
International Journal of the Physical Sciences Vol. 6(11), pp. 2701-2709, 4 June, 2011 
Available online at http://www.academicjournals.org/IJPS 
DOI: 10.5897/IJPS11.540 
ISSN 1992 - 1950 ©2011 Academic Journals 

 
 
 

Full Length Research Paper 
 

A visual inspection system for quality control of optical 
lenses 

 

Hong-Dar Lin*, Yuan-Shyi Peter Chiu and Shih-Yin Hsu 
 

Department of Industrial Engineering and Management, Chaoyang University of Technology, 168 Jifong E. Road, 
Wufong District, Taichung 41349, Taiwan. 

 
Accepted 3 May, 2011 

 

This paper proposes a quality inspection system for optical lenses using computer vision techniques. 
The system is able to inspect LED (Light-Emitting Diode) lenses visually and to validate their quality 
level automatically based on the defect severity. The optical inspection system applies the block 

discrete cosine transform (BDCT), Hotelling 
2T  statistic, and grey clustering technique to detect visual 

defects of LED lenses.  A spatial domain image with equal sized blocks is converted to DCT (Discrete 
Cosine Transform) domain and some representative energy features of each DCT block are extracted.  

These energy features of each block are integrated by the 
2T  statistic and the suspected defect blocks 

can be determined by the multivariate statistical method. Then, the grey clustering algorithm based on 
the block grey relational grades is conducted to further confirm the block locations of real defects. 
Finally, a simple segmentation method is applied to set a threshold for distinguishing between defective 
areas and uniform regions.  Experimental results show the defect detection rate of the proposed method 
is 94.64% better than those of traditional spatial and frequency domain techniques.   
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INTRODUCTION 
 
A lens is an optical device with perfect or approximate 
axial symmetry which transmits and refracts light, 
converging or diverging the beam. Lenses are typically 
made of glass or transparent plastic. Optical lenses are 
transparent components made from optical-quality 
materials and curved to converge or diverge transmitted 
rays from an object.  These rays then form a real or 
virtual image of the object. There are many types of 
optical lenses. Optical lenses are widely used in cell 
phone, notebooks, automotive, digital camera, scanner, 
LED (Light-Emitting Diode) etc. 

An LED is a semiconductor device that emits visible 
light when an electric current passes through the 
semiconductor chip.  Compared with incandescent and 
fluorescent illuminating devices, LEDs have lower power 
requirement, higher efficiency, and longer lifetime. Typical 
applications of LED components  include  indicator  lights, 
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LCD (Liquid Crystal Display) panel backlighting, fiber 
optic data transmission, etc. To meet consumer and 
industry needs, LED products are being made in smaller 
sizes, which increase difficulties of product inspection. 
The functions of LED lenses include focusing, beauty, 
and protection to avoid the waste of light and light 
pollution. An LED without the assistance of lens focus 
function cannot project light to the intended location. 
Therefore, LED lenses are invented to improve the light 
scattering problems of LEDs and they are widely applied 
to hand flashlights and traffic lights applications. Figure 1 
shows the common LED lenses and the basic LED lens 
structure diagram. 

Lens inspection requires special physical conditions, 
particularly in terms of lighting. In the real working 
situation, each inspected lens is brought into the 
inspector’s field of vision. The lenses are round and 
transparent; the defect to be inspected could be located 
on the external surface of the lenses or inside.  A lens 
presents a certain thickness and a certain curvature, both 
of which vary. At times, lenses provide the same 
perceptive result as a magnifying glass,  and  the  defects
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Figure 1.  (a) LED lenses, and (b) LED lens structure diagram. 
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Figure 2. LED lenses with visual defects (from top view) (a) LED lens with scratch and pinhole 

defects; (b) LED lens with dirt defects a period. 

 
 
 
are all the more difficult to track down and to locate in the 
area of the lens. The majority of defects are not only very 
small but also they are extremely diverse and can 
assume various forms.  Figure 2 presents LED lenses 
with visual defects. 

Currently, the most common detection methods for LED 
lens defects are human visual inspection.  Human visual 
inspection is tedious, time-consuming and highly 
dependent on the inspectors’ experiences, conditions, or 
moods.  Erroneous judgments are easily made because 
of inspectors’ subjectivity and eye fatigues. Difficulties 
exist in precisely inspecting tiny flaws by machine vision 
systems   because   when   product   images   are   being 

captured, the area of a tiny flaw could expand, shrink or 
even disappear due to uneven illumination of the 
environment, transparent and curved surfaces of the 
product, and so on. Seeing the great need for an 
automated visual detection scheme for LED lens defects, 
we propose a block discrete cosine transform (BDCT) 
based approach to overcome the difficulties of traditional 
machine vision systems. 

