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This paper develops an effective method for a probabilistic analysis of earthen slopes. Typically, the safety of a 
slope is assessed in terms of a factor of safety based on deterministic methods. However, these methods are 
unable to handle the uncertainties in the stability analysis. Therefore, the probabilistic approach is used for 
analyzing the safety of slopes, which is capable to take into account the uncertainties. In this study, for slope 
safety assessment, the reliability index defined by Hasofer and Lind is employed for estimating the reliability 
index or probability of failure. The performance function formulated by Spencer’s method for general shape of 
slip surface. To calculate the minimum reliability index and corresponding critical probabilistic slip surface a 
modified particle swarm optimization is introduced. By this method, reliability of the nonlinear and complex 
performance function can be evaluated without derivation. The applicability and efficiency of the proposed 
algorithm are examined by considering a number of published cases and the results indicate the successful 
working of the new method. 
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INTRODUCTION 
 
Slope stability is one of the important issues in the geote-
chnical engineering and has been studied extensively for 
a long time. The stability of natural and man-made slopes 
has traditionally been analyzed using a deterministic 
method. In a deterministic procedure, variables are 
represented by single values. The significant variables 
involved in the slope stability analysis include the soil 
strength, soil density, and pure water pressure. Repre-
senting these variables by single values implies that the 
values are predicted with certainty, which the case is 
seldom. Slope stability problems are characterized by 
many uncertainties and deterministic methods are unable 
to account for these uncertainties. The slope may fail 
even though the factor of safety calculated from a 
deterministic model is greater than unity. This indicates a 
need for more objectively structured and quantitative 
approach toward handling uncertainties involved in the 
problems. The probabilistic approach is a natural choice 
for this type of analysis, because it  allows  for  the  direct 
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incorporation of uncertainties into the analytical model. In 
recent years, several attempts have been done to 
develop a probabilistic slope stability analysis (Christian 
et al., 1994; Liang et al., 1999; Bhattacharya et al., 2003; 
Griffiths and Fenton, 2004; Tobutt and Richards, 2005).  

The results of probabilistic analysis may be expressed 
as a probability of failure or reliability index. The most 
commonly used method to a probabilistic analysis of 
slope is based on computing the reliability index 
associated with the critical deterministic slip surface 
(Vanmarcke, 1977; Chowdhury et al., 1987; Christian et 
al., 1994). However, the critical deterministic surface with 
the minimum factor of safety may not be same as the 
surface with the lowest reliability index or the highest 
probability of failure (Li and Lumb, 1987; Hassan and 
Wolff, 1999). The common approach to estimate the 
reliability index of earth slope is the Mean-Value First-
Order Second-Moment (MFOSM) method (Ang and 
Tang, 1984). In MFOSM, the performance function is 
expanded about the mean values of the parameters and 
only the first order terms are kept. Moreover, to calculate 
the reliability index the partial derivative of performance 
function is needed. Because the performance function in 
slope   stability   analysis   is  usually  implicit,  the  partial 



 
 
 
 
derivatives of performance function are frequently 
approximated numerically (Christian et al., 1994). To 
overcome the problem of dependence of reliability index 
on performance function, Hasofer and Lind (1974) 
proposed an invariant definition of the reliability index. 
They defined the reliability index � as the minimum 
distance from the origin in the standard normal space to 
the limit state surface.  
To apply the probabilistic analysis using Hasofer-Lind 
reliability index (�HL) it is necessary to solve a constraint 
optimization problem to find the mini-mum reliability index 
or maximum probability of failure utilize the appropriate 
optimization technique. During the last decades, several 
optimization methods have been employed in field of 
deterministic slope stability analysis and to automate the 
search for the minimum factor of safety (Greco, 1996; 
Malkawi et al., 2001; Pham and Fredlund, 2003; 
Zolfaghari et al., 2005; Cheng et al., 2008; Kahatadeniya 
et al., 2009). However, very few studies have investi-
gated the application of optimization algorithm to seeking 
the reliability index and probabilistic stability assessment 
of slopes (Bhattacharya et al., 2003; Xie et al., 2008). 

