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INTRODUCTION 
 
Tremendous efforts have been made recently in the 
studies of the chaotic synchronization, due to its potential 
applications in secure communications, biological 
systems, chemical reactions and so on (Pecora et al., 
1990). So far, many interesting synchronization 
phenomenon have been observed, such as anti-
synchronization (Li, 2005), phase synchronization (Wang 
et al., 2010), transient synchronization (Ciszak et al., 
2009), projective synchronization (Mainieri et al., 1999), 
lag synchronization (Taherion1 et al., 1999). Among 
them, anti-synchronization is noticeable in periodic 
oscillators (Li, 2005). Many techniques and methods 
have been proposed to achieve anti-synchronization, 
such as backstepping control (Lin et al., 2009), feedback 
control (Li et al., 2009; Li et al., 2006), adaptive control 
(Al-sawalha et al., 2009; Elabbasy et al., 2009), active 
control (Wang et al., 2007; Njah et al., 2009) and sliding 
mode control (Zhang et al., 2004; Haeri et al., 2007). 

Liénard system, as one of the paradigm in nonlinear 
dynamics, exhibits various aspects of attractors and 
bifurcation (Chen et al., 2005), which includes Van der 
Pol system, Duffing Oscillator system, Brusselator system 
and so on. Elabbasy et al. (2008) achieved 
synchronization for the stable Van der Pol oscillator and 
Chen chaotic dynamical system by using nonlinear 
control function. Fotsin et al. (2005) designed a controller 
to synchronize two unidirectionally coupled modified Van 
der Pol-Duffing oscillators via adaptive control. The aim of 
this article is to design feedback controllers to anti-

synchronize Liénard systems. 
 

Anti-synchronization of Liénard systems 
  
Consider a general Liénard system described by the 
following nonlinear differential equation: 
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The Liénard system can be rewritten as follows: 
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Liénard system with external disturbance can be 
described as the following differential equations 
 

 ,                                               (3) 
 

where external disturbance  is continuous function in 

 which satisfies . 
 
Now we design feedback controllers 

 to anti-synchronize the Liénard 
systems (2) and (3), let Liénard system (2) as the master 
system and the response system as follows 
 

,                                         (4) 
 

Defining the anti-synchronization error as , 

where , . Our goal is to design 

appropriate feedback controllers  

such that , where  is the Euclidean norm. 
 
 
Feedback controller design  
  
From Equations (2) + (4), we get the error dynamical 
system as follows 
 

.                          (5)  
 
Theorem 1. The drive Liénard system (2) and the 
response Liénard system (4) can approach anti-
synchronization asymptotically with the feedback 
controllers (6) 
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If the following inequality (7) holds 
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Proof. Consider the following Lyapunov function: 
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The time derivative of  is  
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Figure 1. Chaotic attractor of Duffing oscillator system. 

 
 
 

 .                                         (10) 
  
Obviously, A is positive definite if the inequality (7) holds. 
Thus, 
  

 ,                              (11) 
 
and the error system described by (5) is asymptotic 
stable. Therefore, the response Liénard system (4) can 
anti-synchronize the drive Liénard system (2) 
asymptotically.  
 
 
Numerical simulations 
 
To verify and demonstrate the effectiveness of the 
proposed method, we discuss the anti-synchronization of 
the Duffing oscillator systems which are typical Liénard 
systems. Consider the Duffing oscillator system 
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Let , Duffing oscillator 
system (12) is equivalent to the following system 
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There is a chaotic attractor of Duffing oscillator system 

(13) as shown in Figure 1 when , ,

, . We choose Duffing Oscillator system 
(13) as the drive system, and the response system as 
follows 
 

,                    (14) 
 

where external disturbance  which satisfies  

.  
 
By  theorem  1, we   design   the feedback  controllers  as 
follows 
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Figure 2. Anti-synchronization errors between Duffing Oscillator systems (13) and (14). 

 
 
 

 .                                            (15) 
 
In the numerical simulations, the fourth-order Runge–
Kutta method is used to solve the Duffing oscillator 
systems with time step size 0.001. We employed the 

initial conditions ,  and ,

. Hence, the error system has the initial values 

, . The simulation results are shown in 
Figure 2. From Figure 2, we can see that the error vector 

 converges to zero as . This shows that the 
response Duffing oscillator system (14) can anti-
synchronize the drive Duffing oscillator system (13) 
asymptotically. 
 
 
CONCLUSIONS 
 
In conclusion, this paper presents a method to design 
feedback controllers for anti-synchronization of Liénard 
systems. Based on the Lyapunov stability theory, the 
feedback controllers and the selection scope of the 
controllers’ parameters for anti-synchronization are 
designed. According to the simulations, the proposed 
method can be successfully applied to anti-
synchronization problems of Liénard type systems.  
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