Inspection of surface defects has become a critical task 
for manufacturers who strive to improve product quality 
and production efficiency. Defect detection techniques, 
generally classified into the spatial domain and the 
frequency domain, compute a set of textural features in  a



 
 
 
 
sliding window and search for significant local deviations 
among the feature values. Latif-Amet et al. (2000) 
presented wavelet theory and co-occurrence matrices for 
detection of defects encountered in textile images and 
classify each sub-window as defective or non-defective 
with a Mahalanobis distance. Cho et al. (2005) applied 
the adaptive threshold technique and morphology method 
to detect defects from images of uniform fabrics for 
developing a real-time vision system. 

As to techniques in the frequency domain, Chan and 
Pang (2000) used the Fourier transform to detect fabric 
defects.  Tsai and Hsiao (2001) proposed a wavelet 
transform based approach for inspecting local defects 
embedded in homogeneous textured surfaces.  By 
properly selecting the smooth sub-image or the 
combination of detail sub-images in different 
decomposition levels for backward wavelet transform, 
regular, repetitive texture patterns can be removed and 
only local anomalies are enhanced in the reconstructed 
image. Also, Lin and Ho (2007) developed a novel 
approach that applies discrete cosine transform based 
enhancement for the detection of pinhole defects on 
passive component chips. 

As to inspecting defects of lenses, Rebsamen et al. 
(2010) described quality control tasks in the optical 
industry from a work analysis of optical lens inspection to 
a training program.  Martinez et al. (2009) developed a 
vision sensor planning system for automated inspection 
of headlamp lenses. This system uses the lens CAD 
(Computer Aided Design), a vision sensor model and the 
customer requirements describing by a fuzzy approach, 
to achieve an optimal set of viewpoints by genetic 
algorithm. Bazin et al. (2006) proposed a novel method 
for the industrial inspection of ophthalmic contact lenses 
in a time constrained production line environment.  Perng 
et al. (2010) presented a new inspection system that 
uses machine vision to detect optical defects in quasi-
contact lenses. The optical region of the lens image is 
first segmented, and then the middle axes of each fringe 
on the optical region are determined. Three features of 
the fringe are extracted to create a mapping of the 
original features to a semantic description of the textures. 
Finally, the quality of the quasi-contact lens is determined 
by a control chart procedure. Therefore, most of the 
existing researches focus on inspections of optical 
lenses, headlamp lenses, and contact lenses. They do 
not detect defects with the properties of tiny defects on 
LED lenses. Consequently, we present a new approach 
using block discrete cosine transform and grey clustering 
for defect detection of the transparent and curved LED 
lens surfaces. 

Grey system proposed by Deng (1989) means that the 
information within a system is partially unknown. Grey 
theory provides the applications of clustering analysis, 
relational analysis, predication, and decision for the grey 
system. The grey theory has the advantage of being able 
to deal with complex problems involving uncertain or 
incomplete   systems.   Grey  clustering  is  a  common  grey  
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theory application, which classifies unknown samples into 
specified groups by comprehensively integrating the 
various attribute intensities of each sample (Tsai et al., 
2006).  Heng (2010) analyzed infrared images based on 
grey system and applied grey clustering to filter out 
possible objects for detecting infrared targets. Huang 
(2008) employed image processing techniques and a 
modified unsupervised grey clustering algorithm to 
estimate the location of each die and identify the spot 
number accurately and effectively. Lin et al. (2009) 
proposed a method for incipient fault diagnosis in oil-
immersed transformers using grey clustering analysis. 
Their method could avoid the determination of the 
linguistic variables, membership functions, inference 
rules, network architecture, and parameters assignment, 
and is easy to implement in the portable device. 