So far, the most commonly used optimization technique 
is called gradient algorithm which is based on gradient 
information. However, the acquisition of gradient informa-
tion can be costly or even altogether impossible to obtain. 
But another kind of optimization techniques, known as 
Evolutionary Algorithm (EA), is not restricted in the 
aforementioned manner. As a newly developed subset of 
EA, the particle swarm optimization has demonstrated its 
many advantages and robust nature in recent decades. It 
is derived from social psychology and the simulation of 
the social behavior of bird flocks in particular. Inspired by 
the swarm intelligence theory, Kennedy created a model 
which Eberhart then extended to formulate the practical 
optimization method known as Particle Swarm Opti-
mization (PSO) (Kennedy and Eberhart, 1995). The PSO 
algorithm has some advantages compared with other 
optimization algorithms.  

It is a simple algorithm with only a few parameters to be 
adjusted during the optimization process, rendering it 
compatible with any modern computer language. It is also 
a very powerful algorithm because its application is 
virtually unlimited. Recently, various researchers have 
analyzed PSO and experimented with it and many varia-
tions were created to further improve the performance of 
PSO.  

In this paper, we propose a Modified Particle Swarm 
Optimization (MPSO) for minimizing the Hasofer-Lind 
reliability index (�HL) and determine the critical 
probabilistic slip surface of earth slope. The proposed 
algorithm utilized Spencer’s method for the formulation of 
the performance function coupled with the reliability index 
defined by Hasofer and Lind. The method presented 
herein is simple but effective to search for the critical 
probabilistic slip surface in slope stability analysis. 
Moreover, it can provide a solution to find the critical 
deterministic slip surface and minimum factor of safety. 
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DETERMINISTIC SLOPE STABILITY ANALYSIS 
 
The generally adopted approach of deterministic analysis 
of slopes is the limit equilibrium method of slices. Various 
methods of slices have been proposed over the years 
such as Bishop (1955), Morgenstern and Price (1965), 
Spencer (1967) and Janbu (1973). The essence of these 
methods is to divide the sliding mass into a finite number 
of vertical slices to calculate the factor of safety. A 
number of these methods are applicable to a circular slip 
surface and satisfy only overall moment equilibrium, such 
as the ordinary and simplified Bishop’s method, while 
others are applicable to any shape of slip surface and 
satisfy both moment and force equilibrium, such as 
Morgenstern and Price, and Spencer’s method. 

In this study, Spencer’s method is used for calculation 
of the factor of safety and performance function. Spencer 
(1967) suggested a method by assuming the inter slice 
force inclination angles of all slices to be equal. In this 
method moment and force equilibrium will be satisfied 
simultaneously for any shape of failure surfaces. The 
method is one of the most accurate methods for 
estimation of safety factor (Duncan and Wright, 1980). 
The details of inter slice forces for a typical vertical slice 
are shown in Figure 1.  

The equations of force and moment equilibrium can be 
respectively written as: 
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Trial and error process is used to determine the factor of 
safety. By changing the value of FS and �, the safety 
factor is defined through an iterative process until both 
force and moment equilibrium will be satisfied. The 
iterative procedure is completed when the difference 
between computed values of ZR and hR is within an 
acceptable tolerance from the known values of ZR and hR 
at the boundaries. 
 
 
PROBABILISTIC SLOPE STABILITY ANALYSIS 
 
In general, the factor of safety is not a consistent measure of risk. 
Slopes with the same value of FS may exist at different risk levels 
depending on the variation of soil properties. It is incomplete to 
quantify how much safer a slope becomes as the factor of safety is 
increased (Li and Lumb, 1987; Christian et al., 1994) because 
various uncertainties are not considered. As a result, there has 
been an attempt in recent years to use probabilistic techniques for 
analyzing the safety of soil slopes when natural variability and 
uncertainty inherent in soil parameters are considered. One 
advantage   of   working   within   a  probabilistic  framework  is  that 
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Figure 1. Forces acting on a typical slice in Spencer’s method. 

 
 
 
various soil parameter uncertainties can be considered rationally.  

Two approaches can be used for probabilistic analysis of earth 
slope. The first approach is based on calculation of the probability 
of failure corresponding to the critical deterministic surface with 
minimum factor of safety. However, the surface of the minimum 
factor of safety may not be the surface of the maximum probability 
of failure (Hassan and Wolff, 1999). The second approach is based 
on the determination of the critical probabilistic surface that is 
associated with the highest probability of failure or the lowest 
reliability (Li and Lumb, 1987; Bhattacharya et al., 2003; Cho, 
2007).  

