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In this paper, a general method is given for the solution of linear Volterra integral equations of the 
second kind, which is based on the action of the operator defined by the kernel of the integral equation 
on a suitable basis for the corresponding function spaces. The necessary conditions for using this 
method are so weak that extends its applicability. The solved examples show the strength of this 
method.  
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INTRODUCTION 
 
The theory of integral equations has a close relationship 
with different branches of mathematics. Moreover, many 
problems involving ODE's and PDE's may be stated in 
the form of integral equations (Hochstadt, 1973). In this 
paper, we consider linear Volterra integral equations of 
the second kind in the forms:  

axdttutxkxuxuKIxf
x

≤≤−− ∫ ,0)(),()(=)()(=)(
0

λλ   (1) 

 

where R→× ][0,][0,: aak  is square integrable 

function and R→][0,: af  is a known function in 

][0,
2 aL  and the equation is supposed to be uniquely 

solvable. 
 
There are many methods for finding an approximate 
solution of (1). Adomian Decomposition Method 
(Hosseini, 2009a), Direct Computation Method (Babolian 
and Masouri, 2007), Taylor-successive approximation 
method (Hosseini, 2009b), and Method of Successive 
Substitutions (Atkinson and Han, 2000) are some of 
these methods. All methods can be classified under two 
main categories, projection methods (Hochstadt, 1973) 
and collocation methods (Atkinson and Han, 2000;  
Atkinson, 1997; Hosseini, 2009a). Some of them use power 
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series and some of them use Chebyshev (Babolian and 
Fattahzadeh, 2007), Bernstein (Bhattacharya and 
Mandal, 2008) or other orthogonal polynomials. Some of 
them use radial basis functions (Golbabai and Sifollahi, 
2006) and some other means to approximate the solution 

function )(xu , that can be found in Babolian and 

Fattahzadeh (2007), all of them use a prescribed set of 

functions 
∞

1=}{ jju  for approximating )(xu  as a linear 

combination )(=)(
1=

xucxu jj

n

j∑  and then try to find 

jc 's. Here, we will present a method to find )(xu  such 

that not only 
iu 's are not known apriori, but also the 

number of them will be found at the end of the process. 
 
 
THE METHOD 
 
We consider a Volterra integral equation (VIE) in the form 

(1) in which ),( txk  and )(xf  are suitable known 

functions, λ  is a known parameter and )(xu  is the 

unknown function, to be determined. Now, if I∈rr xu )}({  

be a family of suitable functions where I is an index set, 

then using the operator )( KI λ−  and its effect on the 

family I∈rr xu )}({ , that is:  



 

 

 
 
 
 

dttutxkxuxuKIxw r

x

rrr )(),()(=)]()[(=)(
0∫−− λλ     (2) 

 

we can construct a new family of functions I∈rr xw )}({ , 

and if a linear combination of rw 's can represent the 

function )(xf , then )(xu  can be represented as a 

corresponding linear combination of ru 's. This subject is 

explained in the following theorem. 
 
 
Theorem 1 
 
Given any integral equation in the form (1) and any 

integrable function )(
1

xu  there is another VIE with the 

same kernel ),( txK  that )()(=)(
1

xuxuxv − is its 

solution and  
 

)()(),()(=)(
1

0
11

xfdttutxkxuxf
x

−− ∫λ         (3) 

 
 is its known part.  
 

 Proof. Putting )()(=)(
1

xvxuxu −  in (1) and doing 

some trivial computations we obtain:  
 

dttvtxkdttutxkxfxuxv
xx

)(),()(),()()(=)(
0

1
0

1 ∫∫ −−− λλ   (4)                         

 
which is the desired result. As a consequence of theorem 
(1) we obtain a method for constructing the exact or an 
approximate solution of (1).  
 
