

International Journal of the Physical Sciences Vol. 6(6), pp. 1452-1462, 18 March, 2011
Available online at http://www.academicjournals.org/IJPS
DOI: 10.5897/IJPS11.210
ISSN 1992 - 1950 ©2011 Academic Journals

Full Length Research Paper

Investigating a round robin strategy over multi
algorithms in optimising the quality of university

course timetables

Salwani Abdullah1, Khalid Shaker1* and Hothefa Shaker2

1
Data Mining and Optimisation Research Group (DMO), Center for Artificial Intelligence Technology, Universiti

Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
2
Department of Computer Science, Universiti Tenaga Nasional, Jalan Ikram-Uniten, 43000 Kajang, Selangor, Malaysia.

Accepted 3 March, 2011

This paper tackles university course timetabling problems (UCTP) to find a (near) optimal solution
(timetable) while satisfying hard constraints (essential requirements) and minimizing as much as
possible the violations of the soft constrains (desirable requirements). In this study, we apply three
algorithms, that is, Great Deluge, Simulated Annealing and Hill Climbing where the Round Robin
algorithm is used as control strategy in choosing the algorithm to be employed at the current stage.
The performance of the approach is tested with over two sets of benchmark datasets, that is,
enrolment-based course timetabling and curriculum-based course timetabling (UD1) in comparison with
a set of state-of-the-art methods from the literature. The experimental results show that the proposed
approach is able to produce competitive results for the test UCTPs.

Key words: University course timetabling problem, round robin, great deluge, simulated annealing, hill climbing
algorithm.

INTRODUCTION

In university course timetabling problems (UCTP), a set
of courses are scheduled into a given number of rooms
and timeslots across a period of time. This usually takes
place within a week and the resultant timetable replicated
for as many weeks as the courses run. Also, students
and teachers are assigned to courses so that the
teaching delivery activities can take place. The course
timetabling problem is subject to a variety of hard and
soft constraints. Hard constraints need to be satisfied in
order to produce a feasible solution. In contrast,
violations of soft constraints are possible but must be
minimized in order to achieve the best possible quality of
the solution.
Over the past four decades, researchers have proposed

various approaches to solve university course timetabling
problems by using single-based methods, metaheuristic

*Corresponding author. E-mail: khalid@ftsm.ukm.my.

methods (e.g. tabu search (Glover 1997), simulated
annealing, and great deluge), population-based methods
(e.g. genetic algorithms and ant colony optimization),
and hybrid/hyper-heuristic approaches, etc. Interested
readers are referred to Lewis (2008) for a comprehensive
survey of the university timetabling approaches in recent
years and (Ross and Corne 1995) for a comparison
between a genetic algorithms, simulated annealing and
stochastic hill climbing. The following provides an
overview of techniques which have been used to find
solutions to various formulations of the course timetabling
problem in the past. Socha et al. (2002) employed a local
search and ant based algorithms, tested on the eleven
problems produced by Paechter’s

1
 course timetabling test

instance generator (these instances are used to evaluate
the method described in this paper). Burke et al. (2003a)
introduced a tabu-search hyper-heuristic which was also
tested on a nurse rostering problem.

1
 http://www.dcs.napier.ac.uk/~benp/

The great deluge algorithm was employed by Burke et al.
(2003b). Di Gaspero and Schaerf (2003) applied a multi-
neighbourhood search approach, tested on the same
instances. Lewis and Paechter (2004) designed several
crossover operators, tested on a further twenty instances
generated by Paechter’s generator, used in the first
competition in 2002
(http://www.idsia.ch/Files/ttcomp2002).

Kostuch and Socha (2004) investigated a statistical
model in predicting the difficulty of timetabling problems
particularly on the competition datasets. Kate et al.
(2003) considered the discrete Hopfield neural networks
for solving school timetabling problems. Kostuch (2005)
presented a three phase approach employing simulated
annealing and achieving 13 of the best results from the
20 competition instances. A variable neighbourhood
search with a fixed tabu list was employed by Abdullah et
al. (2005). Asmuni et al. (2005) applied a fuzzy multiple
heuristic ordering on the eleven standard benchmark
datasets.

Abdullah et al. (2007) developed an iterative
improvement algorithm with composite neighbourhood
structures and later combined this algorithm with a
mutation operator. McMullan (2007) applied a two-
phased approach utilizing an adaptive construction
heuristic and an extended version of the Great Deluge
algorithm. Abdullah and Turabieh (2008) employed a
genetic and local search approach on the eleven
benchmark course data sets. Landa-Silva and Obit
(2008) employed a non linear great deluge on the same
instances.

A great deluge with kempe chain neighbourhood
structure was employed by Abdullah et al. (2010b) to
solve university course timetabling. A gap between theory
and practice in the area of university timetabling by
McCollum (2007) and other related papers on Enrolment-
Based course timetabling problem are Burke et al.
(2007), McCollum et al. (2010), Chiarandini et al. (2006)
Lu and Hao (2008), and Dimopoulou and Miliotis (2004).