The problem of the probabilistic analysis is formulated by a 
vector, X=[X1,X2,X3,…,Xn], representing a set of random variables. 
From the uncertain variables, a performance function g(X) is 
formulated to describe the limit state in the space of X. The 
performance function divides the vector space X in to two distinct 
regions. The safety region for g(X)>0 and the failure region for 
g(X)<0, while the limit state surface is g(X)=0. The performance 
function for the slope stability is a function of the factor of safety 
(FS) usually defined as: 
 
g(X) = FS- 1                                                                              (3)  
  
The probability of failure of the slope can be expressed in terms of 
the performance function by the following integral: 
 
Pf = P[g(X � 0)] = �g(X)�0 fX (X) dX                                                    (4)

 

 
where fX(X) represents the joint probability density function of the 
vector of random variables and the integral is carried out over the 
failure domain. Consequently, the probability of safe performance, 
or the reliability of the slope is given by: 
 
Reliability = P[g(X) > 0]= 1 – Pf                                                      (5)  
  
The performance function, as defined by Equation (3), is a function 
of several random variables. To determine the reliability (or 
probability of failure) the probability density function of the 
performance function must be evaluated. This requires multiple 
integration of the joint probability density function of the random 
variables over the entire safe (or failure) domain. The joint 
probability density function of the random variables is generally not 
well defined and the performance function is very often implicit. 
Hence, evaluating the probability density function of the 
performance function is often not possible. In addition, even if the 
joint probability density  function  of  the  random  variables  can  be  

specified, the multi-dimensional integral in Equation (4) cannot 
usually be solved analytically and numerical approaches are often 
required to find the solution. Therefore, the most effective appli-
cations of probability theory to the analysis of slope stability have 
stated the uncertainties in the form of a reliability index (�). The 
reliability index provides more information and is a better indication 
of the stability of a slope than the factor of safety alone because it 
incorporates information of the uncertainty in the values of the 
performance function. It also provides a good comparative measure 
of safety; slopes with higher � are considered safer than slopes with 
lower �.  

Depend on the form of the performance function several defini-
tions of the reliability index exist. Hasofer and Lind (1974) proposed 
an invariant definition of the reliability index as the minimum 
distance from the origin in the standard normal space to the limit 
state surface. This distance is defined as �HL and the approach is 
referred to as the Advanced First-Order Second-Moment (AFOSM) 
reliability method. The closest point on the failure surface is said to 
be the design point or the Most Probable Point (MPP) of failure 
(Figure 2). To determine the H-L reliability index (�HL ), all the 
random variables X should be transformed into a standard normal 
space U, by an orthogonal transformation such that: 
 

ui = (xi − µi) / σi                                                                              (6) 
 
where �i and �i represent the mean and the standard deviation of xi, 
respectively. The mean and standard deviation of the standard 
normally distributed variable, ui , are zero and unity, respectively. 
Based on the transformation of Equation (6), the mean value point 
in the original space (X-space) is mapped into the origin of the 
normal space (U-space). The failure surface g(X) =0 in X-space is 
mapped into the corresponding failure surface g(U) =0 in U-space, 
as shown in Figure 2. The reliability index is the shortest distance 
from the origin to the failure surface. The matrix formulation of the 
Hasofer-Lind reliability index (�HL) is defined in the following form 
(Ditlevsen, 1981; Low and Tang, 1997):  
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Figure 2. The geometrical representation of the definition of the reliability index. 

 
 
 
where X is a vector representing the set of random variables xi, F is 
the failure domain, � is the vector of mean values �i, �i is the 
standard deviation, C is the covariance matrix and R is the 
correlation matrix. Mathematically, R=[�ij] (i,j=1,2,…,n) is a square 
matrix that contains the correlations among a set of n random 
variables. As mentioned by Low and Tang (1997) using Equation 
(8) is preferred to Equation (7) because the correlation matrix R is 
easier to set up, and conveys the correlation structure more 
explicitly than the covariance matrix C. Although, the correlation 
coefficient among two random variables has a range -1<�ij<1, one 
is not totally free in assigning any values within this range for the 
correlation matrix. It must be emphasized that the correlation matrix 
has to be positive definite (Low and Tang, 2004). 