Hu et al. (2002) proposed a grey clustering method 
incorporating the grey relational grades into learning rules 
of self-organizing feature maps for solving classification 
and traveling salesman problems. Lin and Lee (2009) 
developed an improved model integrating grey number 
into grey clustering technique to deal with the evaluation 
problems under the condition of insufficient and uncertain 
information. Tsai et al. (2006) used grey clustering 
operation for color image evaluation in product form and 
color design. Madhuri and Chandulal (2010) combined 
grey relational analysis and grey clustering to evaluate 
the website for providing useful information for users and 
estimating the validation and popularity of the websites. 
Therefore, grey clustering technique has been 
successfully applied in the fields of engineering detection, 
classification, decision-making, product design, 
performance evaluation, etc. in recent years. 
 
 
METHODS 

 
By regarding an input image as a matrix, we can perform the DCT 
transformation to transform a spatial domain image into the 
frequency domain. A spatial domain image with equal sized blocks 
is converted to DCT domain and some representative energy 

features of each DCT block are extracted. These energy features of 

each block are integrated by the 2T  statistic and the suspected 
defect blocks can be determined by the multivariate statistical 
method.  Then, the grey clustering algorithm based on block grey 
relational grades is conducted to further confirm the block locations 
of real defects. Finally, a simple segmentation method is applied to 
set a threshold for distinguishing between defective areas and 
uniform regions.  Therefore, the visual defects on the curved 
surfaces of LED lenses can be accurately detected and located by 

the proposed method. 

 
 
Block discrete cosine transform 

 
The inspection task of this paper involves detecting novel but 
obscurely faulty items, visual defects on LED lenses of optical 
components. Many of these unanticipated defects are extremely 

small in size and can not be described by explicit measures, thus 
making automated defect detection difficult. Since DCT has the 
advantages   of   packing   the   most   information   into  the  fewest
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Figure 3. Examples of the BDCT transformation (a) an LED lens image with visual defects; (b) the 2-D BDCT 

spectrum image, and (c) the power spectra in 3-D perspective.   

 
 
 
coefficients and minimizing reconstruction errors, only a small 

amount of information of a detailed image will be lost during the 
image processing procedures (Gonzalez and Woods, 2008). Such 
advantages make DCT suitable and favorable for our study of visual 
defect detection of optical components. To increase the 
computational efficiency of DCT, the BDCT is adopted that we 
divide an image into non-overlapping image blocks of equal size 
which can be conducted DCT individually instead of taking one 
transform on an entire image. 

Ahmed et al. (1974) first defined DCT as one-dimensional (1-D) 
and suitable for 1-D digital signal processing.  Equation (1) gives 
the expression for computing the BDCT of a digital image dx,y of 
block size P × Q.  This expression must be computed for all values 
of u = 0, 1, 2, …, P-1, and also for all values of v = 0, 1, 2, …, Q-1.  
While u and v are frequency variables, x and y are spatial variables. 
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The power spectrum P(u, v) of image dx,y is defined as: 

 
2

,( , ) u vP u v D                                                                          (2) 

 
That is, the sum of the squares of the DCT coefficients is the 
energy of the block. 

As the origin of the BDCT coefficients has a very huge frequency 
component, it is sometimes called the direct current (DC) 
component of the BDCT frequency domain, while other coefficients 
are called the alternating current (AC) components. The DC 
coefficients in the upper left corner reflect information of lower 
frequencies, whereas the AC coefficients in the lower right corner 
reflect that of higher frequencies. BDCT has the property of 
concentrating the dominant energy of a typical image in the low-
frequency components. This means that the coefficients of the high-

frequency components are close to zero, and therefore negligible in 
most cases (Gonzalez and Woods, 2008). 

The 2-D  and  3-D  BDCT  spectrum  diagrams  of  an  LED  lens 

image in Figures 3a, b and c show that a lot of energy concentrates 

in the origin (u = 0, v = 0) and that the energy decreases gradually 
from the origin and the low frequency zone on the top-left side to 
the high frequency zone on the bottom-right side.  In the BDCT 
domain, the tiny and low-contrast defects are not only significantly 
enhanced but also the gradually changing intensity levels of defects 
are removed.   

The edge pattern in a block can be fully captured from its DCT 
coefficients in frequency domain (Pan, 2002). The energy 
distribution in the DCT domain determines the edge patterns in the 
spatial block. One way of determining the features in the spatial 
block is by looking into the energy distribution in the 2D-DCT 
domain (Rao and Hwang, 1996). The energy concentrated in top 
horizontal region represents vertical edges in the block; the energy 
concentrated in left vertical region indicates horizontal edges in the 
block, and the energy concentrated in diagonal region implies 
diagonal edges in the block.  

