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INTRODUCTION  
 
Most of phenomena in nature are described by nonlinear 
differential equations. So scientists in different branches 
of science try to solve them. But because of nonlinear 
part of these groups of equations, finding an exact 
solution is not easy. Different analytical methods have 
been applied to find a solution to them. For example, 
Adomian (1986, 1988, 1989, 1990, 1991, 1994a, b) has 
presented and developed a so-called decomposition 
method for solving algebraic, differential, integro-
differential, differential-delay and partial differential 
equations. Recently, a modification of ADM was 
proposed by Wazwaz (1999). The modified 
decomposition method needs only a slight variation from 
the standard ADM and has been shown to be 
computationally efficient. We consider the following 
equation:  
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The   modified   decomposition  method  was  established  
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based on the assumption that the function f can be 
divided into two parts and the success of the modified 

method depends on the proper choice of the parts 1f  and

2f
. The TSADM (Lou, 2005) over comes this difficulty 

and explains how we can choose 1f  and 2f
properly 

without having noise term (Adomian and Race, 1992). 
Using Laplace transform in ADM (LDM) proposed by 
Khuri (2001, 2004) for the approximate solution of a class 
of nonlinear ordinary differential equations, other 
scientists have used this method for solving some 
important equations (Yusufoglu, 2006; Elgazery, 2008; 
Kiymaz 2009; Khan and Gondal, 2010; Hussain and 
Khan 2010). 

In this work we are interested to use Laplace transform 
in TSADM (LTSDM). We illustrate this method with the 
help of several examples and compare LDM and LTSDM 
with each other. 

 
 
DESCRIPTION OF LTSDM  
 
Here,the purpose is to discuss the use of Laplace 
transform   algorithm   in   TSADM   for   solving  different  



 
 
 
 
equations. We consider general inhomogeneous 
nonlinear equation with initial conditions given below: 
 

 
),,( txhNuRuLu =++

                                         (1) 
 
where L is the highest order derivative which is assumed 
to be easily invertible, R is a linear differential operator of 
order less than L, Nu represents the non-linear terms and 
h(x,t) is the source term. First we explain the main idea of 
LDM:  

The methodology consists of applying Laplace 
transform on both sides of Equation (1) 
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Using the differential property of Laplace transform and 
initial conditions we get 
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The next step is representing solutions as an infinite 
series  
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and the nonlinear operator is decomposed as 
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where nA
 is Adomian polynomial (Wazwaz, 2002a) of 

nuuu ,..., 10  and can be calculated by the formula 
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Substitution of Equations (5) and (6) in Equation (4) 
yields  
  

 
n

n

i

i s

xu

s

xu

s

xu
txu

),(
...

),(),(
),(£

000
1

2
0

−∞

=

++
′

+=







∑

 

Jafari et al.        4103 
 
 
 

[ ] [ ],),(££),(£ txh
s

A
s

txRu
s n

i

inn

111

0

+







−− ∑

∞

=                  (8) 
 
On comparing both sides of Equation (8) and by using 
standard ADM we have: 
 

 
[ ] [ ] ),(),(£

),(
...

),(),(
),(£ sxktxh

ss

xu

s

xu

s

xu
txu

nn

n

=+++
′

+=
−

1000
1

20

               (9) 
 

 
[ ] [ ] [ ],£),(£),(£ 001

11
A

s
txRu

s
txu

nn
−−=

                   (10) 
 

 
[ ] [ ] [ ].£),(£),(£ 112

11
A

s
txRu

s
txu

nn
−−=

                   (11) 
 
In general, the recursive relation is given by  
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Applying inverse Laplace transform to Equations (9 to 
12), our required recursive relation is given by 
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where G(x,t) represents the term arising from source term 
and prescribed initial conditions. 
 Now we illustrate TSADM. By applying the inverse 

operator 
1−

L  to h(x,t) and using the given conditions we 
have: 

 

)),,(( txhL 1−+= φϕ
                                                    (14) 

 
where the function φ indicates the terms arising from 
using the given conditions, all are assumed to be 
prescribed. For using TSADM we set 
 

 
,... mϕϕϕϕϕ ++++= 210                                        (15) 

 

where mϕϕϕ ,...,, 10  are the terms arising from applying 
inverse operator on the source term h(x,t) and using the 
given conditions. We define  
 

 
,... skku +++= ϕϕ0                                                  (16) 

 

where k = 0,1,...,m, s = 0,1,...,m-k. Then we verify that 0u

satisfies the original Equation (1) and given conditions by 
substituting. Once the exact solution is  obtained  we  are  
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done. Otherwise, we go to step two. In second step we 

set 
ϕ=0u

 and continue with the standard ADM: 
 