Müller (2008) applied a constraint-based solver
approach to the curriculum-based course timetabling
problems in the 2nd International Timetabling
Competition (Track 1 and 3) as introduced by Di Gaspero
et al. (2007) and achieved first place in this competition.
Lu and Hao (2010) applied a hybrid heuristic algorithm
called adaptive tabu search to the same instances.

Burke et al. (2009) introduced a new solver based on a
hybrid meta-heuristic to tackle scheduling problems. They
applied it first on the 2nd International Timetabling
Competition (Track 3) and was able to achieve good
solutions within a practical timeframe. Sadaf and
Shengxiang (2010) proposed a hybrid approach to solve
post enrolment course timetabling problem in two
phases. First phase a genetic algorithm applied to guide
the search as it uses a data structure to store useful
information from previous good individuals. Local search

Abdullah et al. 1453

algorithms are used to enhance the individuals and tabu
search algorithm applied on the best solution obtained
from the first phase to improve the optimality of the
solution. Other papers that tackle curriculum-based
course timetabling problems can be found (Clark et al.,
2008; De Cesco et al., 2008; Geiger, 2008; Lach and
Lubbecke, 2008).

PROBLEM DESCRIPTION

In this work, two sets of problems are considered, that is,
enrolment-based course timetabling problem and curriculum-based
course timetabling problem. The description of the problem is
discussed as follows.

Enrolment-based course timetabling problem

The problem description that is employed for the first problem here
is adapted from the description presented in Socha et al. (2002)
who present the following hard and soft constraints:

HC1. No student can be assigned to more than one course at the
same time.
HC2. The room should satisfy the features required by the course.
HC3. The number of students attending the course should be less
than or equal to the capacity of the room.
HC4. Not more than one course is allowed to be assigned to a
timeslot in each room.

Soft constraints that are equally penalized are as follows:

SC1. A student has a course scheduled in the last timeslot of the
day.
SC2. A student has more than 2 consecutive courses.
SC3. A student has a single course in a day.

The problem has:

1. A set of n courses, E = {e0, e1,…,en-1}
2. 45 timeslots, T = {t0, t1,…,t44}
3. A set of m rooms, R = {r0, r1,…,rm-1}
4. A set of q room features, F = {f0,…, fq-1}
5. A set of v students S = {s0, s1,…,sv-1}.

The objective of this problem is to satisfy the hard constraints and
to minimise the violation of the soft constraints.

The formula represents the objective function for this problem is
given as below:

Curriculum-based course timetabling problem

This problem is taken from the international timetabling competition
(ITC2007) that consists of the weekly scheduling of lectures for
several university courses within a given number of rooms and time
periods, where conflicts between courses are set according to the
curricula of the university. The problem consists of the following
basic entities:

1454 Int. J. Phys. Sci.

Days, timeslots and periods

The timetable consists of a number of teaching days in the week,
usually 5 or 6 days according to the university system. Each day is
split into a fixed number of timeslots, the same for all days. A period
is the combination of day and timeslot. The total number of
scheduling periods is the product of the number of days and
number of timeslots.

Courses and teachers

Each course consists of a fixed number of lectures to be scheduled
in distinct periods, attended by a given number of students, and
taught by a teacher. For each course, there is a minimum spread (in
terms of days) for the lectures of the course, and there are some
periods in which the course cannot be scheduled.

Rooms

Each room has a capacity (number of available seats) and location
(an integer value representing a separate building). Some rooms
are not suitable for some courses due to a lack of required
equipment.

Curricula

A curriculum is any pair of courses that have common students.
Conflicts between courses and other soft constraints are built
according to the curricula published by the university.

The aim is to assign of all lectures of each course to a period (a
pair composed of a day and a timeslot) and a room in order to
achieve a solution, taking into account hard and soft constraints
violations. All details, updates and news about the problem can be
obtained via the website (http://tabu.diegm.uniud.it/ctt/index.php).

The following hard and soft constraints are presented:

Hard constraints:

1. Lectures: All lectures of a course must be scheduled, and they
must be assigned to distinct periods.
2. Conflicts: Lectures of courses in the same curriculum or taught
by the same teacher must all be scheduled in different periods.
3. Room occupancy: Two lectures cannot take place in the same
room in the same period.
4. Availability: The teacher of the course must be available to teach
that course at a given period; otherwise no lecture of the course
can be scheduled at that period.

Soft constraints:

1. Room capacity. The number of students attending the course
should be less than or equal to the capacity of the room.
2. Minimum working days: The lectures of each course must be
spread into the given minimum number of days.
3. Isolated lectures: Lectures belonging to a curriculum should be in
consecutive periods.
3. Room stability: All lectures of a course should be given in the
same room.