 
Corollary 1  
 

Suppose 
∞

1=)}({ jj xu  is a given sequence of 

integrable functions and )(xu  is the solution of (1). Then  

 

)(1)(=)(
1

1=

xuxu
j

j
n

j

−−∑                                              (5) 

 
if and only if  

 

])(),()([1)(=)(
0

1

1=

dttutxkxuxf j

x

j

j
n

j
∫∑ −− − λ         (6) 

 

Proof.  Given  
∞

1=)}({ jj xu    we  can  use  theorem  (1)  to  
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construct a sequence of functions 
∞

1=)}({ jj xv  such that 

)()(=)(
11

xuxuxv −  and )()(=)(
1

xvxuxv
jjj −− , 

nj ≤≤2 . Then we have 

 

  

 

)(1)()(1)(

==))()(()(=)()(=)(

1

1=

22111

xvxu

xvxuxuxvxuxu

n

n

j

j
n

j

−+−

−−−

−∑

K

    (7)                               
 
and  
 

 

.)(),()(1)(

])(),()([1)(=)(

0

0

1

0=

dttvtxkxf

dttutxkxuxv

n

x
n

jn

x

jn

j
n

j

n

∫

∫∑

+−

+−− −−

−

λ

λ

 (8)                                   
 

Now, it is trivial that (8) has solution 0=)(xvn
 if and 

only if (6) is satisfied, and then (5) is also true.  
 
 
Theorem 2  
 

Let )(xu  be the unique solution of the equation:  

 

)()(=)( xuKIxf λ−                                              (9) 

 

where K  is a compact ])[0,]([0,
2 aaL ×  kernel and λ  

is not an eigenvalue of K  also )}({ xui
 is an ][0,

2 aL  

sequence of functions such that )(
1=

xuii∑
∞

is a pointwise 

convergent series to an ][0,
2 aL  function. Then 

)(=)(
1=

xuxu ii∑
∞

 for every x  in ][0,a  if and only if 

)()(=)(
1=

xuKIxf ii∑
∞

− λ . 

 

  

Proof. Let x  be an arbitrary point in ][0,a . Then,  

 

 

)].()()[(

=)()()()(

=)()()(

1=

1=

1=

xuxuKI

xuKIxuKI

xuKIxf

i

i

i

i

i

i

∑

∑

∑

∞

∞

∞

−−

−−−

−−

λ

λλ

λ

                  (10) 
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Now, if )(=)(
1=

xuxuii∑
∞

,
 then from (10) we have:  

 

0.=)()()(
1=

xuKIxf i

i

λ−−∑
∞

 
 
Conversely if  
 

)()(=)(
1=

xuKIxf i

i

λ−∑
∞

 
 
then from (10), we obtain 

0.=))()()((
1=

xuxuKI
ii∑

∞
−− λ  Moreover, since K  is 

compact and the integral Equation (9) is unisolvable, then 

by the Fredholm Alternative Theorem, )(=)(
1=

xuxu
ii∑

∞
 

is the unique solution of (9). Corollary (1) gives an 
efficient method for constructing the exact solution and 
approximate solution of (1). For this purpose, we first 
choose a suitable complete sequence of functions 

∞
1=)}({ jj xu , which is chosen such that the integrals 

dttutxk
j

x

)(),(
0∫  can be computed easily and then use 

the following algorithm.  
 
 
ALGORITHM 
 
To solve integral equations by this method, in step one 

we choose a suitable family of functions I∈rr
v }{  where I  

is an index set, as basis functions. In step two, we find 

the family of functions I∈rr
xw )}({ , such that 

)()(=)( xvKIxw
rr

λ− . In step three, we choose a set 

of functions 
n

iii vvv ,,,
21
L  such that 

n
iii www ,,,

21
L  can 

expend )(xf . In step four, we rename the set 

},,{
1 n

ii vv L  as },,,{ 21 nuuu L  and },,,{
21 n

iii www L  

as },,,{ 21 nwww L . In step five, if there exists 

coefficients 
nccc ,,, 21 L  such that  

 

)(1)(=)(
1=

xwcxf ii

i
n

i

−∑                                        (11) 

 
then we obtain that  

 

)(1)(=)(
1=

xucxu
ii

i
n

i

−∑                                          (12)    

 
 
 
 
is the unique solution of integral equation. If the family 

I∈rru }{  is not suitable then we must choose a new family 

of functions and go to step two. We state more details 
subsequently. 
 
