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This work was carried out to improve the probability of interception of frequency sweep and lower the 
system complexity of non-sweep mode of the electronic intelligence system for frequency agile radar 
signal. A low complexity receiver structure and its associated demodulation algorithm with high 
probability of intercept are also presented. Moreover, the applicability of this structure for the wideband 
radar signal is demonstrated. First, the received signal is modulated by analog signal and treated as the 
local oscillator to move the local signal with different Nyquist zone into the baseband to extract the zone 
information. Then, the digital local oscillator synchronized with the analog modulation is used to 
reconstruct the demodulated sub-sampling signal. Finally, the zone and sub-sampling signal could be 
used to estimate signal parameters by the classical signal processing methods. Simulation results show 
that when the signal to noise ratio is more than -16 dB, the probability of correct decision for the Nyquist 
zone is better than 90%. 
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INTRODUCTION 
 
Frequency agility (FA) signal is also known as frequency 
hopping (FH), which is widely used in communications, 
radar, sonar and other fields because of its good 
performance in anti-interference, and low possibility for 
intercept  (Fan et al., 2008). In the field of radar, FA has 
been widely researched. Chen (2008) used the FA 
waveform in multiple-input and multiple-output (MIMO). 
Maric et al. (1994) applied Costas arrays in spread 
sequence (SS)/FH multi-user radar and sonar systems. 
Scholand et al. (2005) proposed the idea of FA combined 
with orthogonal frequency-division multiplexing (OFDM), 
and showed its good performance. Cupido et al. (2006) 
reported that Homodyne sweep system can cover the 18 
to 100 GHz, and the hop size could be as wide as GHz in 
the new millimeter-wave frequency agile system. Hunt 
(2009) realized FA radar in 0.5 to 2 GHz, and the 
performance is fine. 

In electronic countermeasures, the intercept and 
analysis of FA signal have always been a hot topic. Current 
researches are mainly  focused  on  the  digital  signal 
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processing after direct sampling or sub-sampling. The 
common ways of intercept are channelized receiver (Li et 
al., 2009) and time-frequency analysis (Hao 
and Papandreou-Suppappola, 2006). Meanwhile, many 
scholars did the researches on the parameter estimation 
of FA (Angelosante et al., 2010; Aziz et al., 2006; 
Barbarossa et al., 1997; Chung et al., 1995; Gui et al., 
2011; Lam et al., 1990). However, the carrier frequencies 
of FA are generally controlled by the pseudo-random code, 
and the hop size may be several GHz. The frequency is 
constantly hopping which makes the interception difficult. 
If we cannot intercept FA properly, it would be meaningless 
for the following signal processing. Assuming the 
frequencies of radar are hopping in the range of several 
hundreds of MHz to 18 GHz, we would need more than 10 
channels for the whole probability reconnaissance 
according to the current speed of ADC. If we adopt the way 
of frequency sweep, the complexity of the equipments 
could be reduced, while the probability of interception 
cannot be guaranteed. It is a difficult problem in the 
electronic countermeasures on how to realize the high 
probability of interception of a wideband or ultra wideband 
FA signal with low system complexity. 

Driven by the idea of compressed sensing (CS), Fudge 
proposed   Nyquist   folding   receiver   (NYFR)  and 
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Figure 1. Block diagram of SNYFR. 

 
 
 
reconfigurable direct RF bandpass sampling receiver 
(RDRFBSR) (Fudge et al.; 2008a; Fudge et al., 2008b). 
The two types of receiver are similar and overcome the 
disadvantages of the traditional sub-sampling technique 
that can only aim at a particular Nyquist sampling zone. 
The main idea of Fudge is that the Nyquist zone could be 
mapped to a parameter of the signal by performing extra 
analog modulation on the received signals, and then we 
can sample the received signal with added Nyquist zone 
information. By changing the mode of analog modulation 
and the channel number, we can achieve the whole 
probability interception of a wideband or ultra-wideband 
signal in one channel without using frequency sweep. 
However, the structures of NYFR and RDRFBSR are 
easily affected by noise at the zero crossing rising (ZCR) 
time when controlling the clock of shape pulse by using a 
full analog structure for wideband modulation. Besides, 
there is no structure for synchronization in NYFR or 
RDRFBSR, and the initial phase of the signal is lost. In 
addition, the efficient demodulation of the output of NYFR 
and the applicability of the structure for other kinds of radar 
signal interception need further study. 

