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In this paper, the Langevin equation is used to solve hemoglobin aggregation in patients of sickle cell 
anaemia. The resulting second order nonlinear differential equation is solved to obtain a sigmoid 
deformation behavior. The deformation and the absorbance satisfy the Verhulst Model of the first order 
which is well-known in population dynamics. A time-dependent general expression is obtained for the 
coefficient of viscosity and the elastic modulus that characterize the aggregation of the sickle 
hemoglobins. Finally, the use of a Taylor second order approximation showed the viscoelastic and the 
elasto-thixotropic properties of the sickle hemoglobins polymer. 
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INTRODUCTION 
 
Sickle cell disease is characterized by a molecular 
hemoglobin defect which causes the polymerization of 
deoxygenated hemoglobins and results in reduced ery-
throcyte flexibility, deformation and numerous rheologic 
effects. Sickle cell anaemia produces an abnormal type 
of hemoglobin called hemoglobin S (HbS), which has less 
oxygen-carrying capacity. It results when the amino acid 
valine is substituted for normal glutamic acid in the sixth 
amino acid position of the beta-globin chain of hemoglo-
bin from both parents giving the molecule the abnormal 
structure (α2β2

S). When hemoglobin S is exposed to low-
oxygen states, it crystallizes, distorting the red blood cells 
into a deformation. The abnormal cells are fragile and 
easily destroyed. They cannot pass easily through tiny 
blood vessels and block flow to various organs and 
tissues, causing a vaso-occlusive sickle cell crisis that 
can be life-threatening. 

The mechanism of the polymerization of the molecules, 
which is the main cause of the pathology, is not clearly 
known. Several authors have been working on this 
problem. In 1974, Hofrichter, Eaton and Ross studied the 
polymerization mechanism associated with the kinetics of  
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sickle cell gelation. Dejardin et al. (1985) proposed a 
mathematical model for the polymerization of Deoxy-
hemoglobin S molecules. However, in their model they 
have not considered the elastic properties of the sickle 
hemoglobin polymers. In order to improve the previous 
model, Olatunji (1989) proposed to include the elasticity 
properties of the blood. The result was interesting but, in 
his model, the coefficient of viscosity and the coefficient 
of elasticity were constant. Several other authors (Morris 
et al., 2009) pointed out in their article the use of several 
different equations to describe the physical properties of 
the sickle cell hemoglobin during the gelation process. In 
this paper we make use of the well-known Langevin 
equation to solve the sickle cell aggregation dynamic. We 
established the expression of a time-dependent coeffi-
cient of viscosity and a time-dependent coefficient of 
elasticity. These coefficients are then more general than 
the one expressed by Dejardin et al. (1985) and by 
Olatunji (1989). The Langevin equation has been used in 
the past (Park H., 2001) for tracking each particle making 
up an aggregate in a Brownian dynamic motion of 
particles. In their paper, Park et al. (2001) consider the 
motion caused by thermal forces and the electrostatic 
forces. In this paper, we consider hemoglobin molecules 
as particles undergoing motion due to the kinetics force 
proportional to the square of the speed of the particles, 
the spring force proportional to the deformation and the 
friction force proportional to the speed of  the  particles  of  



 
 
 
 
hemoglobins S. 

In other research (Kovalchuk et al., 2008) computer 
simulations of colloidal suspensions based on the 
Langevin equation helped obtain quantitative information 
on clustering in colloidal suspensions. In their paper, 
Monti et al. (2009) has proposed a model based on 
Langevin equation, to measure the rate of motion for cells 
that aggregate. There’s no doubt that the Langevin 
equation can be applied to sickle cell hemoglobin 
molecules flowing in the blood and tending to aggregate.  
 
