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In this paper we solve analytical the position-dependent effective mass Klein–Gordon equation for 
modified Eckart potential plus Hulthen potential with unequal scalar and vector potential for l≠0. The 
Nikiforov-Uvarov (NU) method is used to obtain the energy eigenvalues and wave functions. We also 
discuss the energy eigenvalues and wave functions for the constant-mass case. The wave functions of 
the system are taken in the form of the Laguerre polynomials. The results are the exact analytical. The 
energy eigenvalues and wave functions are interesting for experimental physicists. 
 
Key words: Klein–Gordon equation, modified Eckart potential plus Hulthen potential, Nikiforov-Uvarov (NU) 
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INTRODUCTION 
 
The description of phenomena at higher energy requires 
the investigation of a relativistic wave equation. Therefore 
one of the interesting problems in nuclear and high 
energy physics is to obtain analytical solution of the Klein 
- Gordon, Duffin – Kemmer - Petiau and Dirac equations 
for mixed vector and scalar potentials (Oyewumi and 
Akoshile, 2010). The exact solutions of the wave 
equations (non-relativistic or relativistic) are very 
important since they contain all the necessary information 
regarding the quantum system under consideration. 
However, analytical solutions are possible only in a few 
simple cases such as the hydrogen atom and the 
harmonic oscillator (Schiff, 1955; Landau and Lifshitz, 
1977). 

If we consider the case where the interaction potential 
is not strong enough to  create  particle-antiparticle  pairs, 

we can apply the Klein-Gordon equation to the treatment 
of a zero-spin particle and apply the Dirac equation to 
that of a 1/2-spin particle (Cheng and Dai, 2007). Spin 
and pseudospin symmetries are SU(2) symmetries of a 
Dirac Hamiltonian with vector and scalar potentials. They 
are realized when the difference, Δ(r)=V(r)−S(r), or the 
sum, Σ(r)=V(r)+S(r), are constants. The near realization 
of these symmetries may explain degeneracies in some 
heavy meson spectra (spin symmetry) or in single-
particle energy levels in nuclei (pseudospin symmetry), 
when these physical systems are described by relativistic 
mean-field theories (RMF) with scalar and vector 
potentials (Ginocchio, 2005; Feizi et al., 2013; Alberto et 
al., 2013). 

The kind of various methods have been used for the 
exact solutions of the Klein – Gordon equation and  Dirac
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equation such as the Supersymmetry Quantum 
Mechanics (Jia et al., 2006; Astorga et al., 2012; Feizi et 
al., 2011). Asymptotic iteration method (AIM) (Ciftci et al., 
2003; O¨zer and Le´vai, 2012) and Nikiforov-Uvarov (NU) 
(Shojaei et al., 2014; Berkdemir et al., 2006; Rajabi and 
Hamzavi, 2013) and others. 

The Klein – Gordon and Dirac wave equations are 
frequently used to describe the particle dynamics in 
relativistic quantum mechanics with some typical 
potential by using different methods (Ikot et al., 2011). 
For example, Kratzer potential (Qiang, 2004, 2003), 
Woods-Saxon potential (Berkdemir et al., 2006; Guo and 
Sheng, 2005). Scarf potential (Xue-Cai et al., 2005; 
Zhang et al., 2005). 16 Hartmann potential (Chen, 2005; 
de Souza Dutra and Hott, 2006), Rosen Morse potential, 
(Yi et al., 2004; Alhaidari, 2001) and Hulthen potential 
(Farrokh et al., 2013).  

The problem of the non-relativistic and relativistic wave 
equations with spatially dependent masses has been 
attracting much intention in the literature. Systems with 
position-dependent mass have been found to be very 
useful in studying the physical properties of various 
microstructures, such as semiconductor heterostructure 
(VonRoos, 1983). Quantum liquids (Arias de Saavedra et 
al., 1994), quantum wells and quantum dots (Serra and 
Lipparini, 1997), 3He clusters (Barranco et al., 1997), 
compositionally graded crystals (Geller and Kohn, 1993; 
Jia et al., 2012) etc. 