This paper presents an improved structure marked as 
synchronous NYFR (SNYFR) to realize the interception of 
FA signal and shows the algorithm for the estimation of 
Nyquist zone. We provide a new way of the interception of 
FA and demonstrate the general applicability of SNYFR on 
the other wideband radar signals. 
 
 
SYNCHRONOUS NYQUIST FOLDING RECEIVER 
 
Structure for SNYFR 
 
The structure of SNYFR is shown in Figure 1. The input 
signal is FA, and the agile range is from several hundreds 
of MHz to 18 GHz. To facilitate the follow-up derivation 
rigorously, we assume the input analog signal  has  been 
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preprocessed into I/Q signals and the interesting 
frequency band is from 0 to 18 GHz. First, the input signal 
is filtered by a ultra wideband (UWB) filter (LPF1) whose 
passband is [0, 18 GHz] to remove the out-of-band noise 

to get the complex signal 
( )x t

. Then, 
( )x t

 is mixed by 

the UWB complex local oscillator (LO) 
( )p t

 to obtain the 

modulated signal 
 *( ) ( ) ( )r t x t p t

 where the mark   

stands for complex conjugation, and 
( )r t

 is filtered by the 
second complex low-pass filter (LPF2) with the passband 

[ / 2 / 2]s sf f
 to get the signal 

( )s t
, where sf  is the 

sampling rate for digital signal processing. Finally, sample 

( )s t
 by the rate of sf  to obtain 

( )s n
. The 

( )p t
 is 

generated by the digital analog converter (DAC) and direct 
digital synthesizer (DDS), where DDS is synthesized by 

the digital signal 
( )p n

 and constitutes of sf , the phase 

 ( )n
 and the initial phase 

0 . The instantaneous phase 

    0( ) ( )n n
 of the component corresponding to 

center frequency sf  of 
( )p n

 is also sent to DSP for 
synchronization. 
 
 
Theoretical analysis 
 

Assume that 
( )x t

 is frequency agile, which is given by 
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 is the pulse width, rT
 is 

the pulse repetition interval (PRI), 
r PT T

; qf  and 
q  

are the agile frequency and initial phase for the 
thq

 

sub-pulse and Q  is the number of pulses, respectively. 
The NYFR in Fudge et al. (2008a,b) used the ZCR voltage 
of sinusoidal frequency modulation (SFM) to control the 
shaping pulse to get the UWB LO. While, the basic idea of 
NYFR is to move the corresponding local UWB with 
different Nyquist zone into the baseband to extract the 
zone information by exchanging the location of the 
traditional position of the LO and the received signal. As 
long as the LO has different band in each Nyquist zone, we 
can get the same result in NYFR. The LO could be 
simplified as 
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Figure 2. The distribution of ,H qk
 and the spectrum of 

( )p t
. 

 
 
 

where 
      02 sj f t t

e  is the continuous wave frequency 

modulation, such as SFM; 
0  is the initial phase, 

 ( )t
 is 

the modulation phase corresponding to 
 0 0

, K  is 

determined by the interception bandwidth IB
. The 

spectrum diagram of 
( )p t

 is shown at the shaded area in 
Figure 2, where the vertical axis is the spectrum amplitude 

and the Figure is not marked. When K  is fixed, the 
maximum interception bandwidth can be expressed as 

 
 ( 1/ 2)I sB K f                    (3) 

 
After mixing and filtering by LPF1, the output should be 
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where 
 , ( / 2 )H q q sk round f

, 
 , 0,1,...,H qk K

 is the 

Nyquist zone of sub-sampling and the distribution of ,H qk
 

is shown in Figure 2. Sample 
( )s t

 can present as 
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where 
 1/s sT f

 is the sampling interval. From (5), we 

know that the output of the 
thq

 sub-pulse is a wideband 
signal where the center frequency, bandwidth and initial 

phase are 
 ,q s H qf f k

, ,H qk B
 and 

  0q k
 respectively. 

