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Due to the limitation in spatial and spectral resolution, a few numbers of satellite data are applicable in 
field scale surface Albedo modeling. ASTER was an alternative for surface energy balance modeling, 
but since April 2008, shortwave detector has stopped recording due to the high-abnormal-temperature 
problem. Beside, temporal resolution of ASTER is insufficient for field-scale monitoring of surface 
parameters. Thus, this study was aimed first; to examine the capability of ASTER VNIR bands in 
estimation of surface Albedo and second, to downscale Albedo from MODIS to ASTER using Albedo 
resulted from ASTER VNIR bands. Combination of these two stages is expected to be a solution for 
field scale monitoring of surface Albedo from MODIS and ASTER data acquired after April 2008. Results 
confirmed that bands 1 and 3 which is available after April 2008 on ASTER data can be modeled for 
estimation of surface Albedo with less than 0.024% loss of information where land cover consist of soil 
and vegetation. From four downscaling methods, namely FSIM, PBIM, wavelet transfer and high pass 
filter (HPF) examined in this study, we also found that the most precise subpixel estimate were obtained 
by FSIM downscaling method (R

2 
= 0.96, RMSE = 0.01); although, the outputs of three other methods 

were significant. 
 
Key words: Albedo, downscaling, moderate-resolution imaging spectroradiometer (MODIS), advanced space-
borne thermal emission and reflection radiometer (ASTER), multiple regression, wavelet, high pass filter (HPF), 
pixel block intensity modulation (PBIM), filter-based intensity modulation (FSIM). 

 
 
INTRODUCTION 
 
As a result of technical satellites constraints, it is difficult 
to find data relatively with both high spatial and temporal 
resolution properties for land surface studies. Therefore, 
low spatial resolution data in many cases are converted 
to the scale of high spatial resolution to obtain detail 
information in the required scale by using scaling 
methods,  particularly  when  heterogeneous  surfaces  in  
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relative to the pixel size is considered. Thus, subpixel 
information of mixed pixels which are contained in 
several land cover type is essential when the high spatial 
resolution image is not available for a period of time or is 
limited due to its low temporal frequency.  

Combination of various spatial and temporal resolution 
images has been identified to be a solution for determi-
nation of spatio-temporal characteristics of land surface 
parameters of heterogeneous area (Saura and Castro, 
2007). However, different characteristics of various 
scaling methods have increased the efforts on the way of 
developing    proper     practical    scaling    methods    for 



 
 
 
 
relocating patterns of surface parameters across different 
spatial resolution (Saura, 2004). Since images from 
different sensors of the same satellite or different satellite 
can be acquired of the same area and at comparable 
time and date, several studies, such as derivation of 
landscape pattern metrics for the assessment of land 
cover condition and landscape change dynamics by 
means of advanced very high resolution radiometer 
(AVHRR), LANDSAT, SPOT and aerial photograph data 
(Saura and Castro, 2007), increase the spatial resolution 
of the multispectral wavebands of thematic mapper (TM) 
data to pixel size of PAN image (Pardo-Iguzquiza and 
Atkinson, 2007), similarity assessment of satellite and 
ground-based  normalized difference vegetation index 
(NDVI) (Wang et al., 2004), air temperature parameter-
zation by means of SEVIRI and MODIS data (Zaksek and 
Schroedter-Homscheidt, 2009), downscaling MERIS data 
to LANDSAT-like resolution data for monitoring 
vegetation seasonal dynamic (Zurita-Milla et al., 2009), 
crop type distribution using temporal unmixing (Ozdogan, 
2009), estimation of temporal and spatial distribution of 
evapotranspiration in field scale (Kaheil et al., 2008; 
Kustas et al., 1994; Ozdogan, 2009) and estimation of 
subpixel vegetation water content using MODIS and 
LANDSAT data (Huang et al., 2009) have attempted to 
estimate land surface parameter through scaling 
functions from the coarse mixed pixels. The effect of 
various scaling function from simple linear based models, 
such as smoothing filter-based intensity modulation 
(SFIM) (Liu, 2000), pixel block intensity modulation 
(PBIM) (Guo and Moore, 1998), RGB to HIS transform 
(Haydan et al., 1982) to the more complicates based on 
signal decomposition, such as wavelet transfer (Burrus et 
al., 1998; Gangkofner et al., 2008) and co-kriging (Pardo-
Iguzquiza et al., 2006) have been reported by several 
authors (Benson and MacKenzie, 1995; Griffith et al., 
2003; Kojima et al., 2006; Pardo-Iguzquiza et al., 2009; 
Yu and Ng, 2006).  

Albedo is defined as total hemispherical reflectance 
integrated over all angles of the upward hemisphere 
(Pinker and Stowe, 1990). Since reflectance measure-
ment in all angle of the upward hemisphere is difficult, it 
is assumed to be equivalent to the nadir reflectance 
factor (Ranson et al., 1991). Estimation of spatial and 
temporal variation of land surface Albedo is necessary for 
shortwave budget computation and environmental 
studies (Bhattacharya et al., 2009; Ranson et al., 1991); 
therefore, several studies have attempted to estimate 
Albedo from bi-directional reflectance measurements by 
different data sources (Kimes and Sellers, 1985; Kriebel, 
1979; Ranson et al., 1991; Walthall et al., 1985). 
Recently, researchers have began to obtain surface 
Albedo from satellite images (Hong et al., 2009). 
However, detected apparent reflectance by the remotely 
sensing sensors is affected by instrument field of view, 
viewing geometry, meteorological conditions and 
atmospheric   optical   parameters   (Pinker   and   Stowe,   
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Figure 1. A scheme of converting TOA radiance to broadband 
Albedo (Liang et al., 2003). 

 
 
 
1990). As a result, accurate information about 
atmospheric condition and land surface characteristic are 
necessary (Liang et al., 2003). 

Satellite sensors are built to measure narrowband at 
the top of atmosphere; therefore, the following 
approaches have been proposed to determine surface 
broadband Albedo from measured narrowband; first, 
estimation of Albedo directly from top of atmosphere 
(TOA) radiance by extensive radiative transfer simulation 
and then, linking simulated TOA reflectance with surface 
broadband Albedo using nonparametric regression 
algorithm. Second, NASA MODIS science team approach 
(Schaaf et al., 2002) as shown in Figure 1.  