As mentioned before, the H-L reliability index (�HL) is defined as 
the minimum distance from the origin of the axis in the standard 
normal space to the limit state surface. To evaluate �HL the 
following constrained optimization problem should be solved:  

 

( ) 0
HLMinimize

Subject to g

β
=U                                                        

(9)
 
 

 
Solve Equation (9) is equivalent to solve the relaxed form obtained 
by penalty method as: 
 
Minimize �HL + r | g(U)|l

                                                              
(10)

 
 

 
The parameters r and l are problem dependent, and r should be a 
suitably large positive constant. In the present study, the values set 
for r and l were 1000 and 2, respectively. The solution of the above 
optimization problem is the design point or MPP in the standardized 
normal space. Then, the probability of failure (Pf) can be estimated  
from the reliability index using the established equation as: 
 

Pf = 1 – � (�HL)= � (-�HL)                                                           
(11)

 
 

 
where � is the standard normal cumulative distribution function. 
Several algorithms have been recommended for the solution of 
optimization problem in Equation (10) (Liu and Kiureghian, 1991). In 

the current study a new approach of particle swarm optimization is 
proposed for the solution. 
 
 
MODIFIED PARTICLE SWARM OPTIMIZATION 
 
Particle swarm optimization is a population based stochastic 
optimization method. It explores for the optimal solution from a 
population of moving particles, based on a fitness function. Each 
particle represents a potential answer and has a position (Xi

k) and a 
velocity (Vi

k) in the problem space. Each particle keeps a record of 
its individual best position (Pi

k) and global best position (Pg
k). The 

new velocity and position of particle will be updated according to 
the following equations (Shi and Eberhart, 1998): 
 
Vi

k+ 1= w× Vi
k + c1 × r1 ×( Pi

k – Xi
k) + c2 × r2 ×( Pg

k – Xi
k)       

i=1,2,…, N                                                                                   (12)  
 
Xi

k+1 = Xi
k + Vi

k+1

                                                                          (13)   
where w is an inertia weight that controls a particle’s exploration 
during a search, c1 and c2 are positive numbers illustrating the 
weight of the acceleration terms that guide each particle toward the 
individual best and the swarm best positions respectively, r1 and r2 
are uniformly distributed random numbers in (0, 1), and N is the 
number of particles in the swarm. The inertia weighting function in 
Equation (12) is usually calculated using following equation: 
 
w = wmax – (wmax – wmin) × k / G                                                (14)  
 
where wmax and wmin are maximum and minimum value of w, G is 
the maximum number of iteration and k is the current iteration 
number. As the PSO’s equations reveal, unlike the traditional model 
based optimization algorithms like Newton’s method, the PSO 
algorithm does not need a mathematical model of the problem. The 
only information required by the PSO to search for the optimum 
solution is the evaluation of fitness function.  

This study proposes a MPSO to search for the minimum reliability 
index and probabilistic slope stability analysis. To improve the 
performance of basic PSO, the inertia  weight (w)  and  acceleration  
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Figure 3. Comparison of the conventional and new inertia weight. 

 
 
 
coefficients (c1 and c2) in Equation (12) will be defined according to 
the following descriptions. 

In the first step, the application of chaotic sequences is 
introduced to improve the global seeking ability and prevent the 
early convergence to local minima. One of the dynamic systems 
showing a chaotic manner is logistic map (Caponetto et al., 2003), 
whose equation is described as follows: 

 
fk = µ . fk-1 . (1 – fk-1)                                                                   (15)   
where k is the iteration number, � is a control parameter and has a 
real value in the range of [0, 4] and 0� f0 �1. Despite the apparent 
simplicity of the equation, the solution exhibits a rich variety of 
behaviors. The behavior of the system represented by Equation 
(15) is greatly changed with the variation of �. Equation (15) is 
deterministic, displaying chaotic dynamics and generates chaotic 

evolutions when �=4.0 and 0 {0,0.25,0.5,0.75,1}.f ∉  
In the current study, the new equation for inertia weight is defined 

as multiplying Equation (14) by Equation (15) in order to improve 
the global searching capability as follows: 

 
wnew = w . f                                                                                  (16)   
As it is presented in Figure 3, although, the conventional inertia 
weight decreases monotonously from wmax to wmin, the new inertia 
weight decreases and oscillates simultaneously for total iteration 
when �=4.0 and f0=0.55.  