THE PROPOSED ALGORITHM

The search algorithm consists of two stages. The first stage, that is,

a constructive stage is concerned to produce an initial solution
where a least saturation degree heuristic and largest degree
heuristic are used to generate initial solutions for enrolment-based
and curriculum-based course timetabling problems, respectively.
The second stage, that is, an improvement stage aims to optimise
the quality of the generated timetables by minimising the violations
of the soft constraint violations.

Constructive heuristic

Enrolment-based course timetabling problem (EBCTT)

In this problem, a least saturation degree heuristic is used to
generate initial solution starting with an empty timetable (McMullan,
2007). Firstly, the events with fewer rooms available and more likely
to be difficult to schedule will be attempted to be scheduled first,
without taking into consideration the violation of any soft
constraints. If a feasible solution is found, the algorithm terminates.
Otherwise, neighbourhood moves (coded as N1 and N2) are applied
with an aim to achieve feasibility. N1 is applied for a certain number
of iterations (set to 500, from experimentation). If a feasible solution
is met, then the algorithm stops. Otherwise, the algorithm continues
by applying N2 neighbourhood move for a certain number of
iterations. Across all instances tested, solutions were made feasible
before the improvement algorithm was applied. The description of
the neighbourhood moves can be found in “Neighbourhood moves”
in this paper.

Curriculum-based course timetabling problem (CBCTT)

In this problem, a larger degree heuristic is employed that starts
with an empty timetable (Gaspero and Schaerf, 2004). The degree
of an event is a count of the number of other events which conflict,
in the sense that students are enrolled in both events. This heuristic
orders events in terms of those with the highest degree first (Landa-
Silva and Obit, 2008). The events with highest degree of conflict will
be attempted first without taking into consideration the violation of
any soft constraints, until the hard constraints are met. All events
are scheduled by randomly selecting the timeslot and the room that
satisfies the hard constraints. Some events cannot be scheduled to
a specific room; in this case, they will be inserted in any randomly
selected room. If all hard constraints are met, then the feasible
solution is found and the algorithm terminates. Otherwise,
neighbourhood moves as the one applied for the enrolment-based
course timetabling problem is executed.

IMPROVEMENT ALGORITHM

During the optimisation process, the neighbourhood moves are
applied in all three algorithms, that is, Hill Climbing, Great Deluge
and Simulated Annealing. Hard constraints are never violated
during the timetabling process. The general pseudo code of the
improvement algorithm is given in Figure 1.

The RR algorithm is employed to control the applying of the three
algorithms, which are ordered in sequence. In this work, the
algorithms are ordered as ALG1 (Hill Climbing), ALG2 (Great
Deluge) and ALG3 (Simulated Annealing). A time quantum is
assigned for each algorithm in equal portions, in a circular order.
The algorithm is dispatched in a FIFO manner at a given quantum
denoted as q_time which is set to 15 min as we did experiment with
several time quantum, namely, 5, 10, 15, 20, 30 min. Finally we
choose a fixed value (q_time = 15 min) is used for medium and
large data sets, and 10 s for small datasets (for the case of

Abdullah et al. 1455

Set the initial solution Sol by employing a constructive
heuristic;
Calculate initial cost function f(Sol);
Set best solution Solbest ← Sol;
Set quantum time, q_time;
Set initial value to counter_qtime;

 do while (not termination criteria)
 Set a sequence algorithms in a queue which is ordered
as
 ALGi where i ∈ {1,…,K} and K = 3;
 do while (q_time not met)
 Select an algorithm ALGi in the queue where i ∈
{1,…,K};
 A: Apply ALGi on current solution, Sol to generate new
 solution, Sol*;
 if there is an improvement on the quality of the solution
then
 update Solbest, Sol;
 repeat label A
 else
 reset ALGi parameters;
 insert ALGi into the queue;
 counter_qtime = q_time;

Figure 1. The pseudo code for the improvement algorithm.

Table 1. Parameter setting of the algorithm.

Parameter
Hill climbing Great Deluge Simulated annealing

EBCTT CBCTT EBCTT CBCTT EBCTT CBCTT

Number of liter 10000 - 10000 - 10000 ـ

Execution time (Seconds) - 600 600 ـ 600 ـ

Initial temp. - 1000 1000 ـ ــ ـ

Final temp. - 0.5 0.5 ـ ــ ـ

Optimalrate - ـ ـ 0 0 ـ

enrolment-based course timetabling problem. Details of the
datasets are shown in Table 1). In this paper, all parameters used
are based on a number of preliminary experiments. After the
completion of the time quantum of a current algorithm, the
preemption is given to the next algorithm to wait in a queue, and the
next algorithm will start with best solution (Solbest). The pre-empted
algorithm is then placed at the back of the queue, and its
parameters are reset. The parameters involved in the great deluge
algorithm are the estimated quality (coded as Optimalrate) and time
to spend (coded as NumOfIteGD) as in Figure 2. When the
algorithm ALGi is unable to generate a better solution during the
given quantum time, the algorithm will be added into the queue. In

the next iteration (Figure 1), the first algorithm in the queue will be
used to generate a new solution. Table 1 shows the parameter
setting (which is based on preliminary experiments) used in this
work for different sets of data tested here.