Five energy features of a BDCT are expressed as follows: 
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where P × Q is the block size of BDCT, D is frequency components 

of BDCT, u and v are frequency coordinates of BDCT, HE  is the 

horizontal energy value of a BDCT, VE  is the vertical energy value 

of a BDCT, DE  is the diagonal energy value  of  a  BDCT,  ME   is 



 
 
 
 

the average energy value of a BDCT, and SE  is the standard 

deviation of energy values of a BDCT.   
 
 

Multivariate 
2T  statistic 

 

The five energy features extracted from a BDCT will be treated as 
five quality characteristics for multivariate statistical analysis. 
Normal texture images can be used to estimate the parameters of 

standard texture characteristics. The sample mean matrix ( X ) and 
the sample covariance matrix (S) describe the properties of and the 
relations between the image characteristics of normal and defect 

images. The covariance is a measure of the relationship between 
two random variables. Since the five energy features do not follow a 
multivariate normal distribution, a logarithmic transformation 

( 10log ) is conducted to transform the multivariate data to be 

normally distributed.  The probability plot can be used to determine 
whether sample data conform to normal distributions (Montgomery 
and Runger, 2007).  Therefore, the sample covariance matrix (S) of 
a normal image can be expressed as:  
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where 
2

pS  is the sample variance of the p characteristic of a normal 

image, 
pqS  is the sample covariance of the p and q characteristics 

of a normal image.  The sample mean matrix ( X ) of a normal 
image can be defined as:   
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The 
2T  statistic of a BDCT with five energy features of a testing 

image in the multivariate statistical model can be defined as  
(Montgomery, 2009): 
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where n is the number of observations in a BDCT unit, X  is the 
mean matrix of energy features in a BDCT unit of a testing image.   
 

The control limits of the 
2T  statistic are as follows: 
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 where F is a tabulated value of the F distribution at the significance 

level of  Therefore, if a BDCT unit of a testing image has a higher 

2T  value, it implies that the region contains defects in the testing 

image.  On the contrary, a lower 
2T  value signifies that no defect 

exist in the corresponding region of the image.   
 
 
Grey clustering 
 

The BDCT blocks with high 
2T  values greater than the UCL are 

considered as the suspected defect blocks in a testing image.  The 
grey clustering technique will be conducted to further confirm the 
block locations of real defects.  The initial feature sequences of the 
suspected defect blocks can be presented as:   
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where p is the number of the suspected defect blocks detected by 

the 
2T  statistic. The grey relational grade of the two sequences: 

Reference feature sequence iv  (i = 1, 2, 3, …, p) and comparative 

feature sequence jv  (j = 1, 2, 3, …, p) is defined as follows:   
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where u is the number of energy features, and 
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where   is called distinguished coefficient and is set as 1 in this 

research, and 
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Figure 4.  The proposed procedure of detecting visual defects on LED lens (a) a testing image; (b) the 

BDCT domain image; (c) the suspected defect blocks (in white) detected by T2 statistic; (d) the re-
confirmed defect blocks by grey clustering; (e) the defect blocks with a manipulated background, and (f) 

resulting detected image.   

 
 
 
The higher degree of relation means the comparative feature 

sequence is more similar to the reference feature sequence than 
the others. Using the grey relational measure to train the grey 
cluster among of the given data points, and clustering the data 
according to the grey relational grades. The updated feature 
sequence is calculated by the equation: 
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  is a selected threshold with 0 1  .  If all the updated 

feature sequences do not change (less than an allowance  ), the 

stop criterion of the iterations is:   

 

-1-i iV V                                                                               (21) 

Finally, the convergent vector is viewed as the cluster center. The 

grey relational grades of the suspected defect blocks are calculated 
to further identify the block locations of real defects. 

Figure 4 shows the results and differences performed the 
proposed method for detecting visual defects in LED lens.  Figure 
4b presents the BDCT domain image of Figure 4a. Figure 4c is the 
preliminary detected image with suspected defect blocks (in white) 
when the energy features are integrated by the T

2
 statistic. Figure 

4d depicts the primary detected image with defect blocks re-
confirmed by the grey clustering technique. Figure 4e is a mixed 
image containing the detected defect blocks and a manipulated 
background for locating defect regions. Figure 4f is the resulting 
binary images that display the flaws in black by the proposed defect 
detection method. The results reveal that the visual flaws in LED 
lens are correctly segmented in the binary image, regardless of 
LED lens with transparent and curved surface. 