A lot of studies have been performed to obtain the 
solutions of the Schrodinger, Klein-Gordon and Dirac 
equations with position-dependent mass for different 
potentials (Arda et al., 2010, 2009). For example, Aygun 
et al. (2012), Jia et al. (2012), Antia et al. (2012) and 
Souza Dutra considered position-dependent effective 
mass (Jia and de Souza Dutra, 2006). 

In this paper, we attempt to solve approximately Klein – 
Gordon equation for l≠0 with modified Eckart potential 
plus Hulthen potential for the scalar and vector potential 
with a spatially dependent mass by using the Nikiforov – 
Uvarov (NU) method. We also discuss the limit of the 
scalar and vector potential with constant mass (Shojaei et 
al., 2014; Cheng and Dai, 2007). 
 
 

REVIEW of NIKIFOROV -UVAROV (NU) METHOD 
 

The NU method is based on the solution of a generalized 
second order linear differential equation with special 
orthogonal functions. The NU method has been used to 
solve the Schrodinger, Dirac, and Klein-Gordon wave 
equations for a certain kind of potential. In this method 
the differential equations can be written as follows 
(Shojaei et al., 2014; Cheng and Dai, 2007): 
 

2

τ(s) σ(s)
Ψ (s) Ψ (s) Ψ(s) 0

σ(s) σ (s)
                    (1) 

 

Where σ(s) and σ(s)are words  of  second  degree  and 
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τ(s) is a first degree polynomials. In obtaining the exact 

solution to Equation (1) we set the wave function as: 
 

Ψ(s) (s)y(s)                                              (2) 

 
And on substituting Equation (2) into Equation (1) 
reduces Equation (1) into hyper geometric type, 
 

σ(s)y (s) τ(s)y (s) λy(s) 0                            (3) 

 
Where Φ(s) is defined as a logarithmic derivative 
 

(s) π(s)

(s) σ(s)





                                                    (4) 

 
Where  π(s) is most  a first degree polynomial. 

The other part, y(s), is the hyper geometric-type 
function whose polynomial solutions are given by the 
Rodrigues relation. 
 

n
nn

n n

n

B d
y (s) (σ (s)ρ(s))

ρ ds
                             (5) 

 
Where Bn is the normalizing constant and the weight 
function ρ(s) must satisfy the following condition: 
 

dω(s) τ(s)
ω(s)

ds σ(s)
                                      (6) 

 
Where ω(s) = σ(s)ρ(s).  
 

τ(s) τ(s) 2π(s)                                       (7) 

 
It is necessary that the classical orthogonal polynomials τ 
(s) be equal to zero to some point of an interval (a, b) and 
its derivative at this interval at σ(s) > 0 will be negative, 
that is 
 

dτ(s)
0

ds
                                              (8) 

 
Therefore, the function π(s) and the parameter λ required 
for the NU-method are defined as follows: 
 

2σ (s) τ(s) σ (s) τ(s)
π(s) ( ) σ(s) kσ(s)

2 2

  
    ,   

λ k π (s)                (9) 

 
The k-values in the square-root of Equation (9) are 
possible to evaluate if the expression under the square 
root must be square of polynomials. This is possible if its 

discriminant is zero. Thus, a new eigenvalue  equation  
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for the second-order differential equation becomes: 
 

n

n(n 1)
λ λ nτ (s) σ (s)

2


     ,    (n 0,1,2,...)       (10) 

 
Where τ (s) is as defined in Equation (7) and on 
comparing Equations (9) and (10), we obtain the energy 
eigenvalues. 
 