 
MATERIALS AND METHODS 
 
The experimental plots of the absorbance measured in turbidity on 
deoxy-hemoglobin S solutions at various concentrations in buffer 
phosphate and at a given pH give a sigmoid (Poyart et al., 1981; 
Morris et al., 2009)  

Studying the kinetic aggregation of the deoxy-hemoglobin S, 
Dejardin et al. (1985) established the expression of the absorbance 
that characterizes the time evolution of the average number of 
molecules of deoxy-hemoglobin S that aggregate. The expression 

of the absorbance then was given by  
from which it is easy to obtain the following differential equation: 

where expresses the viscous 
properties of the blood. The insufficiencies of the model 
represented by the previous equation were studied by Olatunji 
(1989) who used the dynamical equation 

, where the last term of the left side is 
the spring force. This equation indicates that each molecule of 
deoxy-hemoglobin S undergoes a set of constraints such as the 
viscosity of a viscous fluid in a non turbulent regime, the constraint 
of inertia during the polymerization and the elastic constraint of 
modulus G.  

As we can see, in the previous model used by Olatunji (1989), 
the coefficient of viscosity and the elastic modulus are considered 
constant. However, as we know, the deformation Q(t) is a 
rheological variable proportional to the Absorbance. In this work, 
knowing that Brownian motion occurs during the polymerization 
process, we make use of the Langevin equation in order to better 
explain the motion of the molecules of deoxy-Hemoglobin S. We 
therefore consider the molecule of Hemoglobin S as a particle of 
mass m. This allows us to obtain a second order differential 
equation similar to the one used by Olatunji and Dejardin with the 
exception that this equation based on the Langevin equation has a 
different physical meaning and uses the fact that a Brownian motion 
occurs during the polymerization process. Also, the evolution 
equation obtained has been solved through an appropriate change 
of variables and the use of physical boundary conditions. The 
expression of the time-dependent deformation Q(t) and absorption 
A(t) can then be obtained.  

It is interesting to introduce in the model a delay term 
representing the shear rate used successfully by Cushing et al. 
(1977). In one hand the integro-differential equation obtained 

  can be changed into a Volterra 
integro-differential equation. In this paper, we solved the previous 
differential    equation    by   using   some   kernel   )( stk −   used  
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successfully in mathematical biology. We found also a general 
expression for the coefficient of the viscosity and the elastic 

modulus. The case 03 =a  represents a special case studied by 

Olatunji (1989). After performing the Taylor approximation of the 
second order, we found an explicit form of the population of deoxy-
hemoglobin S molecules as a function of time. We can therefore 
retrieve the viscoelastics and the elasto-thixotropic properties of the 
blood.  
 
 
RESULTS AND DISCUSSION 
 
In order to find the equations for the dynamics of the 
polymerization of deoxy-hemoglobin S molecules, let us 
assume m  and )(tQ are repectively the mass and the 
deformation of a molecule of hemoglobin in random 
motion, the Brownian motion occurs and we can apply 
the Langevin equation: 
 

                                    
   
The force exerted on the particles of hemoglobin is given 
by: 
 

                                       
and the friction force exerted on the hemoglobin S in 

motion, 
dt
dQγ−  with γ  the coefficient of friction. 

)(tkQ−  is the spring force and k  the spring constant. 

The deformation )(tQ is the extra stretch of the 

polymer with respect to the initial position 0x  where the 

velocity, 0v , is zero. 
We then have the following evolution equation: 
 

    
where ω  is the frequency of vibration of the polymer and 
η , the coefficient of friction per unit of mass. 

We can now find the solution of the evolution equation 
in a steady regime using the change of variable: 

 

 
 
We then transform the evolution equation (3) in the form 
of a differential equation of Riccati, that is: 
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Figure 1. Evolution of the Deformation as a function of time: the deformation increases until a maximum 

asymptotical value ∞Q . The plot of the deformation gives a sigmoid (Lesecq et al., 1997). 
 
 
 

1f and 2f are the roots of the quadratic equation (5). 
The boundary conditions that satisfy the dynamics of 

the system are 00
)(lim ftf

t
=

→
 and 0)(lim =

+∞→
tf

t
. 