 
 
RESULTS AND DISCUSSION 

 
Implementation and analyses 

 
Here, we implement the proposed approach and conduct 
experiments to evaluate its performance in detecting 
visual defects of LED lenses. To strengthen the visibility 
of the visual defects, we make use of the following 
equipments: a yellow ring lighting device, a USB 2.0 color
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(a) (b)  
 
Figure 5. Environmental configurations of scanning a testing LED lens sample: (a) Hardware setup of 

experiments; (b) a testing LED sample is placed on XY table. 

 
 
 
CCD of ARTRAY company, a lens with 1 to 10 
amplifications of changeable focal lengths, and a XYZ 
electronic control table with a controller.  Experiments are 
conducted on 188 real LED lenses (including 128 normal 
lenses and 60 defective lenses) provided by a local 
manufacturing company of high quality LED lenses in 
Taiwan to evaluate the performance of the proposed 
approach. Figure 5 demonstrates the configurations of 
the environment in which we scan real LED lenses to be 
used as testing samples in the experiments. Each image 
of the LED lens has a size of 256 × 256 pixels and a gray 
level of 8 bits.  The visual defect detection algorithm is 
edited in C language and executed on the 6th version of 
the C++ Builder complier on a personal computer 
(Pentium-4 2.8 GHz and 512 MB DDRII 667 Hz-RAM). 

In industrial practice, when a detected blemish is larger 
than a pre-defined size, the inspection system alerts for 
the appearance of blemish.  Sometimes, this information 
is not enough for quality control purpose because product 
quality measures not only the blemish volumes but also 
the blemish severity levels.  The ranges of blemish sizes 
imply different severity levels of product blemishes. Thus, 
an inspection system should alert for the presence of 
blemishes, detect the blemish locations and calculate the 
blemish sizes in some applications. To verify the 
performance of the proposed method and traditional 
techniques, we compare the results of our experiments 
against those provided by professional inspectors by 
precisely matching the corresponding blemish locations 
and blemish sizes. 

The performance evaluation indices, (1-α) and (1-β), 
are used to represent correct detection judgments; the 
higher the two indices, the more accurate the detection 
results. Statistical type I error α suggests the probability of 
producing false alarms, that is, detecting normal regions 
as defects.  Statistical type II error β implies the 
probability of producing missing alarms, which fail to 
alarm real defects.  We divide the area of normal region 
detected as defects by the area of actual normal region to 

obtain type I error, and the area of undetected defects by 
the area of actual defects to obtain type II error.  The 
correct classification rate (CR) is defined as: 
 

( ) / 100%cc dd totalCR N N N                                 (22) 

 

where ccN  is the pixel number of normal textures 

detected as normal areas, ddN  is the pixel number of 

defects detected as defective regions, and totalN  is the 

total pixel number of a testing image. 
Figure 6 shows partial results of detecting visual 

defects by the Iterative method (Jain et al., 1995), the 
Otsu method (Otsu, 1979), Lin and Jiang (2007) method, 
the proposed method, and the professional inspector, 
individually. The two spatial domain techniques: the 
Iterative and Otsu methods, make lots of erroneous 
judgments (false alarms) on visual defect detection. The 
two frequency domain techniques, the Lin and Jiang 
approach and the proposed method, detect most of the 
visual blemishes and make less erroneous judgments. 
Therefore, the frequency domain approaches outperform 
the spatial domain techniques in the visual defect 
detection of LED lenses. 

Table 1 summarizes the detection results of our 
experiments.  Two spatial domain approaches and two 
frequency domain techniques are evaluated against the 
results by professional inspectors. The average defect 
detection rates (1-β) of all testing samples by the four 
methods are, respectively, 99.99% (Iterative method), 
98.84% (Otsu method), 85.88% (Lin and Jiang method), 
and 94.64% (proposed method). However, the two spatial 
domain methods have significantly higher false alarm 
rates (α), 28.97% (Iterative method) and 30.03% (Otsu 
method). On the contrary, the other two frequency 
domain approaches have rather lower false alarm rates, 
0.008% (Lin and Jiang method) and 0.15% (proposed 
method). 