Hill climbing algorithm

In the hill climbing algorithm, the generated initial solution Sol is
assigned as a current solution (denoted as SolHill) and best solution
(denoted as SolbestHill). In each of the iteration, two neighborhood
structures are employed on SolHill to generate two new solutions

1456 Int. J. Phys. Sci.

 Initialization

 SolGD ← Sol;
 SolbestGD ← Sol;
 f(SolGD) ← f(Sol);
 f(SolbestGD)← f(Sol)
 Set optimal rate of final solution, Optimalrate;
 Set number of iterations, NumOfIteGD;
 Set initial level: Level ← f(SolGD);
 Set decreasing rate ∆B= ((f(SolGD)–
Optimalrate)/(NumOfIteGD);
 Set iteration ← 0;
 Set not_improving_counter ← 0, not_improving_
length_GDA;

Improvement

Do while (not termination criteria)

 Apply neighbourhood structure Ni where i ∈ {1,2} on
 SolGD,TempSolGDi;
 Calculate cost function f(TempSolGDi);
 Find the best solution among TempSolGDi where i ∈

{1,2} call
 new solution SolGD*;
 if (f(SolGD*) < f(SolbestGD))
 SolGD ← SolGD*;
 SolbestGD ← SolGD*;
 not_improving_counter ← 0;
 level = level - ∆B;
 else
 if (f(SolGD*)≤ level)
 SolGD ← SolGD*;
 not_improving_counter ← 0;
 else
 not_improving_counter++;
 if (not_improving_counter ==

not_improving_length_GDA)
 level= level + random(0,3);

Figure 2. The pseudo code for the Great Deluge.

and the best is selected among of them, called TempSolHill. The
f(TempSolHill) is compared to the f(SolbestHil). TempSolHill will be
accepted when it does not worsen the overall solution value (that is,
the sum of violated soft constraints). Then the current and best
solutions within the hill climbing algorithm operations are updated

(SolbestHill ← TempSolHill, SolHill ← TempSolHill). The process is
repeated until the termination criterion is met, then the best solution
obtained from the hill climbing algorithm (denoted as SolbestHill) is
returned.

Great Deluge algorithm

Great Deluge algorithm uses a bound level that is imposed on the
overall value of the current solution that the algorithm is working
with as the generated solution is only accepted when the value of
the solution after applying the neighbourhood does not exceed the
level (McMullan, 2007). Figure 2 shows the pseudo code for great
deluge algorithm. Here SolGD and SolbestGD are set to be Sol.
The level starts at value (level = f(SolGD)), where SolGD is the
current solution of great deluge algorithm where SolbestGD is the
overall value of the best solution so far. The level is decreased after
each iteration by ∆B (∆B = ((f(SolGD) –
Optimalrate)/(NumOfIteGD)), where Optimalrate is the estimated
quality of the final solution that a user requires.

Two of the neighbourhoods are applied to SolGD to obtain
TempSolGDi. The best solution among TempSolGDi is identified,
called, SolGD*. The f(SolGD*) is compared to the f(SolbestGD). If it

SolSA ← Sol;
SolbestSA ← Sol
f(SolSA) ← f(Sol);
f(SolbestSA)← f(Sol)
Set initial temperature T0
Set final temperature Tf;
Set decreasing rate α = (log (T0) - log (Tf)/Iter_max);
Set not_improving_counter ← 0
Set not_improving_ length_SA;

do while (not termination criteria)

 Define a neighbourhood Ni where i ∈ {1, 2} on SolSA to
 generate TempSolSAi;

 Calculate cost function f(TempSolSAi);
 Find the best solution among TempSolSAi where i ∈ {1, 2}
 call new solution SolSA*;
 if (f(SolSA*) < f(SolbestSA))
 SolSA ← SolSA*;
 SolbestSA ← SolSA*;
 else
 not_improving_counter++;
 if (not_improving_counter == not_improving_length_SA)
 Generate a random number, RandNum in [0, 1];
 Calculate the acceptance propability of SolSA*,
 Paccept(SolSA*)
 if (RandNum < Paccept(SolSA*)) // Paccept(SolSA*) is a
 function to calculate the acceptance probability of
 SolSA*
 SolSA ← SolSA*;
 End if
 end if
 temp ← temp/(1+ α);
 end do;
 return SolbestSA;

Figure 3. The pseudo code for the simulated annealing.

is better, then the current and best solutions are updated.
Otherwise, f(SolGD*) will be compared against the level. If the
quality of SolGD* is less than the level, the current solution, SolGD
will be updates as SolGD*. Otherwise, the level will be increased
with a certain number (which is set in between 1 and 3 in this
experiment) in order to allow some flexibility in accepting worse
solution. The process is repeated until the termination criterion is
met.