Indeed, when the polymer is formed over a long period of 
time, the system of the hemoglobin molecules velocity is 
zero; the growth has reached its maximum and the 
aggregation frequency can be written: 
 

 
       
where (α , l, ν ) are the coupling parameters of the 
rheological constants with the following definitions: 
 

 
 

 
 
Finally, using equations (6), (7) and (8) we obtain the 
variation of Q  as a function of time: 
 

 
 
with the condition ∞∞+→

= QtQ
t

)(lim . 

RESULT 1  
 

The Graph of the time-dependent deformation )(tQ gives 
a sigmoid (see Figure 1). 

Moreover, using the Beer-Lambert Law it can be 
proved that the absorbance is proportional to the 
deformation. Therefore we can definitively write the 
absorbance, )(tA  measured in turbidity in the following 
form: 
 

 
 

which gives the new expression of the parameter l  as 
  

 1
0

−��
�

�
��
�

�
= ∞

ν

A
A

l ,  

 

where 00 ≠A  and 0≠∞A  are respectively the values of 

the absorbance, )(tA , at t = 0 and at t = ∞. Using 
equation (10), it is possible to get the following differential 
equations for the variable )(tQ and the aggregation 

frequency, )(tf : 
 

 



 
 
 
 
this is a first order deterministic differential equation; 
 

 
   
which is a nonlinear differential equation of second order; 
 

fff αν −= 2� ,                                                    (13) 
        
 
which is a differential equation (Riccati type) for the 
aggregation frequency, )(tf . 
 
Finally we get for the absorbance, )(tA  a similar equation 
to (11) which is the following deterministic differential 
equation: 
 

 
 

where 
ν
α=1a  and ν

ν
α −

∞= Aa2  with 0≠ν . 

 
 
RESULT 2 
 
The deformation in equation (11) and the absorbance in 
equation (14) satisfy the Verhulst Model of the first order 
(Hallam et al., 1986). 

To better describe the characteristics of the model in 
terms of molecular dynamics we will now introduce the 

dynamical equation with a delay term 
dt
dγ

  homogeneous 

to a shear rate (Cushing, 1977): 
 

 
 

Where  
 
Finally the following equation represents the mathema-
tical model for the kinetics aggregation of the 
deoxyhemoglobin S molecules:  
 

 
 
The kernel )( stk −  is a memory function (Cushing, 
1977) called the heredity kernel. An integro-differential 
equation  of  Volterra  type  can  be  obtained  by   setting  
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)()( tAtp ν= . Therefore, 
 

 
 
The integro-differential equation (17) becomes: 
 

 
                            
with 321 acabaa ννν ===  . 
 
In equation (19) a  represents the intrinsic growth rate r 
from the Malthusian model and b represents K/r where K 
is the carrying capacity or the population size that the 
available resources can continue to support in the 
Verhulst model. The condition 0=c  in equation (19) 
represents the Verhulst model (Zwanzig, 1973). We will 
now use some examples of kernels k(t) used successfully 
in mathematical biology:  
 
First example: constant=1= k(t)  
 
In this case, the general dynamical model (19) reduces to 
the Volterra model: 
 

 
                                        
We observe that the shear rate takes its simplest 
expression, that is: 
 

 
                                           

Second example: Tte
T

tk /1
)( −=  

 
In this example, T > 0 and has the dimension of time and 
 

 
                                                       
k(t) is the first generic kernel (Cushing, 1977) also called 
moderate kernel. Qualitatively, the model represents a 
moderate delay. The kernel decreases exponentially. 
This kind of kernel corresponds to the viscoelastics 
rheological behavior of Voigt-Kelvin materials and 
Maxwell simple fluids. Another example of a moderate 
kernel is shown in Figure 2. 

We now find the mathematical model for the viscosity 
coefficient )(* tα  and the elastic modulus )(* tG , we use  
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Figure 2. Variation of a moderate kernel k(t) = )
80

exp(
6400

tt − . 

