k  . Finally, we may add that this is the 

first attempt to consider the effects of non-Newtonian 
second grade fluid in the theory of oscillatory channel 
flows and the discussion can be further extended to other 
types of non-Newtonian fluids with different rheological 
properties, different governing equations and different 
industrial applications. 
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