In the second step, to reduce the cognitive component and 
increases the social component the time-varying acceleration 
coefficient is proposed. At the beginning of optimization procedure, 
with a large value of c1 and a small value of c2, particles are allowed 
to move around the search space, instead of moving toward pbest. 
Moreover, with a small value of c1 and a large value of c2 allow the 
particles converge to the global optima in the latter part of the 
optimization. Over the generations time-varying acceleration 
coefficients are evaluated according to the following equations: 

 
c1 = c1max – (c1max – c1min) × k / G                                               (17)   
c2 = c2max – (c2max – c2min) × k / G                                               (18)   
In Equations (17) and (18), c1min and c2min are  the  minimum  values  

of the acceleration coefficient and c1max and c2max are the maximum 
values of the acceleration coefficient, respectively. G and k were 
described in Equation (14). One of the major advantages of the 
proposed MPSO is its premature convergence, especially while 
handling problems with more local optima and heavily constrained. 
 
 
TEST PROBLEMS AND RESULTS 
 
This section investigates the validity and effectiveness of 
the proposed algorithm to probabilistic slope stability 
analysis. The procedure has been carried out using a 
computer program was developed in MATLAB. All the 
programs were executed on a 2.10 GHz Pentium IV 
processor with 2GB of Random Access Memory (RAM). 
The program searches for the most critical deterministic 
and probabilistic slip surface. The factor of safety has 
been defined based on the Spencer’s method for general 
shape of slip surface. To calculate the reliability or 
probability of failure, the Hasofer-Lind reliability index 
(�HL) is evaluated using modified particle swarm optimi-
zation. Based on above explanation, the implementation 
procedure of the proposed MPSO for the reliability 
analysis of the earth slope is constructed as follows: 
 
1. Initialize a set of particles positions and velocities ran- 
domly distributed throughout the design space bounded 
by specified limits. 
2. Evaluate the objective function values using Equation 
(10) for each particle in the swarm. 
3. Update the optimum particle position at current 
iteration and global optimum particle position. 
4. Update the velocity vector as specified in Equation (12) 
and update the position of each particle according to 
Equation (13). 
5. Repeat steps 2–4 until the stopping criteria is met.  
 
To verify  and  assess  the  applicability  of  the  proposed  



 
 
 
 
algorithm to search for the minimum reliability index and 
associated probabilistic slip surface the following bench-
mark problems were selected from the literature. In the 
following problems, the random variables are supposed 
to be described statistically by a lognormal distribution 
defined by a mean �X and a standard devia-tion �X. The 
lognormal distribution ranges between zero and infinity, 
skewed to the low range, and is therefore particularly 
suited for parameters that cannot take on negative 
values. The mean and standard deviation of the 
underlying normal distribution of lnX are then given by the 
following equations (Fenton and Griffiths, 2008): 
 

)1ln( 2

2

ln
2

X

X
X

µ
σσ +=

                                                    
 (19)  

  

µln X = ln (µX) – 0.5 σ 2ln X                                                     (20)  

 
Moreover, probabilistic analysis requires estimating or 
assuming the correlation coefficients between random 
variables. The parameters that might be correlated are 
friction angle, unit weight and cohesion. In the following 
cases, the cohesion and friction angle are assumed to be 
negatively correlated with each other (�c	=-0.3) and 
positively correlated with unit weight (�c
= �	
=0.5) in 
accordance with the reported values in literature 
(Chowdhury and Xu, 1992; Low and Tang, 1997). 

To calculate the minimum value of �HL using proposed 
MPSO the parameters of the algorithm should be 
adopted accurately. The parameters that may affect the 
performance of the algorithm include maximum and mini-
mum values of inertia weight (wmax and wmin), maximum 
and minimum values of acceleration coefficient (cmax and 
cmin), control parameter (�), f0, and swarm size (N). In our 
study, proper fine tuning of these parameters was 
obtained utilizing several experimental studies examining 
the effect of each parameter on the final solution and 
convergence of the algorithm. As a result, a population of 
40 individuals was used; wmax and wmin were chosen as 
0.9 and 0.4 respectively; c1max and c2max were selected 
equal to 2.5 and c1min and c2min were selected equal to 
0.5. The control parameter (�) was set to 4.0 and f0 is 
considered as 0.55. Finally, a fixed number of maximum 
iteration (G) of 3000 was applied. The optimization proce-
dure was terminated when one of the following stopping 
criteria was met: (i) the maximum number of generations 
is reached; (ii) after a given number of iterations, there is 
no significant improvement of the solution. 
 