The weighting factors for spectrally integrated 
narrowband reflectance data have been estimated and 
validated for different satellite data, such as ALI, AVHRR, 
ASTER, geostationary operational environmental satellite 
(GEOS), MISR, MODIS, POLDER, LANDSAT TM/ETM 
and VEGETATION (Liang et al., 2003). 

Due to limitation in spatial and spectral resolution, a 
few number of aforementioned satellite data are appli-
cable in field scale (~10 to 200 ha) modeling of land 
surface parameters. Among the currently operating 
satellites data, moderate resolution data has been 
recognized as key factor in land surface parameter 
estimation through space (Folhes et al., 2009). LANDSAT 
with a moderate spatial resolution is the most used 
satellite data owing to its systematic data acquisition as 
well as   global   coverage.   However,   the   near   future 
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operation of LANDSAT is reported to be uncertain. 
Similar to LANDSAT, advanced space-borne thermal 
emission and reflection radiometer (ASTER) as an alter-
native was used in field scale applications. ASTER was 
provided by the Japanese Ministry of International Trade 
and Industry to the National Aeronautics and Space 
Administration (NASA) and was launched on the 18th 
December 1999 as part of NASA’s earth observing 
system (EOS)-AM1 spacecraft (Abrams, 2000). The 
sensor covers visual and near infrared (VNIR) with three 
bands at 15 m spatial resolution (but lacking coverage in 
the blue region), the shortwave infrared (SWIR) with six 
bands at 30 m spatial resolution and the thermal infrared 
(TIR) region of electromagnetic spectrum with five bands 
at 90 m (Fujisada and Ono, 1991). The sensor provides 
backward VNIR band (3B) which can be used for 
producing digital elevation model. Regrettably, since April 
2008, shortwave of ASTER detector has stopped and 
data acquired after April 2008 were invalid due to the 
high-abnormal-temperature problem of SWIR detector. 
This problem has made ASTER data ineffective in 
estimation of surface Albedo and therefore, energy 
balances modeling (ERSDAC, 2010). 

In addition, the utilization of LANDSAT and ASTER in 
land surface studies and monitoring is restricted by their 
low temporal resolution. Nevertheless, availability of both 
ASTER high and MODIS moderate spatial resolution data 
at the same overpass time (as they are mounted on 
platform, Terra) is the advantage of using these data for 
filed scale monitoring of land surface parameter as well 
as surface Albedo’s. As mentioned earlier, Albedo varies 
as function of solar zenith angle and atmospheric visibility 
which are time dependant variables (Grant et al., 2000). 
The effects are almost similar on both data acquired by 
the same satellite at the same time; thus, data 
assimilation processes are reduced or in some cases can 
be eliminated when these data are integrated. Moreover, 
simultaneity characteristic of these sensors reduces 
complex image pre-processing procedures, such as 
relative radiometric correction or radiometric normalize-
tion as they are essential in the case of using multiple 
satellite images with different overpass time (Canty et al., 
2004).  

This study is aimed first; to explore the capability of 
ASTER VNIR and SWIR spectral bands (except thermal 
bands) in estimating surface Albedo using statistical 
approach. Therefore, the most dominant spectral bands 
in estimation of surface Albedo as well as VNIR bands 
will be considered and modeled. Second, to downscale 
Albedo estimated from MODIS to ASTER using Albedo 
image obtained from the first step. Four downscaling 
methods, namely SFIM, wavelet, HPF and PBIM were 
considered. Albedo image of ASTER data computed 
through the model presented by Liang (2004) which 
utilizes both VNIR and SWIR spectral bands will be 
considered as reference in this study. Thus, the 
combination of the aforementioned method is expected to 
be a solution  for  field  scale  monitoring  of  surface  Albedo  

 
 
 
 
from the ASTER and MODIS data acquired after April 
2008. 
 
 
Study area description and data set 
 
The area under study is Bahadoran agricultural area, 
located in the Southern region of Mehriz district, Iran, 
between 31.28 and 31.48 N and 54.80 and 55.00 E 
(Figure 2). According to Domarton classification method, 
its climate is semiarid. The most abundant land cover 
classes in the analyses subset were perennial Pistachio 
trees and bare soil. Therefore, selection of such area with 
fixed land cover type possesses an advantage that 
makes it an appropriate choice for validating the models 
over the time. 

Table 1 illustrates the satellite data utilized in this study, 
which includes cloud free ASTER images acquired before 
April 2008. The reason of selecting the data before April 
2008 was due to normal acquisition of ASTER data in all 
visible-near infrared and shortwave infrared, which allow 
the comparison of estimated Albedo from both with and 
without shortwave spectral bands. Consequently, as an 
advantage, direct quantification of the quality is allowed. 
It should be noted that evaluation and validation of 
original model which uses VNIR and SWIR bands for 
estimation of surface Albedo is out of the scope of this 
paper.  
 
 
MATERIALS AND METHODS 

 
In the first step, the capability of ASTER VNIR and SWIR spectral 
bands were evaluated statistically using the image taken on day 
186 of year 2000. Albedo was estimated from pre-processed VNIR 
ASTER spectral bands and then, four downscaling methods, 
namely FSIM, PBIM, HPF and wavelet transfer were examined 
using MODIS and ASTER co-registered images. Finally, the 
performances of these methods were evaluated statistically. 
Capability of VNIR-based Albedo as well as downscaled images 
was evaluated based on the reference image computed from 
Equation 1 that utilizes ASTER VNIR and SWIR spectral bands. 

 
 
Images and pre-processing 

 
Two sets of satellite data including ASTER and MODIS images 
were analyzed in this study. Cloud-free ASTER Level 1B image was 
obtained for estimation of Albedo (Table 2). The Level 1B ASTER 

data presents radiance at sensor (
112 −−− msrWm µ ) and it is 

produced from level 1A reconstructed and unprocessed data by 
applying radiometric coefficient. As it is necessary to remove the 
effects of changes in sun-satellite geometry and aerosol scattering, 
atmospheric correction was performed on solar reflective (VNIR and 
SWIR) bands of both ASTER and MODIS data to provide radiation 
reflected at the surface (Abrams, 2000; Kimes and Sellers, 1985). 
The atmospheric correction of ASTER data requires outside 
sources for atmospheric correction, since the system was not 
designed to repossess atmospheric information. In this study, fast 
Line-of-sight analysis of spectral hypercubes (FLAASH) on ASTER 
VNIR and SWIR  bands  was  performed  using  climatic  parameter  
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Figure 2. Location of study area (Right image: ASTER, RGB: 3, 2 and 1). 
 