2708          Int. J. Phys. Sci. 
 
 
 

Threshold=150 Threshold=149

Threshold=148 Threshold=149

Threshold=150 Threshold=149

Testing images By Otsu method
By Iterative 

method

By Lin and Jiang 

method

By proposed 

method
By inspector

 
 
Figure 6. Partial detection results of the Otsu, Iterative, Lin and Jiang, the proposed methods, and inspector.   

 
 
 

Table 1. Summarized comparison table of visual defect detection of LED lenses for four different methods.  
 

Comparison 
characteristics 

Spatial domain approaches Frequency domain approaches 

Otsu method Iterative method Lin and Jiang method Proposed method 

1-β (%) 98.84 99.99 85.88 94.64 

α (%) 30.03 28.97 0.008 0.15 

CR (%) 70.26 71.37 99.6 99.67 

Time (s) 0.6 0.5 0.7 0.27 

 
 
 
The proposed method has higher correct classification 
rates (CR) than do the other methods applied to defect 
detection of LED lens images.  More specifically, the 
proposed method not only has a higher detection rate 
than does the Lin and Jiang method but also its false 
alarm rate is more than eighteeen times lower than that 
of the latter method applied to LED lens images. 

The average computation time for processing an image 
of 256 × 256 pixels is as follows: 0.6 s by the Otsu 
method, 0.5 s by the Iterative method, 0.7 s by the Lin 
and Jiang method, and 0.27 s by the proposed method. 
The average processing time of the proposed method is 
more than two times shorter than that of the Lin and 
Jiang method.  The proposed method overcomes the 
difficulties of detecting visual blemishes on LED lens 
images with curved surfaces and excels in its ability of 
correctly discriminating visual blemishes from normal 
regions.   

Conclusions 
 
Machine vision technology improves productivity and 
quality management, and provides a competitive 
advantage to industries that employ this technology. This 
research proposes a novel approach that applies block 
discrete cosine transform, Hotelling T

2
 statistic, and grey 

clustering technique for the automatic inspection of visual 
defects in curved surfaces of LED lenses. Real LED 
lenses are used as testing samples, and large-sample 
experiments are conducted in a real inspection 
environment to verify the performance of the proposed 
approach.  Experimental results show that the proposed 
approach achieves a high 94.64% probability of correctly 
discriminating visual defects from normal regions and a 
low 0.15% probability of erroneously detecting normal 
regions as defects on curved surfaces of LED lenses. 
Compared with other traditional  methods,  this  approach 



 
 
 
 
has the advantages of higher detection rates, lower false 
alarm rates, and shorter average processing time.  This 
method not only overcomes the difficulties of inspecting 
visual defects on curved surfaces but also relies on no 
template matching process. 

The proposed method is based on feature extraction 
from BDCT-domain images for defect detection.  Since 
the computation of multivariate statistic is based on the 
mean vector and covariance matrix of training samples, 
the lighting changes may lead to the increase of variation 
in statistics and result in affecting the effect of defect 
detection. It is recommended to re-compute the mean 
vector and covariance of the training samples when 
illumination is significantly changed.  Future research 
may extend the proposed method to similar low-contrast 
defect detection problems, such as abnormal inspection 
of medical images and tiny defect detections of electronic 
and optical components. This research contributes a 
solution to a common surface defect detection problem of 
LED lenses and offers a computer-aided visual defect 
inspection system to meet the inspection and quality 
control request. 
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Nomenclature: dx,y, a digital image with coordinate (x, y) 
in spatial domain; Du,v, a digital image with coordinate (u, 
v) in discrete cosine transform domain; P(u, v), the power 
spectrum of image Du, v; EH, the horizontal energy value 
of a BDCT; EV, the vertical energy value of a BDCT; ED, 
the diagonal energy value of a BDCT; EM, the average 
energy value of a BDCT; ES, the standard deviation of 
energy values of a BDCT; S, the sample covariance 

matrix of a normal image; X , the sample mean matrix of 

a normal image; 
2

T , a statistic of a BDCT with five 
energy features of a testing image in the multivariate 

statistical model; UCL, the upper control limit of the 
2T  

statistic; LCL, the lower control limit of the 
2T  statistic; V, 

the initial feature sequences of the suspected defect 

blocks;  i jγ v  , v , the grey relational grade of the 

reference feature sequence iv  and the comparative 

feature sequence jv ; iv (k) , the reference feature 

sequence of the i-th suspected defect block with k energy 
values; CR, the correct classification rate of a defect 
detection method. 
 
