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This paper proposes an effective improvement of the homotopy perturbation method (HPM) by using 
Jacobi and He's polynomials to solve some nonlinear ordinary differential equations. With this method, 
the source terms of ordinary differential equations can be expanded in series of shifted Jacobi 
polynomials. Numerical results are given in this paper to illustrate the reliability of this method with 
nonlinear ordinary differential equations. 
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INTRODUCTION 
 
In recent years, the subject of differential calculus 
received attention in regards to effective numerical 
methods for solving linear and nonlinear differential 
equations. Examples of these methods are the Adomian 
decomposition method (ADM) (Wazwaz et al., 2015; 
Hosseinzadeh et al., 2017), the variational iteration 
method (Akter and Chowdhury, 2017; Wazwaz, 2015; 
Glowinski, 2015; Ghorbani and Bakherad, 2017), the 
pseudospectral method (Bhrawy et al., 2015; Wei et al., 
2017; Borluk and Muslu, 2015) and the reproducing 
kernel Hilbert space method (Arqub et al., 2016). 

In 1999, He (1999) proposed the HPM which combines 
the standard homotopy in topology and perturbation 
techniques. The HPM is a powerful and effective tool for 
solving a wide range of problems that arise in various 
fields. With this method, numerical solutions are 

expressed as sums of infinite series. The sums converge 
rapidly to find solutions. 

The HPM can be applied to integro-differential equation 
(Elbeleze et al., 2016), linear and nonlinear Newell-
Whitehead-Segel equations (Nourazar et al., 2017), 
nonlinear optimal control problems (Jafari et al., 2016), 
integral equations (Elzaki and Alamri, 2016; Hasan and 
Matin, 2017), nonlinear wave-like equations with variable 
coefficients (Gupta et al., 2013), boundary value 
problems (Opanuga et al., 2017), the quadratic Riccati 
differential equation (Aminikhah and Hemmatnezhad, 
2010), Boussinesq-like equations (Fernández, 2014) and 
others (Sakar et al., 2016; Soori et al., 2015; Qureshi et 
al., 2017; Zhang et al., 2014; Najafi and Edalatpanah, 
2014; Roy et al., 2015; Abou-Zeid, 2016). 

In an overview of approximations of  nonlinear  ordinary  
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differential equations, adomian decomposition method 
with orthogonal polynomials was proposed as a method 
for solving nonlinear problems (Liu, 2009). Chun (2010) 
proposed an efficient modification of the HPM that used 
Chebyshev's and He's polynomials to solve nonlinear 
differential equations. Behrooz and Ebadi (2011) further 
developed the HPM using Legendre polynomials. 
Recently, Novin and Dastjerd (2015) improved the 
adomian decomposition method to obtain solutions for 
the Duffing equation. 

This article applies the HPM to the shifted Jacobi 
polynomials of the right-side function      to solve 
nonlinear differential equations. The advantage of this 
approach is that such polynomials are simple and do not 
require small parameters. Moreover, with a few iterations 
one can find accurate solutions. To the best of the 
authors' knowledge, this approach was not employed to 
solve linear and nonlinear differential equations in the 
past. 

This manuscript is arranged as follows: First, various 
properties of shifted Jacobi polynomials are presented, 
followed by a discussion of He's HPM. Thereafter, the 
proposed HPM is presented along with solutions to three 
numerical examples and with comparisons of the 
solutions and results found with other methods; therein, 
the validity and accuracy of the proposed method is 
considered. Additionally, the results of the numerical 
simulation using Maple 17 are given, and the study is 
concluded. 
 
 
PROPERTIES OF SHIFTED JACOBI POLYNOMIALS 
 
The well-known standard Jacobi polynomials, 

  
     

                 are defined on the interval 

      . The standard Jacobi polynomials of degree 

     
     

                satisfy the following Rodrigue's 

formula: 
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    is the Chebyshev polynomial of the first and 
second kinds and Legendre polynomials respectively; 
and for the non-symmetric Jacobi polynomials, the two 

important special cases       
 

 
 (Chebyshev 

polynomials of the third and fourth kinds) are also 
recovered. 

The Jacobi polynomials (Bhrawy et al., 2016) satisfy 
the orthogonality relation. 
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In order to use these polynomials on the interval      , 
we define the so-called shifted Jacobi polynomials by 

introducing the change of variable   
  

 
     Let the 

shifted Jacobi polynomials   
     

(
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The analytic form of the shifted Jacobi polynomials
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of degree   is given by 
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and the orthogonality condition is 
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A function     , square integrable in        may be 
expressed in terms of shifted Jacobi polynomials as 
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where the coefficients    are given by 
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HE'S HPM 
 