 
 

Table 1. Satellite data of the study. 
 

Image Data level Overpass time (UTC) Year-Julian day 

ASTER L1B 7.29 2000 - 186 

MODIS L1B Starting: 7.25, ending: 7:29 2000 - 186 
 
 
 

Table 2. Estimated regression coefficients (Dependent Variable: MODIS 500 m Albedo). 

 

Data 
Unstandardized coefficients  Standardized coefficients 

t Sig. 
B Standard error  Beta 

Constant 0.035 0.003  - 11.954 0.000 

ASTER 0.899 0.011  0.925 83.974 0.000 
 
 
 

and atmospheric modeling. The output then was converted to the 
reflectance using the radiative transfer codes (atmospheric 
modeling). In this method, atmospheric water vapor from spectral 
bands of 0.94 to 1.14 µm is calculated and atmospheric scattering 
is modeled. Via this process at sensor radiance is converted to the 
at-surface reflectance (Gupta, 2003). ASTER image was geo-
referenced to the UTM/WGS84 zone number 40 by the collected 25 
dispersed ground control points (GCPs). Then, MODIS image was 
co-registered to the ASTER data taken on the same date. Accuracy 
of the geo-referencing was evaluated by calculation of root mean 
square error (RMSE < 0.32). As the last pre-processing step, the 

area of interest which covers Bahadoran agricultural area was 
extracted from both ASTER and MODIS data scenes. The ASTER 
and MODIS images acquired on day 186 of year 2000 were used 
for multiple regression analysis and downscaling, respectively. In 
this study, narrowband reflectance of ASTER and MODIS VNIR and 
SWIR spectral bands were converted to broadband Albedo using 
the models presented by Liang (2004). These models were 
generated for different satellite sensors by extensive radiative 
transfer simulation and using atmospheric radiative transfer 
(SBDRT) codes (Ricchiazzi et al., 1998). The proposed models for 
ASTER and MODIS consist of six independent variables (VNIR and 
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SWIR bands) as follows (Liang, 2004): 

986531 0.367-0.305+0.551+0.324-0.335+0.484 ααααααα =ASTER          

                                                                                                       
(1) 

 

754321
0.081-0.112+0.116+0.243-0.291+0.16 ααααααα =

MODIS     
(2) 

 

where α  is the surface Albedo and 
1α  through 

nα
 

are the 

ASTER and MODIS spectral bands in reflectance. 
 
 
Multiple regression analysis 

 
In order to explore the contribution of each ASTER spectral band(s) 
and their potential in predicting surface Albedo, multiple regression 
analysis was performed and new regression equation was 
established using bands with larger contribution. Hence, the effects 
of presented bands in Equation 1 as well as band number 2 (which 
is available on data taken after April 2008) in estimation of Albedo 
were considered.  

Initially, bivariate correlation analysis was performed based on 
Pearson product-moment correlation coefficient to examine the 
strength and direction of the relationship between ASTER spectral 
bands and estimated Albedo through the model presented by Liang 
(2004) as well as exploring the amount of variance of Albedo 
accounted for by each spectral band. The relationship between 
dependent and independents variables were visually inspected. 
The incorporated analysis of seven ASTER spectral bands (band 
numbers 1, 2, 3, 5, 6, 8 and 9) was performed for predictive 
calculations of surface ALBEDO through multiple regression 
analysis to evaluate the amount of Albedo variances explained by 
ASTER spectral bands. Thus, the values of the aforementioned 
spectral bands were entered in the regression equation and 
significance of inter-relationship between variables including, 
dependent and independent were evaluated based on yielded 
prediction of each band in regard to the predictability of other 
spectral bands. Then, fundamental ASTER bands that present the 
patterns of correlations within a set of ASTER data bands, 
contributing in the estimation of surface Albedo were determined. A 
general form of linear regression model is presented as follows: 
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where 
iY
 
is 

thi  of dependent variable (DV) (Albedo), 0β  is line 

interception coefficient , 
iβ
 

is regression coefficients of 
thi  

independent variable IV (ASTER spectral bands), that are 

determined by fitting the equation to the data, 1X through nX  are 

the independent variable (ASTER spectral bands) and ε  presents 

the difference between observed and predicted value of DV. 
The total variability of dependant variable accounted for by 

multiple linear regression was measured through coefficient of 
determination as follow (Tabachnick and Fidell, 2007): 
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where yss  is the total sum of squares difference between each 

observed value y  and the mean of 
y

over all cases and regss  is 

the total sum of squared due to regression calculated from 

predicted value ( y′) and the mean of y over all cases. 

The squared multiple correlation was also calculated from the 
sum of the correlation between dependent and independent 

variable,
yir  and standardized regression coefficient, 

iβ  of 

independent variable as follows: 
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where yir  is the correlation between dependent variable and 
thi  

independent variable and β
 

is the standardized regression 

coefficient that is used to estimate standardized y′ . 

Unstandardized coefficient was obtained by converting 
standardized coefficient through the following equation:  
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where 
iB  is the unstandardized coefficient, 

iS
 

is the standard 

deviation of 
thi independent variable, 

yS
 

is the standard 

deviation of dependent variable. Finally, an intercept, 0β  was 

calculated once the unstandardized coefficient had been 
determined:  
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The model presented in Equation 1 was used to estimate surface 
Albedo from pre-processed ASTER data acquired on the 4 of July 
2000. Then, Albedo as a dependent variable and raster sets of 
bands number 1, 2, 3, 5, 6, 8 and 9 (reflectance values) as 
independent variables were analyzed statistically. Each layer 
consists of 513,608 numbers of points. Pixel values of each raster 
set were converted to data base format (DBF) to be analyzed with 
statistical software’s.  