 
EXAMPLES 
 
Here, we demonstrate the strength of our method by 
using it to solve some examples. 
 
Example 1: Consider the equation  
 

dttutxxxu
x

)()(=)(
0

−+ ∫                                      
(13)                                                      

 

Solution: The family of functions },=)({ R∈rexv rx

r
 

seems to be suitable, and moreover we have  
 

R∈++−

−−−−− ∫∫

r
rr

x
e

r

dtetxedttvtxxvxvKI

rx

rt
x

rx

r

x

rr

,
1

)
1

(1

=)(=)()()(=)]()[(

22

00
λ

       (14) 

 
Now, we must choose those r 's which are necessary for 

generating xxf =)( . So r 's must be such that the 

coefficients of 
rx

e 's become zero, and this gives 1= ±r . 

So, according to step four of our algorithm for 1= ±r  and 
(13) we respectively have  
 

1=)(=)()(=)(,=)(=)( 1111 +−− xeKIxuKIxwexvxu xx λλ  
and  

1.=)(=)())((,=)(=)( 2212 +−−− −−
− xeKIxuKIxwexvxu xx λλ  

 

So according to Equation(10), we must choose 
1

c  and 

2
c  such that:  

 

).()()()(=)(
2211

xuKIcxuKIcxf λλ −−−
 

 
That is 
 

1)(1)(=
21

+−−+ xcxcx
 

 

which gives 
2

1
==

21
cc  and so by (11)  

 

sinhxeexucxucxu xx =
2

1

2

1
=)()(=)( 2211

−−−  



 

 

 
 

 
 
is the desired solution of (12).  
 
Example 2: Consider the equation  
 

0=)()(
0

dyyuyxu yx
x

−

∫−
                                     

(15) 

                                                        
Solution: Using the functions of the form 

R∈+ βαβα
βα ,,=)(,

xxxu
, 

we have:  

 

.==)]()[(
1)(

0

1)(

0
, dyydyyyxuK

yx
x

yx
x

βαβα
βαλ +−++−

∫∫
 

 

To have some simple primitive functions, we put 1=α  

and then we have, 
  

1
==)]()[(=)]()[(

1

0
1,,

++

++
+

∫ β
λλ

β
β

ββα
x

x
dyyxuKxuK

x
x

x

 

 
and then we obtain,  
 

βββ
β

β

β

β
λ +++

++

+

++
−− xxx

x
x

x
x

x
xxuKI

1

1
=

1
=)]()[( 1,

 
 
So according to (11), we must choose c  such that  

 

ββ

β

β

β

β ++

++

+
−

++

+
− xx

x
x

cx
x

cxf )
1

1
(0=)

1

1
()(=0

 
 

which gives 1= −β  and so R∈− ccxxu x ,=)( 1  is the 

exact solution of (14).  
 
Example 3: Consider the singular homogeneous integral 
equation  
 

.)(=)(
||

0
dyyex yx ϕλϕ −−

∞

∫              
(16)                                                       

  
Solution: If we choose the family of functions 

}:{=)({ R∈rexu rx

r
 then we have  

 

1.<1,,
1

)
11

(

=

==)(),(

)()(

0

||

00

rre
r

e
rr

dyeedyee

dyeedyyuyxk

xrx

ryyx

x

ryyx
x

ryyx

r

−≠
+

−
−

−
+

+

−

−+
∞

−−

−−
∞∞

∫∫

∫∫

λλλ

λλ

λλ

(17)                                        

Navabpour et al.          6913 
 
 
 

Moreover for 1= −r  or 1≥r  the improper integral 
diverges, and then: 
  
 

.
1

)
1

12
(=

11

2
=)()(

2

2

2

xrxxrxrx

r
e

r
e

r

r
e

r
e

r
exuKI

−−

+
+

−

−+

+
+

−

−
−−

λλλλ
λ

 
 
So according to (10), we must choose those r 's which 

are necessary for generating 0=)(xf , that is r 's must 

be such that the coefficients of 
rx

e 's become zero, and 

this gives 0=12
2 −+ λr  and then .21= λ−±r  

Moreover, for λ21=1 −r  and λ21=2 −−r ,
 we 

respectively have: 
  