 
Test problem 1: Application to a homogeneous slope 
 
Figure 4 shows the geometry of a slope in homogeneous 
soil. The parameters considered as random variables in 
the probabilistic analysis are: the effective friction angle, 
effective cohesion, unit weight and pore water pressure 
ratio. Table 1  presents  the  mean  values  and  standard  
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deviation associated with each random variable.  

The problem was previously solved by Li and Lumb 
(1987), Hassan and Wolff (1999) and Bhattacharya et al. 
(2003). Li and Lumb (1987) determined the reliability 
index using Hasofer and Lind. For the formulation of 
safety factor and performance function, Li and Lumb 
(1987) used Morgenstern and Price method with the 
assumption of f(x) =1, which is equivalent to the Spencer 
method. Hassan and Wolff (1999) calculated the 
reliability index corresponding to the searched critical pro-
babilistic surface using the MFOSM method assuming a 
lognormal distribution for the factor of safety. The method 
was used in their study to evaluate the safety factor was 
Spencer’s method (Spencer, 1967) for circular and non 
circular slip surface. Finally, Bhattacharya et al. (2003) 
solved the problem with the same methodology as 
Hassan and Wolff (1999). They used Spencer’s method 
in conjunction with the direct search method for deter-
mination of minimum reliability index. Note that different 
limit equilibrium methods will give different accuracy and 
will usually give different factors of safety even for the 
same slope. Therefore, in this study for the sake of right 
comparison the Spencer’s method is applied to calculate 
the factor of safety and performance function.  

The results of the proposed method and previous 
studies are summarized in Table 2. Moreover, to verify 
the accuracy and efficiency of the proposed MPSO, the 
result of standard PSO is also presented. In Table 2, 
FSmin and �FS are the minimum factor of safety and the 
reliability index associated with the critical deterministic 
slip surface, �min and FS� are the minimum reliability 
index and the factor of safety corresponding to the critical 
probabilistic slip surface.  

According to analyzing the results of this table, it can 
be observed that, the minimum reliability index calculated 
using presented method is 2.205, which is lower than the 
values reported by Li and Lumb (1987); Hassan and 
Wolff (1999), Bhattacharya et al. (2003), and also 
standard PSO (2.214). Further, the minimum factor of 
safety calculated from a deterministic analysis based on 
the mean values of the soil properties obtained by MPSO 
is 1.301, which is lower than 1.326 reported by 
Bhattacharya et al. and slightly lower than 1.309 
achieved by PSO. The values of �FS and FS� are also 
comparable with the reported values. The corresponding 
critical deterministic and the critical probabilistic slip 
surfaces are also presented in Figure 4. As it can be 
seen, two surfaces are located reasonably close to each 
other as expected in a homogeneous slope. It is because 
of the proximity of the values of �FS and �min presented in 
Table 2. The failure surfaces reported by previous 
researchers are also similarly located.  

To further validate the reliability of the results, statistical 
analysis of the data obtained from the 50 independent runs 
is carried out. Table 3 presents a comparison of the 
results evaluated by MPSO and PSO in terms of the 
mean (average), best (minimum), worst (maximum), 
standard   deviation,   average   number   of   iterations   and  
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Figure 4. Cross section of homogeneous slope-test problem 1. 

 
 
 

Table 1. Statistical properties of soil parameters-test problem 1. 
 
Random variable Mean Standard deviation Distribution 
c' 18.0 kN/m2 3.6 k N/m2 Log-normal 
tan 	' tan 30 0.0577 Log-normal 

 18.0 kN/m3 0.9 k N/m3 Log-normal 
ru 0.2 0.02 Log-normal 

 
 
 

Table 2. Results comparison-test problem 1. 
  

Method �FS �min FSmin FS� 
Li and Lumb (1987) - 2.5 - - 
Hassan and Wolff (1999) 2.336 2.293 - - 
Bhattacharya et al. (2003) 2.306 2.239 1.326 1.337 
Present study (PSO) 2.295 2.214 1.309 1.319 
Present study (MPSO) 2.286 2.205 1.301 1.309 

 
 
 
average elapse time. Standard deviation can be used to 
obtain the stability of each algorithm. To compare the 
accuracies of the algorithms, a maximum number of 
iteration is considered as a stopping condition and the 
results obtained from the algorithms are compared. Each 
algorithm was run 50 times and the average elapsed time 
is considered as a measure of the computational time. As 
it can be seen from Table 3, the standard deviation for 
MPSO is 0.0019 which is lower than that evaluated for 
PSO (0.0028). The low standard deviation for the 
proposed method proves the consistency of  the  method. 