In addition, preliminary data analysis was performed to evaluate 
multi collinearity, normality, linearity, homoscedasticity and 
independence of residuals of variables. Subsequently, forward 
regression analysis was conducted to consider the potential of 
particular ASTER bands in predicting Albedo when the effects of 
other bands are controlled. The method starts selecting band which 
can explain the most variance of independent variable. Then, the 
second most influential band was selected and remodeled; it was 
continued until all variances of Albedo are accounted for by the 
model. All predictive models of selected bands were generated via 
step-wise forward regression analysis. Evaluation of the most 
appropriate model was performed by plotting this model against the 
Albedo computed from Equation 1 and calculating correlation 
coefficients. 
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Figure 3. The location of study area on ASTER data scene (FCC: 3, 2 and1) (right) and MODIS image (FCC: 7, 2 and 1) (left) 
taken on the same date and time. 

 
 
 
Downscaling Albedo 
 
Revisit time of ASTER data is 16 days, because of small sensor’s 
field of view (60 × 60 km); in many cases it is difficult to find an 
image that takes each sixteenth day from the same area. In 
addition, this image acquisition frequency is insufficient, normally for 
monitoring land surface parameter, such as Albedo, and as a result 
for energy balance modeling. Thus, combinations of ASTER 
derived land surface parameters with higher temporal resolution 
data is required for land surface parameters monitoring. 
Consequently, combination of MODIS as a high temporal resolution 
(1 to 2 days revisit time) and ASTER data with their sensors that 
have been mounted on the same platform (Terra) is expected to 
retain detail information of land surface Albedo. According to 
MODIS image acquisition start time (7.25 am), time of its ending 
(7.29 am) and location of the study area which has been positioned 
at the middle (horizontally) of the image scene. Study area part of 
the MODIS image has been taken around 7.27 am. Therefore, the 
acquisition time difference between MODIS and ASTER image is 
expected to be about 1 to 2 min. Thus, two images were taken in 
similar solar illumination conditions and the same viewing angle 
since both sensors have been located at the same observing point. 
Figure 3 shows the study area on both ASTER and MODIS images. 
In this study, Albedo images were calculated from MODIS data 

using VNIR-SWIR bands and ASTER VNIR bands using the model 
created via regression analysis. Then, four image downscaling 
method, including smoothing filter-based intensity modulation 
(FSIM), pixel block intensity modulation (PBIM), wavelet transfer 
and high pass filter (HPF) were utilized to downscale Albedo from 
MODIS to ASTER data. The results were evaluated by comparing 
the output of each method with reference Albedo image computed 
from ASTER image via Equation 1. 

PBIM and FSIM can be applied on individual bands and 
simulated image retains original characteristic of low resolution 
image. In addition, the spectral properties  of  the  simulated  image  

are independent of the high-resolution image (Liu, 2000; 
Stathopoulou and Cartalis, 2009). 

Since Albedo image of both MODIS and ASTER were used for 
downscaling, these images were spectrally identical. This met the 
assumption of the algorithms of the selected models; therefore, 
comparison of the methods is facilitated. 

As it is prerequisite for data scaling, pre-processed MODIS and 
ASTER images acquired on the 4 of July 2000 were co-registered 
accurately to a common coordinate reference system. Nearest 
neighborhood algorithm was selected as resampling method that 
results better protection of the original pixel value relative to other 
methods. This method uses nearest pixel as the label for registered 
pixel, but linear features are split between lines by this method. 
However, this method was suggested for image processing, if the 
most information is required to be extracted from images 
(Congalton, 2010). Then, Albedo images generated from Equation 
2 for MODIS (Liang et al., 2003) and Equation 9 for ASTER 
(generated via regression analysis of ASTER VNIR bands) were 
used for downscaling. In order to combine estimated Albedo in 15 
m resolution with 500 m coarse data, ASTER Albedo image was 
degraded to 50 m (the minimum possible size to create an image 
with fraction of 500 m) spatial resolution to be a fraction of 500 
MODIS image using a real averaging approach. This spatial size is 
applicable for the study area since typical length scales of features 
is greater than 250 m and as a result, truthful characterization of 
heterogeneity is possible. Thus, 10 by 10 block of ASTER pixels 
were fitted exactly into a single MODIS pixel. 
 

008.00.299+0.696 31_ += ααα REGASTER
                       (9) 

 

where 1α  through 3α
 

are the ASTER spectral bands in 

reflectance, REGASTER _
α is the Albedo  modeled  by  regression 
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Table 3. Descriptive statistics of MODIS 500 m resolution image and aggregated ASTER 50 to 500 m resolution. 
 

Data         
N Minimum Maximum  Mean  Standard deviation Variance  Skewness  Kurtosis 

Statistic Statistic Statistic  Statistic Standard error  Statistic Statistic  Statistic Standard error  Statistic Standard error 

MODIS 1188 0.1158 0.3481  0.27587 0.00069  0.02387 0.001  -0.160 0.071  2.082 0.142 

ASTER  1188 0.1002 0.3439  0.26855 0.00071  0.02458 0.001  -0.288 0.071  1.941 0.142 

 
 
 
analysis. 

 
 
PBIM method 

 
Linear unmixing method has been recommended for 
combination of information when high and a low spatial 
resolution image are simultaneously available over a 
particular area. Beside, signals identification of individual 
component in the mixed pixel is unnecessary in linear 
based data fusion models (Zurita-Milla et al., 2009). Thus, 
PBIM (Guo and Moore, 1998), (Equation 19) as a linear 
model was selected since Albedo can be estimated 
similarly from both ASTER and MODIS images. Ability in 
merging images with different spatial resolution from 
different sensors, application in individual bands and 
retaining the radiometric characteristic of the original low 
spatial resolution image are the advantage of using this 
method in combining high and low spatial resolution data 
(Stathopoulou and Cartalis, 2009). The PBIM downscaling 
procedure consists of the following stages: 

 
1. ASTER Albedo image was degraded to the resolution of 
MODIS image (500 m) using pixel averaging approach.  
2. In order to obtain linear regression model, degrade 
ASTER image in 500 m spatial resolution was crossed with 
MODIS Albedo 500 resolution image. As illustrated in 
Figure 4, a correlation coefficient of 0.856 was found in 
regression between two images. The estimated regression 
coefficients between ASTER and MODIS 500 m resolution 
and the description statistic of the images in this step are 
illustrated in Tables 2 and 3, respectively.   