Here, we will present HPM used by He (1999, 2006) to 
solve nonlinear differential equations that take the 
following form 
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where L is a linear operator of highest order, R is a linear 

operator of lower order than     is a nonlinear operator, 

  is a boundary operator,      is the source term and   is 
the boundary of the domain  . He (1999) defines the 

homotopy technique as                  , which 
satisfies 
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where         is an embedding parameter and    is an 
initial estimated approximation of Equation 7 which 
satisfies the boundary conditions. Obviously, we have 
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The expansion of   from 0 to 1 is the same as that for 

       from           to                    . In 
topology, this is called deformation and           , 

                       are called homotopic. Using 

the parameter  , we expand the solution of Equation 9 in 
the following form: 
 

2 3

0 1 2 3 .....p p p                               (12) 

 
When     , Equation 12 becomes the approximate 
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METHODOLOGY OF HPM BASED ON SHIFTED JACOBI 
POLYNOMIALS 

 
When implementing the previous HPM on some problems we find 
that the source term      is not easy to integrate. So, in this paper, 
for an arbitrary natural number        can be expressed in the  

ALzaidi and Alderremy          45 
 
 
 
shifted Jacobi series 
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To deal with the nonlinear term     , we will use He's polynomials 
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and so on. By solving the above set equations with suitable initial 
conditions,               can be determined and the series 
solution (12) will be entirely determined. The  -term approximation 
solution of Equation 7 can be considered as follows 
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NUMERICAL SIMULATION AND COMPARISONS 
 

Here, several numerical examples to demonstrate the 
high accuracy and applicability of the proposed methods 
for solving nonlinear ordinary differential equations are 
presented. We also compare the results given from our 
method and those reported in the literature. The 
comparisons reveal that our methods are very effective 
and convenient. 
 
 
Example 1 
 

We consider the following equation (Liu, 2009; Behrooz 
and Ebadi, 2011) 
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Figure 1. AEs of HPM by Chebyshev (EC) and Taylor (ET) polynomials at 
    for Example 1. 
Source: Behrooz and Ebadi (2011). 

 
 
 
In an operator form, Equation 19 can be written as: 
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where    
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Behrooz and Ebadi (2011) introduced this problem and 
presented Figure 1 to show the absolute errors (AEs) of 
HPM with Chebyshev and Taylor polynomials at    . 
Moreover, Liu (2009) applied the ADM with Legendre, 
Chebyshev and Taylor polynomials to this problem and 
presented the absolute errors (AEs) in Figures 2, 3 and 4. 
Now, we apply our method for this problem. 

The homotopy equation is 
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Substituting relations Equation 24 in Equation 16, gives 
the following relation 
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Substituting Equation 25 and Equation 23 into the 
homotopy (22) and equating the terms with identical 
powers of  , gives: 
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Figure 2. AEs of ADM by Taylor polynomials at     for Example 1. 
Source: Behrooz and Ebadi (2011). 

 
 
 

 
 

Figure 3. AEs of ADM by Chebyshev polynomials at     for Example 1. 
Source: Liu (2009). 
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Figure 4. AEs of ADM by Legendre polynomials at     for Example 1. 
Source: Liu (2009). 
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By substituting Equation 26 in           at Equation 27, 

and solving the above equations by the help of Maple, we 
obtain 
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The absolute error of HPM with shifted Jacobi 
polynomials at      is plotted in Figure 5. 

The accuracy of this method is validated by comparing 
to the exact     . By comparing Figures 1 to 5, it is found 
that the absolute errors (AEs) generated using our 
method are smaller than the errors caused by HPM with 
Chebyshev (EC) and Taylor (ET) polynomials and by 
ADM with Legendre, Chebyshev and Taylor polynomials. 
This means that the method here is more accurate than 
previous methods. 
 
 

Example 2 
 

We consider the following problem (Behrooz and Ebadi, 
2011): 
 

2 2 2 2sin(2 ) 4 sin( ) 2 cos( ),u uu x x x x x        (29) 

 

(0) 0, (0) 0, 0 1,u u x                          (30) 

 

with exact solution             . In an operator form, 
Equation 29 can be written as: 
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where   
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                    . 
 

The homotopy equation is: 
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Figure 5. AEs of HPM by shifted Jacobi polynomials at       
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Example 1. 
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 (33) 

 

Now, if     
 

  
 and      the expansions of      in 

shifted Jacobi polynomials are obtained by 

 
3 2 2 3

,10

4 5 6 7

8

(

9 10

)
1.999997823  0.26993648 10 0.8403435 10  2.112845335

5.80766750  3.416658954 8.977727745  13.49519614

14.20329364  8.284749236 1.68860433

( )

2 .

J
f x x x

x x x x

x x

x

x

      

   

  

(34) 

 
Substituting Equation 23 and using Equation 16 with 
relations  

33 into the homotopy Equation 32 and equating the terms 
with identical powers of  , gives 
 

00

0 0

1 0 0 ( .10)1

1 1

2 0 1 0 12

2 2

3 1 1 0 2 0 23

3 3

10 1 8 2 7 3 610

2 0,
:

(0) 0, (0) 0,

2 ( ) 0,
:

(0) 0, (0) 0,

0,
:

(0) 0, (0) 0,

0,
:

(0) 0, (0) 0,

:

J

p

f x
p

p

p

p



 

  

 

    

 

     

 

     

 


 

    


 

    


 

      


 

      
4 5 4 5 3 6 2 7 1 8 0 9 0 9

10 10

,

(0) 0, (0) 0.