If the signal is just within one Nyquist zone, known by the 
Nyquist sampling theorem, the condition of sampling 
without aliasing is 
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where IB
 is the minimum of the bandwidths which satisfy 

(3) and are greater than the interception bandwidth. 
Equation 6 could be rewritten as 

 

  2(2 ) 2I s sB f B f
                         (7) 

 
We can recover the signal without distortion when (7) is 
satisfied. For electronic reconnaissance, the interception 
frequency range is 18 GHz, and if the sampling rate is 2 

GHz, we have 
 19GHzIB

 according to Equation 3, then 

  222.2B
MHz from (7). 

 
 
Situation of different Nyquist zone to get the same 
center frequency 

 
The NYFR and SNYFR solve the problem that, the 
traditional sub-sampling could only sample one Nyquist 

per time. When the interception bandwidth is 
( 1/ 2) sK f

, 

there is one mixed signal 
    

 1 1 2 2(2 ) (2 )

1 2( ) j f t j f tx t A e A e
 

containing two frequencies, namely: 
 1 0 1 sf f k f

 and 

 2 0 2  sf f k f
,
  0/ 2 / 2s sf f f

, 
1 2, {0,1, ..., }k k K

, where 

1A
 and 2A

 are the amplitudes corresponding to 1f  and 

2f , 
1  and 

2  are the initial phases corresponding to 1f  

and 2f , respectively. 
If there was an ADC that supports the spectrum as wide 

as 
( 1/ 2) sK f

 with sampling rate sf , sample 
( )x t

 with 
sub-sampling and the digital signal should be 
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It was found that from (8), the two frequencies are both 

transformed into 0f , and there is no extra information to 
decide the original Nyquist zone, that is, we 
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cannot estimate 1f  and 2f  from (8). 
Corresponding to (8), the output signal of SNYFR is 
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Equation 9 shows that the output signal of SNYFR is 
different from the one of sub-sampling. Compared with the 
latter, the former has extra wideband frequency 

modulations 
  1 1 0[ ( ) ]j k n k

e  and 
  2 2 0[ ( ) ]j k n k

e  on 

the corresponding frequency 1f  and 2f . These extra 
modulations contain information about the Nyquist zone, 
which could be estimated by the bandwidth as an 

example. If we know the zone information 1k
 and 2k

, we 
could reconstruct the sub-sampling signal from (9) to 

estimate the frequency 0f  and the corresponding 
amplitudes and initial phases using different zone. With 

the combination of 1k
, 2k

 and 0f , we can estimate the 

absolute frequency of the signal, namely, 1f  and 2f . In 
conclusion, the sampling range of sub-sampling is just one 
Nyquist zone, while SNYFR extend the range to the entire 
interception bandwidth. In addition, Equation 9 shows that 
there is no cross terms of different frequencies, therefore, 
the SNYFR is ”linear” in nature and easy to the follow-up 
signal processing. 
 
 
APPLICABILITY OF SNYFR FOR THE WIDE BAND 
RADAR SIGNAL 
 
Besides FA, the common radar signals are phase shift 
keying (PSK), linear frequency modulation (LFM) and 
nonlinear LFM (NLFM), etc., and they can be modeled as 

wideband signals. Let 
( )x t

 be the wideband radar signal, 
according to Fourier transform (FT) theory, we obtain 
 





2( ) = ( ) j ftx t X f e df

     (10) 
 

where 
( )X f

 is the FT of the signal 
( )x t

. 
 