 
Once the parameters of regression line were determined, 
they were applied to the ASTER data with 50 m spatial 
resolution to estimate corresponding Albedo in high 
resolution. Thus, simulated subpixel value of the MODIS is 
determined as follows:  

mASTERmMODIS AlbedoAlbedo 500500   + βα=
       

(9) 

 

mASTERmMODISSimulated
AlbedoAlbedo 5050_   + βα=

  
(10) 

 
where α = 0.035 and β = 0.899 in this study. 

As final step scaling factor, the model is calculated as 
follows: 

 

mMODISSimulated

mMODISSimulatedmMODIS

mMODIS
Albedo

AlbedoAlbedo
Albedo

500_

50_500

50

.
=

  
(11) 

 

where 
mMODISAlbedo 500  

is the Albedo image estimated 

from MODIS data in 500 m spatial resolution and 

mMODISSimulatedAlbedo 50_
 is the simulated image 

calculated from Equation 10. 

 
 
Smoothing filter-based intensity modulation (SFIM) 

 
SFIM method has been developed by Liu (2000) based on 
simplified solar radiation and land surface reflection model. 
This method downscale the image by using a ratio 
between a higher resolution image and its low pass 
smoothing filtered image to retrieve detail information from 
low spatial data. It has been reported that this method does 
not distort the spectral properties and image contrast. It 
can either be applied on multi-spectral bands or single 
images in order to enhance spatial detail. The comparison 
of SFIM with HIS and Brovey transform outputs have 
indicated better enhancement of spatial detail of multi-
spectral image by FSIM over the HIS and Brovey transform 
methods. As the other downscaling methods, FSIM is 
sensitive to the quality of co-registration of high and low 
spatial    image.   However,   the   effect   of   error   of   co-

registration (blurred feature and mismatched edge in 
downscaled image) can be reduced by using larger kernel 
size than the resolution ratio of low and high spatial image. 
The summary of the method for downscaling of single 
image is presented as follows (Liu, 2000): 

 

mean

highlow

Downscaled
image

imageimage
HighR

*
=

          

(12) 

 

where 
DownscaledHighR

 
is the high resolution 

downscaled image, 
lowimage

 
is a pixel of a lower 

resolution image co-registered to a higher resolution image 

of highimage , 
meanimage  is a smoothed pixel of 

highimage  using averaging filter over a neighborhood 

equivalent to the actual resolution of 
lowimage .  

Preliminary averaging filter is defined as a based 
resolution ratio of high spatial and low spatial resolution 
images and it is optimized by the correlation between SFIM 
image and high and low spatial resolution images. In this 
study, a smoothing filter kernel of 10 × 10 (50 m high 
resolution ASTER Albedo and 500 m low resolution 
MODIS Albedo) were selected in the SFIM method. 
 
 
Wavelet transform method 

 
Wavelets are defined as small wave location and varying 
features that can be presented by their energy (Burrus et 
al., 1998; Gangkofner et al., 2008). It is based on decom-
position of the image into several channels with different 
resolution by their local frequency content. Wavelet 
transfer method has been used by  several  researchers  to 
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Figure 4. Graph of correlation between ASTER Albedo aggregated to 
500 m and MODIS 500 m resolution Albedo image.    

 
 
 
to fuse satellite images with different spatial resolution, and the 
results have usually shown that wavelet transform functions 
improve the spatial resolution with minimum distortion of the 
spectral content of the original image (Ranchin et al., 2003; Shi et 
al., 2005; Shi et al., 2003; Yocky, 1996). The method can either be 
applied to merge a panchromatic band with multi spectral data 
(multi-band wavelet) or combine two gray scale images (two-band 
wavelet) (Bruno et al., 1996). Once the basic waveform is defined, 
the image can be decomposed by applying coefficients to each of 
the waveforms. Given a sufficient number of waveforms, all the 
detail in the image can be defined by coefficient multiples of the 
ever-finer waveforms. This method uses short and discrete wavelet 
transform (DWT) instead of long continuous wave (sine and cosine) 
(Strang and Nguyen, 1996). Shift-variant discrete wavelet 
decomposition (DWT) has identified suitable method for signal 
analysis and pattern recognition as compared to other methods, 
such as orthonormal. Thus, in this study, shift-variant discrete 
wavelet decomposition method was performed using four-order 
decomposition and reconstruction spline biorthogonal wavelet. As it 
is illustrated in Figure 5 in practice, four images are produced 
through discrete wavelet transform procedure from high spatial 
resolution image (Gonzalez et al., 2004; King and Wang, 2001): 
 
1. Approximation coefficients (A): the low-pass image. 
2. Horizontal coefficients (H): details along the columns. 
3. Vertical coefficients (V): details along the rows. 
4. Diagonal coefficients (D): details along the diagonals. 
 
The following steps are used in wavelet transfer method for image 
fusion: 
  
1. Decomposition of fine resolution ASTER Albedo image into a set 
of ASTER coarse resolution images with wavelet coefficients. 
2. Replacement of generated low resolution from the previous stage 
with MODIS coarse pixel Albedo at the same level. 

3. Applying reverse wavelet transformation with corresponding V, D 
and H image produced from previous stage to produce linear 
intensity image in order to convert decomposed and replaced 
Albedo of ASTER to the pixel size of high resolution image.  
 
 
HPF method 

 
High pass filter (HPF) method allows the combination of high 
resolution data with low resolution multi spectral data from the same 
or different sensors. The method involves a convolution using a 
high pass filter on the high resolution data, then combining this with 
the lower resolution data. The first step is the application of high 
pass filter to determine the R value; the ratio of the low resolution 
image to pixel size of high resolution in this study is set to 10. Then, 
center value of the filter is determined based on the R value and 
other values of the filter are set to -1. Table 4 illustrates a set of 
parameter used in HPF methods. 