 
SOLUTIONS OF THE KLEIN-GORDON EQUATION For 
l≠0   
 
The three-dimensional radial arbitrary l-state K-G 
equation with position-dependent mass is written as 
follows (Greiner, 2000): 
 

  
2

22 2 2 2

2 2 2 2

d U(r) 1 ( 1)
E V(r) Mc S(r) c U(r) 0

dr c r


       

    (11) 

 
Where M is the rest mass, E is the relativistic energy, c is 
the speed of light ,ħ is the reduced Planck’s constant, V 
(r) and S(r) are vector and scalar potentials, respectively.  
From Equation (11), we have 
 

 
2

2 2 4 2 2 2 2 2

2 2 2 2

d U(r) 1 ( 1)
E M c 2EV(r) 2Mc S(r) V (r) S (r) c U(r) 0

dr c r


       

    

(12) 

 
Vector and scalar the potential by investigation modified 
Eckart potential plus Hulthen potential are respectively 
written as: 
 

0

2 r

v
V(r) coth( r)

(1 e ) 
  


, 0

2 r

s
S(r) coth( r)

(1 e ) 
  


      (13) 

 
Where s0, v0, the potential depth, and α are constant. We 
emblazon the position-dependent mass in the specific 
form: 
 

0 1 2 2 r

1
M(r) m m coth( r) m

(1 e ) 
   


              (14) 

 

If we define a new variable U(r) rR(r) and substituting 

it in to Equation (12), we obtain the radial equation of 
Klein – Gordon equation as 
 


2

2 2 4 2 2 2

2 2 2

d R(r) 2 dR(r) 1
E M c 2EV(r) 2Mc S(r) V (r) S (r)

dr r dr c
        

2 2

2

( 1)
c R(r) 0

r


                                (15) 

 
We can evaluate the new improved approximation 
scheme by using the following pekeris-type 
approximation that is valid for α ≤ 1, (Hill, 1954).  

 
 
 
 

2

2 2 r 2

1 4

r (e 1) 





                                             (16) 

 

Using the transformation s (1 exp( 2 r))     Equation 

(15) brings into the form 
 


   

 

2 22
2 0 0 0

2 2 2 2 2 2

2 22 2 2 2 2 2
1 2 0 1 22 4 0

0 2 2 2

2 2 22 2 2

0 0 0 0 11 2

2 2 2

2 s 2E 2 sv 2(2 s)v 2Evd R(r) ( 4 ) dR(r) 1
E

dr s dr c s s s s s

m c (2 s) m c 2m c m c (2 s) m c 2 s s
m c

s s s s

2(2 s)s 2m c (2 s) 2m c s 2m c s2m c (2 s) 2m c (2 s)

s s s s s

  
      

               

   
    



0

2

2 2
2 22 0

2 2

(2 s)

s

2m c s 4 ( 1)
c R(r) 0

s s



 
  

  (17) 

 
We can write the Equation (17) as summarized: 

 

2

2

( 4 ) 1
R R A s B s c R 0

s s

 
                        (18) 

 
Where the parameters A', B' and C' are defined as 
follows: 
 

 
 2

2 2

1
A { E 2E }

c
      

 

2 2

1
B (aE b)

c
  

                                                
(19a) 

  

 

      
2 2 2 2 2 2 2

0 0 1 2 1 2 02 2

1
C v 2 s 2 2m c m c 2m c m c 2s 4 4 ( 1)

c
              

 
And, 
 

  2 2 2 2

0 1 0 1m c m c m c m c 2    
  
 

 0a 4 2v  
                                                      

(19b) 

 
      2 2 2 2 2 2 2

1 1 2 0 0 0 2 0 0 0 2b 2m c m c m c 2m c s 4 2m c m c s 2 2 s v m c             

 
Now we use the NU method to solve the Equation (18). 
Comparing Equation (1) and (18) we get  
 

4    ,  (s) s  ,  2(s) A s B s C                           (20) 

 
Substituting the expressions above into Equation (9), we 
have the function π(s) as 
 

 
1/2

(s) 1 A s (1 C )       
 

 for k B 2 A (C 1)   
        

 (21) 

 
With respect to Condition of Equation (8), the best choice 
for k and π as follows: 



 
 
 
 

 
1/2

(s) 1 A s (1 C )       
 

 for k B 2 A (C 1)             
(22) 

 