.==,==
212

2

211
1

λλ −−∗−∗ xxrxxr
eeueeu

 
 
Now  
 
 λλλλ 21

12211 )(=)()()()(=)(=0
−−−−− x

eKIcxuKIcxuKIcxf
  

).
211

()
211

(=)( 21

21

2

xxx
ececeKIc

−−−−

−−
+

−+
−−−

λ

λ

λ

λ
λ λ

 

 

If we put )21(1=1 λβ −+c  and )21(1=2 λβ −−c  

then according to Equation (11), we see that:  

 
 ]1)21()21[(=)()(=)(

2121

2211

λλ λλβ −−−∗∗ −−+−− xx
eexucxucxu

 
 
is the exact solution of (16).  
 
 
Example 4: Consider the integral equation (Bhattacharya 
and Mandal, 2008):  

 

dttu
t

xx
xxxu

x

)(
1

1

22

3
1=)(

0

3
2

+

+
++−− ∫

     
(18)  

 
Solution: If we choose the sequence of functions 

{0}},)(1=)({ ∪∈+ Nnxxu n

n  as the basis functions 

then we have:  
 

2,
1)(1

=)(1
1

1
=)(

1

1
1

00
≥

+
−

+
+

+

+

+

+ +

∫∫ n
n

x

n

x
dtt

t

x
dttu

t

x
n

n
x

n

x

 
and 

for 0,1=n  we respectively obtain: 
  

).(1=)(1
1

1
),(1)(1=

1

1

00
xxdtt

t

x
xlnxdt

t

x xx

++
+

+
++

+

+
∫∫
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Thus, we have  
 

2,
1)(1

)(1=)()(
1

≥
+

+
+

−+−
+

n
n

x

n

x
xxuKI

n
n

nλ
 

 
and  
 

),(1)(11=)()( 0 xlnxxuKI ++−− λ
 

 

.1=)(1)(1=)()( 2

1 xxxxxuKI −+−+− λ  
 

Now, since )(xf is a polynomial of degree 3, so 

21 ≤≤ n  and  

 

=)()()()(=)(=
22

3
1 2211

3
2

xuKIcxuKIcxf
x

xx λλ −−−+−−
 

 

=]
2

1

2

)(1
)[(1)(1

3
2

2

2

1

xx
xcxc

+
+

+
−+−−

 
 

3

2

2

12221
2

1
)

2

1
( xcxccxccc +−+−−

 
 

and then we have 2=
1

c  and 1=
2

c . So 

22 1=)(1)2(1=)( xxxxu −+−+  is the exact solution 

of Equation (18). In examples (5) and (6), we will show 
that (11) and (12) can be extended as series. 
 
Example 5: In this example we will solve integral 
equation  
 

dttutxxxu
x

)()(=)(
0

−− ∫
                                  

(19) 

                                                       
in example (1) with an other family of functions. 
 
Solution: By choosing the sequences of functions 

{0}},=)({ ∪∈Nnxxv n

n ,
 we have  

 

1)2)((
=)(=)()(

2

++
−−−

+

nn

x
xxKIxvKI

n
nn

n λλ      (20)                                    

 

According to (11), we find constants L,,
21

cc  and 

functions )(
1

xu , L),(
1

xu  recursively, such that  

 

L+−−− )()()()(=)(=
2211

xuKIcxuKIcxfx λλ  

 
 
 
 

We put xxvxu =)(=)(
11

 then by (20) we have,  

 

 

,)()()
23

(

=)()()(=)(=

22

3

1

221

L

L

+−−
⋅

−

+−−−

xuKIc
x

xc

xuKIcxKIcxfx

λ

λλ

     (21)                             
 

LL +−+− )(=)()(=)(
2212211

xucxcxucxucxu
 

 

So 1=
1

c  and then  

 

 

L

L

−+−

+−−
⋅

−

)()(=)(

,)()()
23

(=)(=

3322

22

3

xucxucxxu

xuKIc
x

xxfx λ

 (22)                                    
 

Now we put 
3

32
=)(=)( xxvxu  and then  

 

 

,)
45

()
23

(=)(=
5

3

2

3

L+
⋅

−−
⋅

−
x

xc
x

xxfx

            

(23)                                       
 

L−+− )(=)(
33

3

2
xucxcxxu

 
 

So 
23

1
=2

⋅
−c  and then  

 

,)()(
23

1
)

23
(=)(=

33

3

L−−+
⋅

+
⋅

− xuKIc
x

xxfx λ
 

 

L−++ )(
3!