Simulated annealing algorithm

Simulated annealing algorithm uses a temperature, temp. Here the
current solution (SolSA) and the best solution (SolbestSA) are set
as Sol. The same parameters as those employed in Abdullah et al.
(2010) are used where the initial temperature T0 is equal to 1000;
the final temperature Tf is equal to 0.5. Two neighbourhoods
outlined in this paper are applied to SolSA to obtain TempSolSAi
and choose the best among TempSolSAi called, SolSA*. A
generated solution is accepted when it is not worsening the overall
value of the current solution. Otherwise the worse solution is
accepted with a probability as in Abdullah et al. (2010).

Let f(SolSA) is the value of the current solution and f(SolSA*) is the
value of the new solution after a number of non improvement
(worse solution). Figure 3 shows the pseudo code for the simulated
annealing.

Abdullah et al. 1457

Table 2. The parameter values for the course timetabling problem categories.

Category Small Medium Large

Number of courses 100 400 400

Number of rooms 5 10 10

Number of features 5 5 10

Number of students 80 200 400

Maximum courses per student 20 20 20

Maximum student per courses 20 50 100

Approximation features per room 3 3 5

Percentage feature use 70 80 90

Table 3. Results comparison.

Data set Our best method M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Small1 0* 2 0* 6 0* 0* 0* 3 0* 0* 0*

Small2 0* 4 0* 7 0* 0* 0* 4 0* 0* 0*

Small3 0* 2 0* 3 0* 0* 0* 6 0* 0* 0*

Small4 0* 0* 0* 3 0* 0* 0* 6 0* 0* 0*

Small5 0* 4 0* 4 0* 0 0* 0* 0* 0* 0*

Medium1 117 226 242 372 317 221 80* 140 96 93 124

Medium2 108 215 161 419 313 147 105 130 96 98* 117

Medium3 135* 231 265 359 357 246 139 189 135 149 190

Medium4 75* 200 181 348 247 165 88 112 79 103 132

Medium5 160 195 151 171 292 130 88 141 87 98 73*

Large 589 1012 - 1068 - 529 730 876 683 680 424*

*The best results.

At every iteration, temp is decreased by α, where α is defined as
(log (T0) – log (Tf)/Iter_max) where Iter_max is the maximum
number of iterations. The process is repeated until the termination
criterion is met. The pseudo code for the simulated annealing
algorithm shows in Figure 3. Based on our preliminary experiments,
the counter of not improving solutions (not_improving_length_SA) is
set to 20.

Neighbourhood moves

Two neighbourhood moves are employed in this approach as
follows:

N1: Choose a single course at random and move to a feasible
timeslot that can generate the lowest penalty cost.
N2: Select two courses at random from the same room (the room is
randomly selected) and swap timeslots.

EXPERIMENTAL RESULTS

The algorithm is coded using Matlab under Windows XP
and performed on the Intel 2.33 GHz computer and
tested on enrolment-based benchmark datasets and on

curriculum-based course timetabling problems. For each
benchmark data set, the algorithm was run with 11 test-
runs to obtain an average value.

Enrolment-based course timetabling problem

We evaluate our proposed approach on the instances
taken from Socha et al. (2002), and
http://iridia.ulb.ac.be/~msampels/tt.data/. These
benchmark course timetabling problems was proposed
by the meta-heuristics network that need to schedule 100
to 400 courses into 45 timeslots that corresponds to 5
days of 9 h each, whilst satisfying room features and
room capacity constraints. They are divided into three
categories: Small, medium and large. We deal with 11
instances: 5 small, 5 medium and 1 large. The
characteristics which define the categories are given in
Table 2.

The best results for 200000 iterations and out of 11
runs obtained are presented. Table 3 shows the
comparison of the approach in this paper with other
available approaches in the literature. These include

1458 Int. J. Phys. Sci.

Figure 4. Box plots of the penalty costs for small, medium and large datasets.

genetic algorithm and local search by M1-Abdullah and
Turabieh (2008), randomised iterative improvement
algorithm by M2-Abdullah et al. (2007), graph hyper
heuristic by M3-Burke et al. (2007), variable
neighbourhood search with tabu by M4-Abdullah et al.
(2005), hybrid evolutionary approach by M5-Abdullah et
al. (2007), extended great deluge by M6-McMullan
(2007), non linear great deluge by M7-Landa-Silva and
Obit (2008), electromagnetism-like mechanism approach
by M8-Turabieh et al. (2009), Dual simulated annealing
by M9-Abdullah et al. (2010), and M10-Harmony search
by Al-Betar et al.(2010). It can be seen that our approach
is able to produce competitive results. From Table 3 it
can be seen our approach has competitive results and
better results on mediums 3 and 4.