            

 

           


    

(35) 

 

By substituting Equation 34 in            at Equation 35, and 

solving the above equations by the help of Maple, we obtain 
 

  2 4 3 3 4

2 5 13 64 14 65

15 66 17 67

0.9999989115 0.4498941333 10    0.7002862500 10

 0.5642484450 10  2.229469520 10 2.357695514 10

1.572944876 10    4.949801810 10 .

u x x x x

x x x

x x

 

  

 

    

      

   

(36) 
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Figure 6. AEs of HPM by shifted Jacobi polynomials at      and        
 

  
 for 

Example 2. 

 
 
 

The absolute errors (AEs) at      
1

20
 and       

are presented in Figure 6 which showed that the results 
of HPM with shifted Jacobi polynomials to be more 
accurate results than the results of HPM with Legendre, 
Chebyshev and Taylor polynomials (Behrooz and Ebadi, 
2011) represented in Figure 7. 
 
 
Example 3 
 
Consider the equation (Behrooz and Ebadi, 2011; Novin 
and Dastjerd, 2015), 
 

   3  3 2 cos sin 2 ,u u u x x                         (37) 

 

(0) 0, (0) 1, 0 1.u u x                          (38) 

 
The exact solution of this problem is            . In an 
operator form, Equation 37 can be written as: 
 

       ,L u R u N u f x                         (39) 

where   
 

                                    

               
The homotopy equation is: 

 

0 0
( ) ( ) [ ( ) ( ) ( )] 0.L u p L u p R N f x             (40) 

 
Similar to the previous two examples, if             
        and    , we get 
 

  5 2 2

,7

3 4 5

6

( )

7

0.5196100000 10  2.000385742 – 0.6852219400 10

2.282885057 0.1876329186 1.396156963

0.4115735108 0.0163048120 .8

J
f x x x

x x x

x x

   

  





  

(41) 

 
The approximate solutions 
 

  5 2 3 3 4

20 47 22 48 24 49

 0.2598050000 10 0.1666023763 0.5703687707 10

4.353096806 10 6.612018552 10 3.742005363 10 .

u x x x x x

x x x

 

  

     

      

(42) 

 
In Table 1, we compare the AEs achieved using our 
method with those obtained using the ADM with 
Legendre and Taylor polynomials (Novin and Dastjerd, 
2015) at    . Figure 8 plot the AEs of the HPM with 
shifted Jacobi polynomials, which show  that  our  method  
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Figure 7. AEs of HPM by Legendre (EL), Chebyshev (EC) and Taylor (ET) 
polynomials for Example 2. 
Source: Behrooz and Ebadi (2011). 

 
 
 

Table 1. Comparison of our method with the ADM with Legendre and Taylor polynomials (Novin and Dastjerd, 2015) at         
         and      for Example 3. 
 

x Our method ADM with Legendre polynomials ADM with Taylor polynomials 

0.2 1.9 ×10
−9

 2.012 ×10
−9

 5 ×10−
12

 

0.4 1 ×10
−10

 1.16 ×10
−10

 1.0224 ×10
−8

 

0.6 6 ×10
−10

 1.951 ×10
−9

 8.70197 ×10
−7

 

0.8 2.7 ×10
−9

 4.3981 ×10
−7

 1.9931859 ×10
−5

 

1 2.50 ×10
−8

 1.36581 ×10
−6

 2.32196948 ×10
−4

 

 
 
 
is more accurate than HPM with Chebyshev and Taylor 
polynomials (Behrooz and Ebadi, 2011) shown in Figure 
9. 

From Table 1, Figures 8 and 9 listed above, it is shown 
that the method here is surpassed than ADM with 
Legendre and Taylor polynomials introduced by Novin 
and Dastjerd (2015) and the HPM with Chebyshev and 
Taylor polynomials introduced by Behrooz and Ebadi 
(2011). 
 
 
Conclusions 
 
In   this   work,    a    generalization    to    the    homotopy  

perturbation algorithm has been proposed to find an 
accurate numerical solution for the nonlinear ordinary 
differential equations. The core of the proposed method 
was the source term that can be expressed in the shifted 
Jacobi series. By comparing the approximate solutions of 
the problems in this research with their exact solutions 
and with the approximate solutions achieved by other 
methods, the validity and accuracy of the scheme of this 
research is confirmed. 
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Figure 8. AEs of HPM by shifted Jacobi polynomials at                  
and      for Example 3. 

 
 
 

 
 

Figure 9. AEs of HPM by Chebyshev (EC) and Taylor (ET) polynomials for 
Example 3. 
Source: Behrooz and Ebadi (2011). 
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