0
11

1 ≥−−= −−
+ kALuRLu kkk ),()(

                  (17)  
 
By comparison with ADM and TSADM, it is clear that 
TSADM may provide the solution by using one iteration 
only and does not have the difficulties arising in the 

modified method. Further, the number of terms in ϕ , 
namely m, is small in many practical problems. So, 
applying TSADM will not be time consuming. Our 
purpose in this paper is to combine the LDM and 
TSADM. So, we should divide G(x,t) into its components 
and check the required conditions for property choice of 

),( txu0 . After applying inverse transform, by TSADM 
criterion we can find the exact solution of our equation 
after one iteration.  
 
 
APPLICATIONS  
 
To illustrate LTSDM we now consider some examples.  
 
Example 1 
 
Consider the nonlinear partial differential equation 
(Wazwaz, 1999) 
 

 
,

2
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with initial conditions  
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Applying the Laplace transform we have: 
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Applying inverse Laplace transform we get  
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As we know the solution is in infinite series form:  
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and nonlinear term is handled with the help of Adomian 
polynomials given as follows: 
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By substituting Equations (21) and (22) in (20) we have: 
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By using LDM we have:  
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By this recursive relation we can find other components 
of the solution. 
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As we can see for finding next components large amount 
of computation should be done. Now using the LTSDM 
scheme gives: 
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It is obvious that 1ϕ
 does not satisfy Equation (18). By 

choosing 00 ϕ=u
and by verifying that 0u

 justifies 
Equation (18), the exact solution will be obtained 
immediately and we have: 
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As we can see, finding the solution is not possible after 
one iteration and we have to calculate the components 
like standard ADM. 
 
Example 2 
 
We now consider another nonlinear partial differential 
equation (Wazwaz, 2002b) 

 
,

),(
2

2

uxuu
x

yxu
yyx +−=−

∂

∂

                                     (32) 
 
with initial conditions 
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Applying the Laplace transform we get  
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By applying inverse transform we get  
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Likewise as in the previous example, we have  
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By using LDM:  
 

,
!

sin),(
3

3

0

x
yxyxu −+=

                                         (36)  
 

 [ ] ,0,£
1

£),(
2

1

1 ≥





+= −

+ nAu
s

yxu nnn          (37) 



4106          Int. J. Phys. Sci. 
 
 
 
by using the previous recursive relation 
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It is clear that finding the exact solution is time consuming 
but by using LTSDM:  
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case we have: 
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where
)(uAn  is Adomian polynomials and representing 

the nonlinear term of Equation (29).  
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If we select 
xu =0 , then  
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By this choice for 0u
we find the solution after two 

iterations. So, LTSDM works better and has less amount 

of computation. As we can see 2ϕ
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As we can see it is necessary to calculate more 

components of 
),( txu

 to get the exact solution. 
 
 
Example 3 
 
Consider the system of inhomogeneous partial differential 
equations (Wazwaz, 2003) 
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with initial conditions  
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Applying the Laplace transform on both sides of Equation 
(53) we get 
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For second equation  
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by using the previous recursive relation 
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For finding the solution we should calculate other 

components of 
),(),,( txvtxu
 and obviously it is time 

consuming. Now we can see by using LTSDM, getting 
the solution is very simple. For first equation we have 
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Same as previous examples, by choosing 
xu −== 00 ϕ

 

and 
xv =′= 00 ϕ

 that do not justify Equation (53) we will 
have the same size of computation with standard ADM.  
 
 
Conclusions  
 
In this work, we have carefully combined two-step 
Adomian decomposition method with Laplace transform. 
In the three illustrated examples we showed that LTSDM 
consists of three steps: the first step was applying 
Laplace transform on our equation and then inverse 
transform, the second step was verifying that the zeroth 
component of the series solution included the exact 
solution. If yes, we are done. Otherwise, we should go to 
the third step and continue with the standard ADM. The 
obtained results in examples indicated that LTSDM was 
feasible, effective and we do not have the ”noise term”. 
The LTSDM overcomes the difficulties arising in the 
modified decomposition method established in (Wazwaz, 
1999).The power of LTSDM depends on the proper 

choice of 0u
and 1u

 and the occurrence of the exact 
solution in the zeroth term. If the exact solution exists in 
the   zeroth   component   LTSDM   requires   much  less  



 
 
 
 
calculation in comparison with LDM. If not, LTSDM 
requires only a little effort than LDM. 
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