Figure 4 shows the box plots of the penalty cost when
solving small, medium and large instances. The results
for the large dataset are less dispersed compared to
medium and small (where small instance shows a worse
dispersed case in these experiments).

Curriculum-based course timetabling problem

Table 4 shows the main features of these instances,

including: courses (C), total lectures (L), rooms (R),
periods permday (PpD), days (D), curricula (Cu), min and
max lectures per day per curriculum (MML).

Here, same neighbourhood moves are applied on all
datasets presented in Table 4. Table 5 shows the
comparison between the best results obtained by our
algorithm with the best known results from the literature.
It can be clearly seen that the best results obtained by
our approach are competitive to the previously best
known results and able to obtain best result on the
comp05, comp21, DDS2 , DDS3 , DDS4 , DDS5 ,
DDS6,and Test1-Test4 datasets.

Figure 5 shows the convergence of the penalty cost for
comp21 and Test1 datasets at every iteration. The x-axis
represents the number of iterations, while y-axis
represents the penalty cost. The trend of both graphs are
similar which indicate that the algorithm behaves similar
even though the features of the datasets maybe different.

It can be seen from the figures that the penalty cost can
be quickly reduced at the beginning of the search (shown
as a steep slope) which increases the diversity and gives
a greater chance to find better solutions. Later, the graph
looks stagnant as the evolution continue. It means that
the searching process is nearly converged whilst the
possibility of finding improved solutions becomes smaller.

Abdullah et al. 1459

Table 4. Description of the instances.

Instance C L R PpD D Cu MML

Comp01 30 160 6 6 5 14 2-5

Comp02 82 283 16 5 5 70 2-4

Comp03 72 251 16 5 5 68 2-4

Comp04 79 286 18 5 5 57 2-4

Comp05 54 152 9 6 6 139 2-4

Comp06 108 361 18 5 5 70 2-4

Comp07 131 434 20 5 5 77 2-4

Comp08 86 324 18 5 5 61 2-4

Comp09 76 279 18 5 5 75 2-4

Comp10 115 370 18 5 5 67 2-4

Comp11 30 162 5 9 5 13 2-6

Comp12 88 218 11 6 6 150 2-4

Comp13 82 308 19 5 5 66 2-3

Comp14 85 275 17 5 5 60 2-4

Comp15 72 251 16 5 5 68 2-4

Comp16 108 366 20 5 5 71 2-4

Comp17 99 339 17 5 5 70 2-4

Comp18 47 138 9 6 6 52 2-3

Comp19 74 277 16 5 5 66 2-4

Comp20 121 390 19 5 5 78 2-4

Comp21 94 327 18 5 5 78 2-4

Dds1 210 900 21 15 5 99 3-7

Dds2 82 146 11 11 6 11 3-6

Dds3 50 206 8 11 5 9 3-6

Dds4 217 972 31 10 5 105 3-6

Dds5 109 560 18 12 6 44 3-6

Dds6 107 324 17 5 5 62 2-4

Dds7 49 254 9 10 6 37 3-6

Table 5. Best results and comparison with other algorithms.

Dataset Our method M1 M2 M3 M4 M5 M6 M7 M8

Comp01 5* 5* 13 5* 5* 9 5* 5* 5*

Comp02 43* 43* 43 75 34 103 108 50 60

Comp03 77 72 76 93 70* 101 115 82 81

Comp04 38 35* 38 45 38 55 67 35 39

Comp05 311* 298 314 326 298 370 408 312 321

Comp06 44 41* 41 62 47 112 94 69 45

Comp07 19 14* 19 38 19 97 56 42 21

Comp08 44 39* 43 50 43 72 75 40 41

Comp09 108 103* 102 119 99 132 153 110 102

Comp10 13 16 14 27 16 74 66 9 17

Comp11 0 0 0 0 0 1 0* 0* 0*

Comp12 339 331 405 358 320* 393 430 351 349

Comp13 69 66 68 77 65 97 101 68 73

Comp14 60 53 54 59 52* 87 88 59 59

Comp15 76 84 - 87 69* 119 128 82 82

Comp16 48 34 - 47 38 84 81 40 49

1460 Int. J. Phys. Sci.

Table 5. Contd.