Equation 10 shows that 
( )x t

 consists of infinite frequency 
components. Then, according to the property of (9), the 
output should be 
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where 
 ( / )f sk round f f

. 
 

The Nyquist zone fk
 is one parameter of the wideband 

signal 
( )s n

 and could be estimated from 
( )s n

. Since 

 ( )n
) and 

0  are known in SNYFR, if we have estimated 

fk
 by time-frequency distribution or other algorithms, we 

could remove the item of 
   0[ ( ) ]f fj k n k

e  to get 
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The 
( )s fX f f k

 in 
( ) s n

 is completely retained and the 

difference between 
( )s fX f f k

 and 
( )X f

 is only the 

index of frequency decided by fk
 when sf  is fixed. Since 

we have estimated fk
, we can fully recover the spectrum 

( )X f
, that is, we can recover the wideband signal 

( )x t
 

from 
( )X f

 where the phase, frequency and modulation 
parameters are not lost. In conclusion, SNYFR is suitable 
for wideband radar signal in principle, and the limitation is 
defined by (7). 

 
 
ESTIMATION OF NYQUIST ZONE 

 
Before the estimation of Nyquist zone, we assume that the 
signal has been detected with the relevant algorithm. After 
the detection, we could estimate the Nyquist zone. 

As mentioned previously, the output of the 
thq

 
sub-pulse is a wideband signal where the center 

frequency, bandwidth and initial phase are 
 ,q s H qf f k

, 

,H qk B
 and 

  0q k
 respectively. We could estimate the 

Nyquist zone using the time-frequency distribution (TFD) 
(Hao, 2006) by dividing the amplitude of the ridge of TFD 

and the amplitude corresponding to the bandwidth B
. 

However, when B
 and ,H qk

 are too small, the peaks 
and valleys of the TFD to estimate the amplitude would be 
close and not easy to be recognized; when the  signal  to
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Figure 3. Estimator of ,H qk
. 

 
 
 
noise ratio (SNR) is low, the estimation of peaks and 
valleys would not be an easy work. 

We have the synchronization between the DSP and 

DDS using 
   0( ) = ( )n n

, then the synchronous LO 
group with the same amplitude and different bandwidth 
should be 
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j k n kjk
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where 
  0,1, ,k K

. Without loss of generality, we 

consider the output denoted as 
( )qs n

 of the 
thq

 
sub-pulse, 
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Then, 
( )qs n

 is multiplied by the conjugate 
 ks n

, and we 
have 
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and 
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Where 
 ,H qk k

, 
 ,q km n

 is a single tone whose carrier 

frequency is 
  ,SNYFR q s H qf f f k

. While
 ,H qk k

, 
 ,q km n

 is 

a wideband signal whose bandwidth is  ,H qk k B
. We 

can perform the automatic modulation classification (AMC) 

on each 
 ,q km n

 for different k (Zeng et al., 2010), and 

the output of AMC corresponding to ,
ˆ
H qk

 is monopulse. 
The algorithm of AMC is difficult, and we will find out an 
easy way. The FT could accumulate the energy with the 
same frequency, and if the signals have the same 
amplitudes and lengths, the maximum amplitude of FT of 
the signal whose bandwidth is the minimum would be the 
maximum. In conclusion, we could estimate the spectrum 

of 
 ,q km n

 at first, and then get ,
ˆ
H qk

 by choosing the k  
whose maximum spectrum is the maximum. The 
architecture of the algorithm is shown in Figure 3.  

The classical algorithm, such as maximum likelihood 
(ML) (Kay, 1993), for the estimation of the frequency 

denoted as 
ˆ
SNYFRf

 and the initial phase 
̂q  of (16) could 

be used after the estimation of ,
ˆ
H qk

, and the estimation of 
ˆ
qf  is given by 

 

  ,
ˆ ˆ ˆ
q SNYFR s H qf f f k

           (17) 

 
 
PERFORMANCE ANALYSIS 

 
Advantages of SNYFR over NYFR 

 
The proposed SNYFR has advantages over NYFR in the 
following aspects: the structure of NYFR used the ZCR of 
SFM to control the shaping pulse to get  the  UWB  LO; 



 
 
 
 

 
 

Figure 4. The PCD vs. SNR and B
. 