=)(
33

3

xuc
x

xxu
 

 

Finally, we find that 
12

=)(
−n

n
xxu  and 

1)!(2

1
1)(=

1

−
− +

n
c

n

n
 and so  

 

)(=
1)!(2

=
1)!(2

1)(1)(=)(

1)(2

1=

1)(2
11

1=

xsinh
n

x

n

x
xu

n

n

n
nn

n −−
−−

−∞−
++

∞

∑∑
 

 
is the exact solution of (19).  



 

 

 
 
 
 
Example 6: Consider the equation  
 

dttu
tx

xxu
x

)(
1

2=)(
0 −

− ∫
                           

(24)                                                    

 
Solution: By choosing the sequences  
 

{0}},=)({ ∪∈Nnxxw n

n                   
 
 and  

}1,3,=,=)({ 2
Lmxxv

m

m  we have 

  

{0},

)
2

3
(

1)()
2

1
(

= 2

1

0
∪∈

+Γ

+ΓΓ

−

+

∫ Nnx

n

n

dt
tx

t n
n

x

    

(25)                                        

 

1,3=,
2

= 2

12

0
mx

m
dt

tx

t
m

m

m

x
+

−∫ π
                     

(26) 

                                                  
where Γ  is the Gamma function. Consequently we have:  
 

1,3=,
2

=

{0},

)
2

3
(

1)()
2

1
(

==)()(

2

1

2

2

0

2

2

1

0

mx
m

xdt
tx

t
x

nx

n

n

xdt
tx

t
xxwKI

m

m

m
m

x
m

n
n

n
x

n

n

+

+

+
−

+

∪∈

+Γ

+ΓΓ
+

−
+−

∫

∫

π

λ N
   (27)            

 

According to (10), we must find functions )(
1

xu , )(
2

xu , 

L and constants 
1

c , 
2

c , L such that  

 

L+−−− )()()()(=)(=2 2211 xuKIcxuKIcxfx λλ  

 

For xxvxu =)(=)( 11
 and Equation (27) we have  

 

L+−−+ )()()
2

(=)(=2
221

xuKIcxxcxfx λ
π

 
 

So, we put 2=
1

c  and then  

 

L+−−+ )()()
2

2(=)(=2 22 xuKIcxxxfx λ
π

  

and  

LL +−+− )(2=)()(=)( 222211 xucxxucxucxu
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Now we put xxwxu =)(=)(
12

 and then by Equation (27),  

 

L−−++−+ )()()
3

4
()

2
2(=)(=2 33

2

3

2 xuKIcxxcxxxfx λ
π

 
 

So π=
2

c  and then  

 

L−−++−+ )()()
3

4
()

2
2(=)(=2 33

2

3

xuKIcxxxxxfx λπ
π

 
 
and  
 

.)(2=)( 33 L−+− xucxxxu
 

 

By iterations, we will fined 
3

4
=

3

π
c  and 

2
=

2

4

π
c , L 

and so  
 

L++++−+ )
8

3
(

3

4
)

3

4
()

2
2(=)(=2

22

3

2

3

xxxxxxxfx
ππ

π
π

 
and  
 

L+−+− 2
2

2

3

23

4
2=)( xxxxxu

ππ
π

 
 
that is the solution of (24) as series.  
  
 
CONCLUSION 
 
In this paper, we have given a new attitude to solve 
integral equations, which can be applied in various 
situations. The major difference between our method and 
the other methods for solving linear Volterra integral 
equations is in manner for trying to represent the known 

function )(xf . We predict that Fredholm integral 

equations and linear integro- differential equations can 
also be solved by this method. 
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