The second step is the high pass filter of the high resolution 
image. In order to apply high pass filter result, low resolution image 
is resampled to the pixel size of high resolution image using bilinear 
algorithm. Then, HPF image (new low spatial image) is stretched to 
match the mean and standard deviation value of the original low 
resolution image. For this, a weighing function is used as follows: 

 

MSD

SD
W

HPF

MS

*
=

                                                                  (13) 

 
where W is the weighting multiplier for HPF image value. SDMS is 
the standard deviation of the low spatial resolution image to which 
the high pass filter image is being added. SDHPF is the standard 
deviation of the high pass filter image. M is the modulating factor to 
determine the crispness of the output image based  on  R  value  as  
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Figure 5. A scheme of two-stage wavelet-based image fusion method, discrete wavelet transfer (DWT) 

and inverse discrete Wavelet transfer (IDWT). 

 
 
 

Table 4. R value, kernel size, modulation factor and center value for generation of high pass filter. 

 

R Value HPK Size 
Center value 

M 
Default value  Optional values 

1 < R < 2.5 5 × 5 24  28 32 0.25 

2.5 <= R < 3.5 7 × 7 48  56 64 0.50 

3.5 <= R < 5.5 9 × 9 80  93 106 0.50 

5.5 <= R < 7.5 11 × 11 120  150 180 0.65 

7.5 <= R < 9.5 13 × 13 168  210 252 1.0 

R >= 9.5 15 × 15 336  392 448 1.3 
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Table 5. Description statistics of Albedo as well as ASTER spectral bands acquired on day 186 of year 2000. 

 

Layer N Minimum Maximum Mean Standard deviation 

ALBEDO 513608 0.1364 0.6057 0.2688 0.02578 

B1 513608 0.0839 0.6647 0.2210 0.02851 

B2 513608 0.0891 0.7578 0.2957 0.03821 

B3 513608 0.1441 0.6798 0.3571 0.02612 

B5 513608 0.2217 0.4573 0.3666 0.03814 

B6 513608 0.2074 0.4681 0.3643 0.04278 

B8 513608 0.1807 0.4309 0.3288 0.03149 

B9 513608 0.2331 0.5111 0.3774 0.03708 

 
 
 

 
 
Figure 6. (a) Residual scatter plot and (b) normal probability plot of regression standardized residual.  
 
 
 
presented in Table 5.  

Finally, downscaled high resolution image was calculated by 
following equation: 
 

)*( WHPFlowRHighR Downscaled +=
                     (14) 

 
 
RESULTS AND DISCUSSION 
 
Forward multiple regression 
 
The description statistics of the data used for multiple 
regression analysis is as shown in Table 5. 

The linearity of the relationship between DV and IV 
variables is realized visually from Figure 8. Preliminary 
data analysis approved the significant positive linear 
correlation (R

2 
> 0.9) between spectral bands as well as 

Albedo at the 0.01 level. Inter-relation of the spectral 
bands also shows high level of correlation between 
bands 1 and 2 in visible-infrared and bands 5, 6 and  9  in 

shortwave region (presence of collinearity). As shown in 
Table 6, correlation between band 1 of visible part with 
shortwave bands (B5, B6, B8 and B9) is also remarkable. 
In addition, as shown in Figure 7, a few numbers of 
values are far from the main cluster and it is associated 
with almost high value of shortwave bands. It should be 
noted that in remote sensing and energy balances appli-
cation, decision about the removing of outliers is difficult 
since all land surface features must be considered and 
even some times prediction of a parameter for a feature 
is based on another, especially when they are associated 
with the highest and lowest value in the selected subset 
area. Thus, no action was taken until the determination of 
the most predictive spectral bands. 

In order to verify the assumptions, normal probability 
plot and residual scatter plot were created via multiple 
regression practice. Regarding to normal probability plot 
(Figure 6b), all points are located along the straight 
diagonal line that certify the absence of the major 
deviation   of   variables  from  normality;  although,  slight  
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Figure 7. Occurrence of outliers (black speckles) in case of using 7 numbers of 

variables, day 186 of year 2000, pixel size = 15 m. 

 
 
 
deviation from the line is observed. Nonlinearity 
assumption in this study is rejected since scatter plot 
shows points distributions in the form of rectangle (versus 
curved shape in case of nonlinearity). Moreover, each 
value of predicted score and a normal distribution of 
residuals formed well centralized rectangle and 
symmetrically from the center. Thus, in regard to Figure 
6a, the high violation of the assumption was rejected, 
although, a few numbers of points as outliers was 
observed; Tabachnick and Fidell (2007) presented cut  of 

point value of ±3.3.  Heteroscedasticity assumption is 
discarded as well, since the band enclosing width of the 
residuals becomes large at higher predicted value. Based 

on Mahalanobis distance test and Chi-square, (
2

X ) 
critical value of 24.32, at P value < 0.001 (Tabachnick 
and Fidell, 2007), 3325 points out of 513,608 (0.64%) 
were identified as outliers. These points are located, 
ranging from 0.20 to 0.32 of the estimated Albedo 
including vegetation and soil land covers (Figure 7).  

Variance   inflation  factor  (VIF)  and  tolerance  indices 
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Figure 8. Scatter plot of Albedo estimated from Equation 1 and ASTER spectral bands (reflectance) acquired 

on day 186 of year 2000.  
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Table 6. Correlations matrix of Albedo and ASTER spectral bands, day 186 of year 2000. 
 

 ALBEDO B1 B2 B3 B5 B6 B8 B9 

ALBEDO 1 0.960** 0.957** 0.785** 0.699** 0.704** 0.789** 0.724** 

B1  1 0.972** 0.626** 0.751** 0.754** 0.805** 0.791** 

B2   1 0.659** 0.710** 0.708** 0.808** 0.749** 

B3    1 0.338** 0.325** 0.340** 0.286** 

B5     1 0.994** 0.694** 0.957** 

B6      1 0.700** 0.964** 

B8       1 0.828** 

B9        1 
 

**Correlation (Pearson) is significant at the 0.01 level (2-tailed), N = 513608. 
 
 
 
Table 7. Analysis of variances and proposed models for estimation of Albedo from ASTER bands. 

 

Model Sum of squares df Mean square F Sig. 