Moreover, Table 3 shows that the proposed algorithm 
requires far fewer iterations and computation time when 
compared with PSO. Hence, it can be concluded that the 
MPSO is better than PSO in terms of accuracy and 
convergence speed. 
 
 
Test problem 2: Application to a non homogeneous 
slope  
 
Figure 5 shows the cross section and geometry of  a  two 
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Table 3. Statistical comparison of the minimum reliability index obtained by PSO and MPSO. 
 

Problem  Best Mean Worst 
Standard 
deviation 

Mean number 
of iterations 

Mean 
time 

Test problem 1 
PSO 
MPSO 

2.212 
2.202 

2.214 
2.205 

2.218 
2.210 

0.0028 
0.0019 

2780 
920 

61 
20 

        

Test problem 2 
PSO 
MPSO 

2.771 
2.767 

2.775 
2.770 

2.780 
2.772 

0.0036 
0.0014 

2850 
1320 

74 
29 

        

Test problem 3 
PSO 
MPSO 

2.657 
2.654 

2.660 
2.657 

2.664 
2.664 

0.0031 
0.0018 

2230 
1240 

63 
39 

 
 
 

 
 
Figure 5. Cross section of non homogeneous slope-test problem 2. 

 
 
 
layered slope in clay bounded by a hard layer below and 
parallel to the ground surface. The soil strength para-
meters that are related to the stability of slope, including 
friction angle 	, and cohesion c, are considered as 
random variables. The statistical moments (mean value 
and standard deviation) of the parameters are 
summarized in Table 4.  

This example was also solved previously by Hassan 
and Wolff (1999) and Bhattacharya et al. (2003) in terms 
of FSmin , �FS , �min and FS�. The methodology was used 
in their research illustrated in test problem 1. The results 
obtained from the current study together with a 
comparison of those reported by previous researchers 
are summarized in Table 5. From the results shown in 
this table, it can be considered that the minimum 
reliability index evaluated using MPSO is 2.770, which is 
almost lower than those reported by Hassan and Wolff 
(1999), Bhattacharya et al. (2003) and also PSO. The 
minimum factor of safety obtained by MPSO  is  found  to 

be smaller than the others. The corresponding critical 
deterministic and the critical probabilistic slip surfaces are 
presented in Figure 5. In accordance with the difference 
in the values of �FS and �min presented in Table 5, the two 
surfaces are located significantly separate. 

A statistical comparison between the results obtained 
by the presented method and also PSO is presented in 
Table 3. As it can be derived from Table 3, MPSO 
demonstrates the highest stability as shown in the 
standard deviation. Moreover, statistical comparison of 
the results presented in Table 3 indicates that MPSO has 
a very fast convergence rate in the early iterations and 
performed significantly better than PSO.  
 
 
Test problem 3: Application to a case study of the 
Cannon Dam 
 
The   probabilistic   analysis  for  the   end-of-construction  
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Table 4. Statistical properties of soil parameters-test problem 2. 
 
Material Parameter Mean Standard deviation Distribution 

Soil 1 c1 38.31 kN/m2 7.662 kN/m2 Log-normal 
 	1 0 - Log-normal 
     

Soil 2 c2 23.94 kN/m2 4.788 kN/m2 Log-normal 
 	2 12 1.2 Log-normal 

 
 
 

Table 5. Results comparison-test problem 2. 
 
Method �FS �min FSmin FS� 
Hassan and Wolff (Hassan and Wolff, 1999) 4.442 2.869 1.663 - 
Bhattacharya et al (Bhattacharya et al., 2003) 5.064 2.861 1.665 1.797 
Present study (PSO) 4.545 2.775 1.655 1.784 
Present study (MPSO) 4.536 2.770 1.649 1.780 

 
 
 

 
 
Figure 6. Cross section of Cannon Dam- test problem 3. 

