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The aim of present paper is to define certain subclasses of analytic functions in connection with the 
convolution operator. Moreover, some inclusion relationships, radii problems and a sharp coefficient 
bound have been successfully derived. These innovations are of extreme importance for a wide range 
of physical problems. Results are very encouraging. 
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INTRODUCTION 
 
This paper witnesses the exploration of some new 
classes of analytic functions in connection with the 

convolution operator. We consider nA  as the class of 

functions of the form 
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which are analytic in the unit disc 

}.1:C{  zzE The class nA  is closed under the 

convolution, denoted and defined by 
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where )(zf is given by Equation 1, and 
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Here, we list some classes of analytic functions (Noor, 
2008). Let 
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then  nPzp ,)(   if and only if  

,)(Re zp .,10 Ez  It can be observed that  

  )(1,  PP    is the class of functions with real part 

greater than   and    PP 1,0  is the well known class 

of functions with positive real part. Next, we have the 

class  Pk,n  for  k 2,  
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with  ,1 zp     .,2 nPzp  For ,1n we have 

    kk PP 1, . It is to be highlighted that this class was 

introduced by Padmanabhan and Parvatham (1975).  

Moreover for  ,0,1  n  we obtain the class  

  kk PP 1,0  defined by Pinchuk (1971) and for 

),(),(,2 2 nPnPk    defined earlier. It is easy to 

see that     ,,nPzp k   if and only if there exists 

   nPzp k ,01   such that 
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Further in (Noor, 2008), the following subclasses have 
been studied: 
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We note that   kk RR 1,0 , the class of bounded radius 

rotation and   kk VV 1,0 , the class of bounded 

boundary rotation. For ,1,0,2  nk   these 

classes reduce to the well known classes of starlike and 
convex univalent functions. It is given in (Noor, 2008) that 

       .,, nRzfznVzf kk    With the help of 

convolution, we consider an operator  
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and in general, we have  
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If )(zf  and )(zg  are given by Equations 1 and 2 

respectively, then from Equation 4 we have 
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From Equation 5, it can be easily verified that 
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For ,1n  this operator was introduced by Aouf and 

Seoudy ( 2010). For 1n and    ,
1 z

z
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    ),()(* zfDzgfD mm

  where 
mD  is the 

generalized Salagean operator (Al-Oboudi, 2004), which 

yields the Salagean operator (Salagean, 1983) 
mD  for 

.1 This operator was earlier studied by several 

authors in (Carlson and Shaffer, 1984; Dzoik and 
Srivastava, 1999) under specific conditions. 

 
 
 
 

Furthermore, for 1c  the generalized Bernardi 

operator (Bernard, 1969) for analytic functions is defined 
as: 
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After a simple calculation, Equation 7 can be written as: 
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Using the operator  D
m ,  we define some new classes of 

analytic functions as: 
 
 
Definition 1  
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Definition 2  
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Remark  
 

For special values of parameters km,,  and 

,
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  we have many known classes of analytic 

functions (Malik, 2010; Miller, 1975). 
 
 
RESULTS AND DISCUSSION 
 
Preliminary results 
 
Lemma 1 
 

Let     nPnPzp  ,0  for .Ez  (Bernardi, 1974; 

MacGergor, 1963; Shah, 1972). Then 
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Lemma 2  
 

Let 21 iuuu  and 21 ivvv   and let ),( vu  be a 

complex valued function satisfying the conditions (Miller, 
1975 ): 
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Main results 
 
Theorem 1 
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Proof: Let ),,,()(  nmRzf g

k . Then 
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where )(zH  is analytic in E  and 1)0( H . Using 

Equations 6 and 10, we obtain 
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Logarithmic differentiation yields 
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Since    ,,nPzH k  we can write 
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where       .,0, 21 nPnPzhzh   Then from 

Equations 11 and 12 we have 
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Now, for ,2,1i  we use Lemma 1, with ,rz  to have 
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After some simplifications, we obtain 
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The right side of inequality is positive if ,0

nrz  where 

nr0  is given by Equation 9. As a special case, when  

,0,1,1   n  we obtain  321

0 r  which is the 

well known radius of convexity for starlike functions. 
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Theorem 2 
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This completes the proof. 
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where  zH  is analytic in E  and    10 H . Using 
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Logarithmic differentiation yields 
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From Equations 14 and 15, we have 
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Since ),,,1,()(  nmRzf g

k  we have 
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We formulate a functional ),( vu by taking  
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The first two conditions of Lemma 2 are obvious. For the 
third condition, we proceed as follows: 
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We note that 0),(Re 12  viu if 0A and 0B . 

From  0A , we obtain 
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By virtue of Lemma 2, we see that 
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k . This completes 

the proof. 
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where  zH  is analytic in E  with   10 H . Using 
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Logarithmic differentiation yields 
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Now using the same steps as in Theorem 3, we obtain 
the required result. 
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where  zH   is analytic in  E  with    10 H . Let  zH   

be of the form 
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From Equations 5, 18 and 19, we obtain 
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By using Cauchy's product formula (Goodman, 1983) for 
the power series, we obtain 
 

        .11111
1

111

j

ijii

m
j

ij

j

jj

m

j

zcbaizbajj 







 













 

 

Equating the coefficients of 
jz on both sides, we have 
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By using induction on j , we obtain 
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This bound is sharp and the equality occurs for  

  Azf 0   such that  
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Theorem 6 
 

Let ),,,()(  nmRzf g

k   and  cJ   is defined by 
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where  zH   is analytic in E  and    10 H . Using 

Equation 8 and 20, we obtain 
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Logarithmic differentiation yields 
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Now following the same steps as in theorem 3, we obtain 
the required result. 
 
 
Theorem 7 
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where )(zH  is analytic in E  and   10 H . Using 

Equations 8 and 20, we obtain 
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Logarithmic differentiation yields 
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Now following the same steps as in Theorem 3, we 
obtain the required result. 

 
 
Theorem 8 
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Logarithmic differentiation yields 
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Since  ),,,()(  nmVzf g

k  and  
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k , we have 
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where   .,)(),( 21 nPzhzh k    Since   nPk ,   is a 

convex set, we have 
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and this implies that     ,,nVzG k  which completes 

the proof. 
 
 
CONCLUSIONS 
 
Some new classes of analytic functions in connection 
with the convolution operator have been explored. 
Moreover, some inclusion relationships, radii problems 
and a sharp coefficient bound have also been 
successfully derived. It was also observed that the 
proposed innovations are of extreme importance for a 
wide range of physical problems.  
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