1 

Regression 314.450 1 314.450 5968941.166 0.000
a
 

Residual 27.057 513606 0.000 - - 

Total 341.507 513607 - - - 

       

2 

Regression 333.446 2 166.723 10622468.684 0.000
b
 

Residual 8.061 513605 0.000 - - 

Total 341.507 513607 - - - 

       

3 

Regression 338.344 3 112.781 18313980.262 0.000
c
 

Residual 3.163 513604 0.000 - - 

Total 341.507 513607 - - - 

       

4 

Regression 338.494 4 84.623 14424357.140 0.000
d
 

Residual 3.013 513603 0.000 - - 

Total 341.507 513607 - - - 

       

5 

Regression 340.577 5 68.115 37625399.841 0.000
e
 

Residual 0.930 513602 0.000 - - 

Total 341.507 513607 - - - 

       

6 

Regression 341.506 6 56.918 6.844E10 0.000
f
 

Residual 0.000 513601 0.000 - - 

Total 341.507 513607 - - - 
 

Model 1a: Predictors (Constant) band 1; Model 2b: Predictors (Constant) band 1 and 3; Model 3c: Predictors (Constant) band 1, 3 and 8; Model 4d: 
Predictors (Constant) band 1, 3, 8 and 6; Model 5: Predictors (Constant) band 1, 3, 8, 6 and 9; Model 6f: Predictors (Constant) band 1, 3, 8, 6, 9 and 5. 
Dependent variable: ALBEDO. 

 
 
 
(1-R

2
) were used to investigate the presence of 

collinearity of independent variables in this study. In 
regard to the presented critical value of VIF (>10) and 
tolerance index (<0.1) for occurrence of multicollinearity 
(Pallant, 2007), band 3 with the tolerance of 0.402 has 
less collinearity with other independent variables and is 
followed by bands 8, 1 and 2 with the tolerance value of 
0.11, 0.041 and 0.042, respectively.  This   can   also   be 

roughly predicted from correlation matrix of variables in 
Table 6.   

Table 7 illustrates the analysis of variances that 
resulted from forward regression method. Referring to 
this table, six number of model based on predictive 
potential of ASTER spectral bands were identified 
significantly at the 0.01 level. The zero value of standard 
error of regression for all models  reveals  that  parameter  
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Table 8. The first three proposed models, coefficients and descriptive statistics. 

 

Model 

Unstandardized 
coefficient 

 

 

Standardized 
coefficient t Sig. R

2
 

Adjusted    
R

2
 

Standard error 
of the estimate 

B Standard error Beta 

1 
Constant 0.077 0.000 - 972.564 0.000 

0.921 0.921 0.007258 
B1 0.868 0.000 0.960 2443.142 0.000 

          

2 

Constant 0.008 0.000 - 108.337 0.000 

0.976 0.976 0.003961 B1 0.696 0.000 0.770 2801.967 0.000 

B3 0.299 0.000 0.302 1100.138 0.000 

          

3 

Constant -0.028 0.000 - -450.739 0.000 

0.991 0.991 0.002481 
B1 0.507 0.000 0.560 1922.070 0.000 

B3 0.356 0.000 0.360 1958.116 0.000 

B8 0.177 0.000 0.216 891.858 0.000 
 

Model-1 predictors: (Constant), Band 1; Model-2 predictors: (Constant), Band 1 and 3; Model-3 predictors: (Constant), Band 1, 3 and 8. 
 
 
 
Table 9. The first three proposed models, coefficients and descriptive statistics. 
 

Model 

Unstandardized 
coefficients 

Standardized 
coefficients t Sig. R

2
 Adj. R

2
 

Std. error of 
the estimate 

B Std. Error Beta 

1 
Constant 0.077 0.000 ---- 972.564 0.000 

0.921 0.921 0.007258 
B1 0.868 0.000 0.960 2443.142 0.000 

          

2 

Constant 0.008 0.000 ---- 108.337 0.000 

0.976 0.976 0.003961 B1 0.696 0.000 0.770 2801.967 0.000 

B3 0.299 0.000 0.302 1100.138 0.000 

          

3 

Constant -0.028 0.000 ---- -450.739 0.000 

0.991 0.991 0.002481 
B1 0.507 0.000 0.560 1922.070 0.000 

B3 0.356 0.000 0.360 1958.116 0.000 

B8 0.177 0.000 0.216 891.858 0.000 

Model- 1. Predictors: (Constant), Band 1        

Model- 2. Predictors: (Constant), Band 1, Band 3        

Model -3. Predictors: (Constant), Band 1, Band 3, Band 8        
 
 
 

estimates are not varying from sample to sample. 
Table 6 and Figure 8 indicate that surface Albedo is 

mostly accounted for by visible-near infrared part of 
ASTER spectral bands where land surface is covered by 
vegetation (pistachio) and soil, while shortwave bands 
are less correlated with Albedo. According to Table 7, if 
one IV is desired to be contributed in the model, Band 1 
of the ASTER spectral data set is the choice that explains 
92% of the variability of DV, Albedo. Using two variables, 
preferably bands 1 and 3 offered by forward regression 
analysis, 0.976% of variability of Albedo is  accounted  for  

and if three independents variable is preferred to be 
included in the model, band 8 is the next option. In this 
case, these band combination account for 99% of 
variability of Albedo.  

The corresponding coefficients of the first three 
proposed models are illustrated in Table 8. Band 6 as the 
fourth independent variable does not cover any variance 
of DV if bands 1, 3 and 8 are selected before hand in the 
model.  However, in the case of unavailability of bands 5, 
6, 8 and 9 (data acquired after April 2008), model 2 which 
is presented in Table 9 (constant bands  1  and  3)  is  the  
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option. It should be noted that band 2 has not been 
contributed to the models by this method since it is highly 
correlated with band 1 (0.972). If other bands are 
preferred to be contributed, bands 9, 8, 6 and 5 are 
proposed, respectively. 

Moreover, statistical analysis of the models show that 
collinearity occurs when bands 6, 9 and 5 are added to 
model 3, respectively (Tolerance > 0.1 and VIF < 10). In 
term of collinearity analysis of the proposed models, band 
3 has been indentified to be less collinear with other 
bands.  
 