Comp17 91 83 - 86 80* 152 124 102 81

Comp18 84 83 - 71 67* 110 116 68 79

Comp19 71 62 - 74 59 111 107 75 67

Comp20 42 27 - 54 35 144 88 61 30

Comp21 103* 103 - 117 105 169 174 123 110

Dds1 143 - 132* 1024 - - - - 158

Dds2 0 - 0* 0 - - - - 0*

Dds3 0 - 0* 0 - - - - 0*

Dds4 24 - 68 233 - - - - 28

Dds5 0 - 0* 0 - - - - 0*

Dds6 4 - 4* 11 - - - - 4*

Dds7 0 - 0* 0 - - - - 0*

Test1 227* - - 234 - - - - -

Test2 16* - - 17 - - - - -

Test3 83* - - 86 - - - - -

Test4 89* - - 132 - - - - -

M1: A constraint-based solver by Müller (2009); M2: Integer programming by Lach and Lübbecke (2010); M3: The dynamic tabu
search by Cesco et al. (2008); M4: Adaptive tabu search by Lü and Hao (2010); M5: A repair-based timetable solver by Clark et al.
(2008); M6: Threshold accepting met-heuristic by Geiger (2010); M7: Incorporating tabu search and iterated local search by Atsuta et
al. (2008); M8: Great Deluge approach with Kempe Chain by Shaker and Abdullah (2009); *The best results.

Figure 5. Convergences of comp21 and test 1 datasets.

CONCLUSION AND FUTURE WORK

This paper presents hill climbing, great deluge and
simulated annealing algorithms applied to the course
timetabling problem. The round robin algorithm is
employed on these algorithms to control the selection of
the algorithms given a slice time or quantum. In order to
test the performance of our approach, experiments are
carried out based on course timetabling problems and
compared with state-of-the-art methods from the
literature. Preliminary comparisons indicate that our
approach is competitive with other approaches in the
literature and able to produce two best known solutions
on mediums 3 and 4 dataset and best known result on
the comp05, comp21, DDS2, DDS3, DDS4, DDS5,
DDS6, and Test1-Test4 datasets. In future work, efforts
will be made to establish and compare in relation to
previously reported literature. We believe that the
proposed approach can be adapted with new problems,
thus the Track 2 of ICT2007 will be the subject of future
work.

REFERENCES

Abdullah S, Turabieh H (2008). Generating university course timetable

using genetic algorithms and local search. The Third int. Conf.
Convergence Hybrid Inf. Technol., ICCIT, 1: 254-260.

Abdullah S, Burke EK, McCollum B (2007). A Hybrid Evolutionary
Approach to the University Course Timetabling Problem. IEEE
Congress on Evolutionary Computation, ISBN: 1-4244-1340-0, pp.
1764-1768.

Abdullah S, Burke EK, McCollum B (MISTA 2005). An investigation of
variable neighbourhood search for university course timetabling. The
2nd Multidisciplinary International Conference on Scheduling: Theory
and Applications.

Abdullah S, Burke EK, McCollum B (2007). Using a Randomised
Iterative Improvement Algorithm with Composite Neighbourhood
Structures for University Course Timetabling. In: Metaheuristics
Progress in Complex Systems Optimization, Springer, pp. 153-169.

Abdullah S, Shaker K, McCollum B, McMullan P (2010). Dual Sequence
Simulated Annealing with Round-Robin Approach for University
Course Timetabling. EVOCOP 2010, LNCS 6022, Springer-Berlin
/Heidelberg, pp. 1–10.

Al-Betar M, Khader A, Yi Liao I (2010). A Harmony Search with Multi-
pitch Adjusting Rate for the University Course Timetabling. In: Z.W.
Geem: Recent Advances in Harmony Search Algorithm. SCI,
Springer, Heidelberg, 270: 147–161.

Asmuni H, Burke EK, Garibaldi JM (2005). Fuzzy multiple heuristic
ordering for course timetabling. The Proceedings of the 5th United
Kingdom Workshop on Computational Intelligence (UKCI05), pp.
302-309.

Burke EK, Bykov Y, Newall J, Petrovic S (2003). A Time-Predefined
Approach to Course Timetabling. Yugoslav J. Oper. Res., (YUJOR),
13(2): 139-151.

Burke EK, Kendall G, Soubeiga E (2003). A tabu search hyperheuristic
for timetabling and rostering. J. Heuristics, 9(6): 451-470.

Burke EK, Mareˇcek J, Parkes AJ, Rudová H (2009). Decomposition,
reformulation, and diving in university course timetabling, Comp.
Oper. Res., doi:10.1016/j.cor.2009.02.023.

Burke EK, McCollum B, Meisels A, Petrovic S, Qu R (2007). A Graph-
Based Hyper Heuristic for Educational Timetabling Problems, Eur. J.
Oper. Res., 176(1): 177-192.

Cesco De F, Di Gaspero L, Schaerf A (2008). Benchmarking
curriculum-based course timetabling: Formulations, data format,

Abdullah et al. 1461

instances, validation and results. In Proceedings of the 7th PATAT
Conference.