 
 
 

 
 

Figure 5. The PCD of zone versus SNR. 

 
 
 
however, the theoretical analysis is too complex and there 
are lots of approximate equivalent; while, the expressing of 
SNYFR for LO showed in (2) is easy to understand, and 
the output expression in (5) is strictly equivalent. The 
detection of ZCR in NYFR by analog circuits is not an easy 
work, and the ZCR is sensitive to noise while the wideband 
modulation of SNYFR is controlled by the DAC which is 
not sensitive to noise. The LO and DSP of NYFR are  not 
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synchronous, and we cannot estimate the initial phase of 
the received signal, but when the SNYFR is synchronous, 
we can estimate the initial phase easily. 
 
 
Simulations for the estimation of Nyquist zone 
 
Simulations have been done to verify the performances of 
the estimation of Nyquist zone. The frequencies of the 
received signal are assumed to be 0.8, 1.3, 3.4, 5.6, 
7.8GHz, 9.3, 11.5, 13.2, 15.7 and 17.4 GHz. The wideband 
modulation is SFM and the bandwidth range is from 0 to 
300 MHz. The pulse width is 0.5 μs. The SNRs are from 
-20 to 10 dB, where the noise is Gaussian and white. Each 
signal was run 500 times. When the entire zones are 
estimated correctly, we just think the estimation is right and 
the performance is evaluated by the probability of correct 
decision (PCD). The results are shown in Figure 4. Figure 
4 shows that, when the modulation bandwidth is 0, SNYFR 
is just the sub-sampling and we cannot distinguish the 
Nyquist zone, that is, the PCD is 0, in the absence of a 
prior. When the modulation bandwidth is less than 10 MHz, 
the PCD increases with the increase of bandwidth for fixed 
SNR. When the modulation bandwidth increases to 10 
MHz or so, the PCD is stable. When the modulation 
bandwidth is greater than 222 MHz, modulation bandwidth 
is greater than the sampling rate, and then the condition 
determined by (7) cannot be satisfied, making the zone 
detection maybe wrong. In conclusion, the preferred 
bandwidth should be from 10 to 100 MHz, and the PCD 
would be greater than 90% when SNR is above -16 dB. 

The performance comparison between the proposed 
and the way using pseudo Wigner Ville distribution 

(PWVD) is presented as 
 10.4GHzqf ,   100MHzB

, 

 2GHzsf . Each signal was run 500 times. Figure 5 
shows the PCD of zone versus SNR. When SNR is greater 
than -16 dB, the PCD of the proposed is above 90%, while 
the PWVD method needs 4 dB to achieve the same PCD. 
The proposed algorithm is much better than the one of 
PWVD, and the reason is that, PWVD does not use 
synchronization information, but the ridge in the 
time-frequency plane is sensitive to noise, while the 
proposed makes full use of the synchronization 
demodulation method to get better noise immunity. 
 
 

CONCLUSIONS 
 
Based on the structure of synchronous Nyquist folding 
receiver for the interception of frequency agile radar 
signal, the down-conversion of the received signal is 
realized with a wideband frequency modulated LO which 
contains the information of Nyquist zone, then, we adopt 
the synchronous demodulation to estimate the zone. As a 
result of the synchronization technology, SNYFR can 
estimate the initial phase of the received signal and 
improve the reliability of the structure NYFR whose  UWB 
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LO is all implemented by analog circuits. Moreover, we 
show that this structure is also suitable for the wideband 
radar signal, indicating SNYFR can be applied to other 
kinds of radar signal. Simulation results show that when 
the SNR is greater than -16 dB, the probability of correct 
decision of Nyquist region is above 90%. SNYFR could 
realize the full interception with low complexity in theory. 
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