 
Comparison of downscaling methods 
 
The outputs of four downscaling methods were compared 
with the reference Albedo estimated from VNIR-SWIR 
bands (Equation 1). Evaluation of results was performed 
visually and statistically. Referring to Figure 9, all 
methods enhanced the spatial resolution with significant 
detail information as compared to the original MODIS 
Albedo image.  

Overall impression and structure of PBIM and FSIM 
output is similar to the reference image (Figure 9B) while 
sharpness and blurred patterns can be visualized on HPF 
and wavelet method outputs, respectively. In addition, 
bright and dark features in FSIM image are smoother 
than image produced by PBIM method. Slight brightness 
difference associated with high Albedo value and 
brightness of the feature edges can be seen on HPF-
based image fusion as compared to others. In addition, 
HPF-based downscaled image is seen to be noisy and 
highly textured in agricultural area as compared to two 
other methods.  

The spectral preservation property of all downscaled 
images was also statistically analyzed. Tables 10 and 11 
show descriptive statistic and correlation of the down-
scaled images, respectively. As shown in Table 10, the 

range (
minmax valuvalu − ) of the downscaled image by 

FSIM, PBIM and HPF are close to the range of reference 
image while the range of downscaled image by wavelet 
method is far from the reference image. In addition, FSIM 
has preserved maximum and minimum values close to 
the reference image, whereas these values were 
eliminated by wavelet method. However, outputs of all 
methods were highly correlated (significant at the 0.01 
level) with reference image. As shown in Table 11, the 
correlation coefficient of 96, 95, 88 and 86 is related to 
SFIM, PBIM, wavelet and HPF methods, respectively 
which show a relatively higher performance of SFIM in 
downscaling image as compared to other methods. Liu 
(2000) also reported the higher performance of FSIM 
method over PBIM and wavelet. In summary, the FSIM 
method better improves both the spatial and spectral 
properties of the low spatial resolution image’s features in 
this study, while spatial details were distorted mostly by 
Wavelet method.    

 
 
 
 
Conclusion 
 

The potential of ASTER visible-near infrared spectral 
bands in estimation of surface were considered in this 
study. The combination of bands 1 and 3 of ASTER 
spectral bands can effectively be modeled by regression 
method for determining surface Albedo instead of the six 
bands, with less than 0.024% loss of information, where 
land cover consists of vegetation and soil. Furthermore, 
the sum of the four omitted bands’ from reference model 
(Equation 1) ranges (b5, b6, b8, b9), after applying their 
respective coefficients, is between 0.025 and 0.055; far 
less than the sum of the range of b3 and b1 in this case 
study. In other words, ASTER shortwave bands are less 
correlated with estimated Albedo as compares to visible-
near infrared spectral bands in this area. However, 
collinearity is increased when bands 6, 9 and 5 are 
contributed in the model. Band number 2 is not 
recommended to be used in combination with two other 
visible-near infrared bands, since it is highly correlated 
with band 1 and causes collinearity. Based on the results, 
the forward multiple regression method and the 
generated new model, through this method, were 
identified to be a solution for the estimation of Albedo 
when the ASTER data acquired after April 2008 by 
missing bands number 4 through 9 were utilized. 
However, the results were significant in cases where the 
subset area consists of only vegetation and the soil is 
normally selected when the energy balance modeling in 
agricultural field is considered. Thus, the consistency of 
the generated models should be examined or the new 
coefficient should be determined when land cover is more 
heterogeneous and consist of several features. More-
over, this study was conducted in a representative semi-
arid region. As such, application of VNIR-based Albedo 
estimation is suggested to be examined in areas with 
high variability of surface and atmospheric condition. 

In addition, four downscaling methods including 
wavelet transfer, FSIM, PBIM and HPF methods were 
examined to downscale Albedo from MODIS 500 m 
resolution (pixel size based on short waves band) to 
aggregated 50 m ASTER Albedo image. VNIR-based 
Albedo image of ASTER data was used as high 
resolution image in the downscaling procedure. 
Downscaled images were validated against the Albedo 
estimated from the model presented by Liang (2004) 
which utilizes ASTER VNIR and SWIR bands. Visual 
interpretation confirms that boundaries between different 
land surface features were highlighted and the objects 
were discriminated clearly in downscaled images by all 
methods. Taking into account the statistical result, the 
correlation coefficient of the downscaled images con-
firmed that all methods improved the spatial and detailed 
information of the original MODIS data after downscaling. 
However, downscaled 50 m MODIS Albedo generated 
from FSIM method presents higher accuracy than the 
other methods with R

2
 of 96 and RMES of 0.01. This 

highlighted  better  performance  and  relatively  minimum 
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Figure 9. The downscaling results. (A) MODIS (500 m) Albedo image, (B) ASTER Albedo image, (C) downscaled MODIS image using PBIM 

method, (D) SFIM method, (E) Wavelet transfer method, and (F) HPF method. 
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Table 10. Descriptive statistics of downscaled images by three different methods. 
 

Method  
N Minimum Maximum Range St. deviation  Skewness  Kurtosis 

Statistic Statistic Statistic Statistic Statistic  Statistic St. error  Statistic St. error 

Albedo (eq.3) 123752 0.1006 0.4017 0.3011 0.02461  -0.105 0.007  0.300 0.015 

SFIM 123752 0.1120 0.4023 0.2903 0.02293  -0.044 0.007  0.275 0.015 

PBIM 123752 0.1321 0.4185 0.2864 0.02211  0.010 0.007  0.225 0.015 

Wavelet 123752 0.2464 0.3476 0.1012 0.02074  0.713 0.007  -0.186 0.015 

HPF 123752 0.1266 0.4323 0.3057 0.01540  -0.129 0.007  0.281 0.015 
 

St = Standard. 
 
 
 

Table 11. Statistical comparison of three downscaling methods. 

  

Statistic PBIM SFIM Wavelet HPF 

Root mean square error 0.0112 0.0101 0.0179 0.0168 

Mean absolute error 0.0103 0.0100 0.0152 0.0137 

Correlation coefficient 0.9509 0.9681 0.8838 0.8624 
 
 
 

spectral distortion of FSIM as compared to other 
methods.  
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