Chiarandini M, Birattari M, Socha K, Rossi-Doria O (2006). An effective
hybrid algorithm for university course timetabling. J. Scheduling, 9(5):
403-432

Clark M, Henz M, Love B (2008). QuikFix: A repair-based timetable
solver. In Proceedings of the 7th PATAT Conference.

Di Gaspero L, McCollum B, Schaerf A (2007). The Second International
Timetabling Competition (ITC2007): Curriculum-based Course
Timetabling Track3, the 14th RCRA workshop on Experimental
Evaluation of Algorithms for Solving Problems with Combinatorial
Explosion.

Dimopoulou M, Miliotis P (2004). An automated university course
timetabling system developed in a distributed environment: A case
study. Eur. J. Oper. Res., 153(1): 136-147.

Gaspero LD, Schaerf A (2003). Multi-neighbourhood local search with
application to course timetabling. In Emund Burke and Patrick De
Causmaecker, editors. Proceedings of the 4th International
Conference on the Practice and Theory of Automated Timetabling
(PATAT-2002), selected papers, volume 2740 of Lecture Notes in
Computer Science, Springer, pp. 262–275.

Geiger MJ (2008). An application of the threshold accepting
metaheuristic for curriculum-based course timetabling. In
Proceedings of the 7th PATAT Conference.

Glover F, Laguna M (1997). Tabu Search. Kluwer Academic, Boston
Kostuch P, Socha K (2004). Hardness Prediction for the University

Course Timetabling Problem. Proceedings of the Evolutionary
Computation in Combinatorial Optimization (EvoCOP 2004),
Coimbra, Portugal. Springer Lecture Notes Comput. Sci., 3004: 135-
144.

Kostuch P (2005). The university course timetabling problem with a
three-phase approach. Practice and Theory of Automated
Timetabling V (eds. Burke and Trick), Springer Lecture Notes in
Comput. Sci., 3616: 109-125.

Lach G, Lubbecke ME (2008). Curriclum-based course timetabling:
Optimal solutions to the udine benchmark instances. In Proceedings
of the 7th PATAT Conference.

Landa-Silva D, Obit JH (2008). Great Deluge with Nonlinear Decay
Rate for Solving Course Timetabling Problems. Proceedings of the
2008 IEEE Conference on Intelligent Systems (IS 2008). IEEE Press,
8: 11-8.18.

Lewis R, Paechter B (2004). New crossover operators for timetabling
with evolutionary algorithms. Proceedings of the 5th International
Conference on Recent Advances in Soft Computing (ed. Lotfi), UK,
December 16th-18th, pp. 189-194.

Lewis R (2008). A survey of metaheuristic-based techniques for
university timetabling problems. OR Spectr., 30(1): 167-190

Lu Z, Hao J (2009). Adaptive Tabu Search for Course Timetabling. Eur.
J. Oper. Res., doi:10.1016.j.ejor.2008.12.007.

Lu Z, Hao J (2008). Solving the Course Timetabling Problem with a
Hybrid Heuristic Algorithm. AIMSA 2008, LNAI, Springer-Verlag
Berlin Heidelberg, 5253: 262–273.

McCollum B (2007). A perspective on bridging the gap between theory
and practice in university timetabling. LNCS 3867, Springer-Verlag,
3-23.

McCollum B, Burke EK, McMullan P (2010). A review and description of
datasets, formulations and solutions to the University Course
Timetabling Problem. To be submitted April 2010 to the J.
Scheduling.

McMullan P (2007). An Extended Implementation of the Great Deluge
Algorithm for Course Timetabling. Lecture Notes Comput. Sci.,
Springer, 4487: 38-545.

Müller T (2008). ITC2007: Solver Description. Proceedings of the 7th
International Conference on the Practice and Theory of Automated
Timetabling.

Ross P, Corne D (1995). Comparing genetic algorithms, simulated
annealing, and stochastic hill climbing on timetabling problems. In:
GOOS, G. HARTMANIS, J. and LEEUWEN, J. (eds.) Evolutionary
Computation, AISB Workshop, 94–102. Lecture Notes in Computer
Science, Springer-Verlag, Sheffield, p. 993.

1462 Int. J. Phys. Sci.

Shaker K, Abdullah S (2009). Incorporating Great Deluge Approach with

Kempe Chain Neighbourhood Structure for Curriculum-Based Course
Timetabling Problems. 2nd IEEE Conference on Data Mining and
Optimization (DMO’09), pp. 149-153.

Socha K, Knowles J, Samples M (2002). A max-min ant system for the
university course timetabling problem. Proceedings of the 3rd
International Workshop on Ant Algorithms (ANTS 2002), Springer
Lecture Notes in Comput. Sci., 2463: 1-13.

Turabieh H, Abdullah S (2009). McCollum, B.: Electromagnetism-like

Mechanism with Force Decay Rate Great Deluge for the Course
Timetabling Problem. In: RSKT 2009. LNCS, Springer, Heidelberg,
5589: 497–504.