 
 
 
stage of the Cannon Dam reported in Hassan and Wolff 
(1999) will be investigated. A typical cross section of the 
dam showing the soil profile is presented in Figure 6. The 
structure consists of two zones of compacted clay: Phase 
I and Phase II fill over layers of sand and limestone. 
Strength parameters of the two clay layers were 
considered as random variables (c1, 	1, c2, 	2). Table 6 
shows the mean value and standard deviation for these 
parameters based on UU tests of recorded samples from 
the embankment. Hassan and Wolff (1999) made no 
reductions in the variance for spatial correlation, in their 
study it was conservatively assumed that variance over a 
failure zone was potentially as large as the point 
variance.  

The   minimum   reliability   index  and  factor  of  safety  

corresponding to critical probabilistic and deterministic 
slip surface obtained by different methods are shown in 
Table 7. Moreover, the critical probabilistic surface 
determined by MPSO passes through the Phase I fill, as 
shown in Figure 7. 

As derived from Table 7, the factor of safety evaluated 
by the presented analysis method (2.593) is slightly lower 
than both the value of 2.647 achieved by Hassan and 
Wolff (1999) and that of 2.612 by Bhattacharya et al. 
(2003) and is significantly lower than that reported by 
Hassan and Wolff (1999) for circular slip surface. As it 
can be derived from Table 7, reliability index evaluated 
herein is lower than those reported in the previous study 
and also PSO. Table 3 presents a performance 
comparison of the algorithms for evaluating the  minimum
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Table 6. Statistical properties of soil parameters-test problem 3. 
 

Material Parameter Mean Standard deviation Correlation coefficient 
Phase I Fill c1 117.79 kN/m2 58.89 kN/m2 +0.10 
 	1 8.5 8.5  
     
Phase II Fill c2 143.64 kN/m2 79 kN/m2 -0.55 
 	2 15 9  

 
 
 

Table 7. Results comparison-test problem 3. 
 
Method �FS �min FSmin FS� 
Hassan and Wolff (1999) 7.028 2.664 2.647 - 
Bhattacharya et al. (2003) 3.695 2.674 2.612 2.98 
Present study (PSO) 3.223 2.660 2.595 1.782 
Present study (MPSO) 3.216 2.657 2.593 1.78 

 
 
 

 
 
Figure 7. critical failure surface of Cannon Dam-test problem 3. 

 
 
 
reliability index. As can be seen from Table 3, the very 
low value of the standard deviation for the MPSO method 
proves its stability and accuracy in producing the optimal 
solution. As well as generating superior results, the 
MPSO had a very fast convergence rate compared with 
PSO. 
 
 
Conclusions  
 
This paper outlines a procedure of probabilistic analysis 
of earth slope. The detailed development of the search 
procedure for locating the critical probabilistic failure 
surfaces presented herein, is based on the AFOSM 
method as the reliability model and the Spencer’s method 
of slices as the slope stability model. The procedure can 
be applied to the analysis of the stability of a general slip 
surface. The Hasofer-Lind reliability index (�HL) is used 
instead of the conventional reliability index �. The 
problem of searching the critical probabilistic surface with 

the minimum reliability index, �min, can be formulated as 
an optimization problem and a modified particle swarm 
optimization is proposed for the solution. Despite the 
modification presented in the current study to the original 
PSO is not major, the advantages of the proposed 
modification are obviously demonstrated through some 
numerical problems. The described framework has been 
coded in MATLAB and used to carry out parametric 
studies for the numerical problems. The method does not 
make any assumptions relating to the geometry of the 
failure surface and can be applied to any complex slope 
geometry, layering and pore pressure conditions. The 
applicability of the proposed methodology developed 
herein, has been examined over a variety of slope 
stability problems from the literature. A comparison of the 
results show that in all cases the minimum reliability 
index obtained by MPSO is reasonably lower than those 
reported in the literature. Moreover, the new method has 
a very fast convergence rate in the early iterations and 
performed significantly better than  standard  PSO.  From  
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the probabilistic analysis point of view, the results show 
that, the critical failure surface which has minimum factor 
of safety value is not a surface at which the probability of 
failure is always the maximum. Therefore, the deter-
ministic critical surface is not always an actual failure 
surface and factor of safety does not and cannot scale 
safety. Further as illustrated trough the test problems; the 
critical probabilistic and deterministic slip surface is 
almost close for slope in a homogenous soil, whereas 
these surfaces are located quite separate for non 
homogenous slopes.  
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