By following the equation
 n    in the NU method, we 

have the energy eigenvalues equation 
 

 2 1/2 2B [(2n 1) 2(1 C ) ] ( A )                                 (23) 

 
And use Equation (19a) and Equation (23) 
 

2 2 2 2 2 2a E b 2abE c (E 2E )       , 

1/2 2[(2n 1) 2(1 C ) ]                            (24) 

 
By solving the Equation (24) the exact energy 
eigenvalues of the K-G equation for this system are 
derived as: 
 

2 2 2 2 2 2 2

n, 2 2 2

(ab c ) c [(1 )( c a ) (a b)]
E

2( c a )

           


 
 (25) 

 
Let us now find the corresponding eigenfunctions for this 
system. Firstly, we find the first part of the eigenfunctions 
by Using Equation (4)  
 

1/2[1 (1 c ) ] 1/2(s) s exp[ ( A ) s]
                                     (26) 

 
Secondly, we calculate the weight function as 
 

1/21
2[2 (1 c ) ]

1/22(s) s exp[ 2( A ) s]
  

                         (27) 

 
Which the second part of the wave function gives by 
Equation (5) as 
  

1/2 1/21 1n
2[2 (1 c ) ] n 2[2 (1 c ) ]

1/2 1/22 2
n n n

d
y B s exp[2( A ) s] [s exp[ 2( A ) s]]

ds

        

               (28) 

 
By using terms of the generalized Laguerre polynomials 

x k n
k x n k

n n

e x d
L (x) (e x )

n! dx


 

(Auvil and Brown, 1978)   

 

and using Equation (2) we have 
 

1/2[1 (1 c ) ] 1/2 k 1/2

n nR(s) B s exp[ ( A ) s]n!L (2( A ) s)
         (29) 

 
By using U(s) = rR(s) we find 
 

1/ 2[1 (1 c ) ] 1/ 2 k

nU(r) Nr[1 exp( 2 r)] exp[ ( A ) (1 exp( 2 r))]n!L
            (30) 

 
Where N is the normalization constant. We have obtained 
the energy eigenvalues and the wave function of the 
radial K-G equation for modified Eckart potential plus 
Hulthen potential with scalar and vector potential for l≠0. 
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A SOME SPECIAL CASES 
 
Here, we consider some special cases of interest if we 
consider spatially independent mass and spin symmetry 
we have 
 

0M(r) m , 
1 2m m 0                                          (31) 

 

V(r) S(r) , 
0 0v s                                                 (32) 

 
We have from Equation (19a) and (19b) t he  following 
equations. 
 

2A E 2E     , 
0 0m (m 1)    

B a E b    , 
0a 2(v 2)    , 

0 0b 2m (v 2)               (33)  

 
2C 4 ( 1)    

 
 
And we have energy eigenvalues by  
 

2

0 0 0
n, 2

0

(4m (2 v ) ) (m 1)
E

4(2 v )

     


 
, 

1/2 2[(2n 1) 2(1 C ) ]                                     (34)  

 
Thus, the wave function can be written as, 
 

1/ 2[1 (1 c ) ] 1/ 2 k

nU(r) Nr[1 exp( 2 r)] exp[ ( A ) (1 exp( 2 r))]n!L
                  (35)  

 
We have obtained the energy eigenvalues and the wave 
function of the radial K-G equation for independent mass 
and spin symmetry for l≠0. 
 
 
CONCLUSIONS 
 
In this paper, we have discussed approximately the 
solutions of the Klein - Gordon equation for modified 
Eckart potential plus Hulthen potential with scalar and 
vector potential for l≠0 and position-dependent mass. We 
can obtain the energy eigenvalues and the wave function 
in terms of the generalized Laguerre polynomials 
functions via the Nikiforov-Uvarov method. We have also 
considered the limiting cases of spin symmetry and 
position-independent mass to obtain the energy 
eigenvalues and the wave function. We can conclude that 
our results are interesting for experimental physicists, 
because the results are exact, more general and useful to 
study nuclear scattering, nuclear and particle physics. 
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