 
 

Lin et al.        2709 
 
 
 
REFERENCES 
 
Ahmed N, Natarajan T, Rao KR (1974). Discrete cosine transform. IEEE 

Trans. Comput., 23: 90-93.   
Bazin AI, Cole T, Kett B, Nixon MS (2006). An automated system for 

contact lens inspection. Lect. Notes Comput. Sci., 4291: 141-150.   

Chan CH, Pang GKH (2000). Fabric defect detection by Fourier 
analysis. IEEE Trans. Ind. Appl., 36: 1267-1276.   

Cho CS, Chung BM, Park MJ (2005). Development of real-time vision-

based fabric inspection system. IEEE Trans. Ind. Electron., 52: 1073-
1079.   

Deng JL (1989). Introduction to grey system theory. J. Grey Syst., 1: 1-

24.   
Gonzalez RC, Woods RE (2008). Digital Image Processing. 3

rd 
Ed., 

Prentice Hall, New Jersey, USA. 

Heng Z (2010). Analysis of infrared images based on grey system and 
neural network. Kybern., 39(8): 1366-1375.   

Hu YC, Chen RS, Hsu YT, Tzeng GH (2002). Grey self-organizing 

feature maps. Neurocom., 48: 863-877.   
Huang KY (2008). An auto-recognizing system for dice games using a 

modified unsupervised grey clustering algorithm. Sensors, 8: 1212-

1221. 
Jain R, Kasturi R, Schunck BG (1995). Machine Vision. International 

Editions, McGraw Hill, New York, NY, USA.   

Latif-Amet A, Ertüzün A, Ercil A (2000). An efficient method for texture 
defect detection: sub-band domain co-occurrence matrices. Image 
Vision Comput., 18: 543-553.   

Lin CH, Wu CH, Huang PZ (2009). Grey clustering analysis for incipient 
fault diagnosis in oil-immersed transformers. Expert Syst. Appl., 36: 
1371-1379.   

Lin HD, Ho DC (2007). Detection of pinhole defects on chips and wafers 
using DCT enhancement in computer vision systems. Int. J. Adv. 
Manuf. Technol., 34(5-6): 567-583.   

Lin HD, Jiang JD (2007). Applying discrete cosine transform and grey 
relational analysis to surface defect detection of LED. J. Chin. Inst. 
Ind. Eng., 24(6): 458-467.   

Lin YH, Lee PC (2009). Effective evaluation model under the condition 
of insufficient and uncertain information. Expert Syst. Appl., 36: 5600-
5604.    

Martínez SS, Ortega JG, García JG, García AS (2009). A sensor 
planning system for automated headlamp lens inspection. Expert 
Syst. Appl., 36: 8768-8777.   

Madhuri B, Chandulal J (2010). Evaluating web sites using COPRAS 
GRA combined with grey clustering. Int. J. Eng. Sci. Technol., 2(10): 
5280-5294.   

Montgomery DC, Runger GC (2007). Applied Statistics and Probability 
for Engineers. 4th Edition, John Wiley & Sons, New Jersey, USA.   

Montgomery DC (2009). Statistical Quality Control: A Modern 
Introduction. 6th Edition, John Wiley & Sons, New York, NY, USA.   

Otsu N (1979). A threshold selection method from gray level histogram. 
IEEE Trans. Syst. Man Cybern. Part B Cybern., 9: 62-66. 

Pan F (2002). Adaptive image compression using local pattern 

information. Patt. Recognit. Lett., 23(14): 1837-1845. 
Perng DB, Wang WC, Chen SH (2010). A novel quasi-contact lens auto-

inspection system. J. Chin. Inst. Ind. Eng., 27(4): 260-269.   

Rao KR, Hwang JJ (1996). Techniques and Standards for Image, Video 
and Audio Coding. Prentice Hall PTR, New Jersey, USA. 

Rebsamen M, Boucheix JM, Fayol M (2010). Quality control in the 

optical industry: From a work analysis of lens inspection to a training 
programme, an experimental case study. Appl. Ergon., 41: 150-160.   

Tsai DM, Hsiao B (2001). Automatic surface inspection using wavelet 

reconstruction. Patt. Recognit., 34: 1285-1305. 
Tsai HC, Hsiao SW, Hung FK (2006). An image evaluation approach for 

parameter-based product form and color design. Comput.-Aided 

Des,. 38: 157-171. 
 
 

 
 
 

 
 