 
 
 
the general dynamical model represented by equation 

(17) with the shear rate , we can 
study in detail the Volterra integro-differential equation 
given by: 
 

 
 
It is possible to get from (23) an equation of evolution of 
second order which involves the molecular interaction 
forces of the form: 
 

 
                                
where �*(t) is a new time-dependent friction coefficient 
and G*(t) is a new induced elastic modulus of the elastic 
force with the following definitions: 
 

                                      

 
 
It can be observed that if 03 =a , equations (25) and (26) 
lead to previous models (Dejardin et al., 1985) where the 
elastic modulus, *G , was zero. As a result, equations 
(25) and (26) represent a more general form of the 
coefficients of viscosity and the elasticity. 

RESULT 3  

The expressions  and 
 

 give respectively the 
general form of the viscosity coefficient and the elastic 
modulus.  

We will now try to obtain the solution of the Volterra 
model in molecular dynamics by making the appropriate 

change of variable �=
t

dsspq
0

)( in equation (20).  

Using the initial conditions 0)0( =q  and 0)0( pp =  for 
the initial population, the solution of equation (20) can 
then be put in implicit form as follows: 

 

 
       
with 

 
 
For bap /0 < , )(qω  presents a maximum and tends to 

zero (extinction); but for bap /0 >  there is no maximum 

for )(qω ; however, there’s an extinction of the 
population.  This   paper  considers  all  values  such  that  
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Figure 3. Evolution of the population of Hemoglobins as a function of time for 

01 <q  and 02 >q  
 
 
 

bap /0 <  where there is both maximum and extinction. 
In such conditions, the coordinates of the maximum are 
given by: 
 

 
                               

                        
 
We can also find the explicit solution to the integro-
differential equation by Taylor’s approximations. The first 
order approximation consist of setting  
 

 
  
Therefore we have directly p  as a function of time t: 
 

 
 

with  
 
Equation (32) represents the Malthusian model in 
population dynamics which, as we know, is not quite 
realistic. In the second order approximation we use, 
 

                                                       

Equation (27) becomes: 

 
 
Equation (35) can be put in the equivalent following form: 
 

 
                                     

where . 
 
The discriminant of equation (36) is given by 

0
2 4Bp+=∆ λ  and p  can be written: 

  

  
 

where 1q  and 2q  are the roots of the quadratic equation 
(36).  

It is then possible to find )(tq  and )(tp explicitly as 
follows: 
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Figure 4. Variation of the viscoelastics coefficient with respect to time. Here the 
viscosity decreases over time and shows the elasto-thixotropic behavior.  

 
 
 

 
 
Figure 5. Variation of the viscoelastics coefficient with respect to time. In this graph, the 
viscosity increases over time showing the visco-elastic behavior. 

 
 
The study of the variations of p(t) proves that the second 
order approximation is more interesting (see Figure 3). 
The components of the maximum of p(t) in the previous 
expression are given by: 
 

 
                               
The   analytical  expression  of  the  rheological  functions  

�*(t) and G*(t) can now be written as follows: 
 

)()0()(
1

3** tq
a
a

t
ααα −= .                              (41)

 
 

 
                                       
with the following definitions: 



 
 
 
 

 
 
RESULT 4 
 
The Taylor second order approximation shows the 
viscoelastic (increasing part of the graph) and the elasto-
thixotropic (decreasing part of the graph) properties of the 
blood. 

In this model it is interesting to look for the viscoelastics 
and the elasto-thixotropy behavior (Quemada, 1984) of 
the blood. These properties can be found by considering 
the hypothesis of a closed system with the shear rate, 
 

 
 
Therefore the dynamical equation becomes: 
 

 
                                 
with the following modifications: 
 

 
 

where  
2

3* )0(
a
a+=αα   and 

2

31* )0(
a
aa

G = . 

 
The coefficient of viscosity can then be written: 
 

 
                                             
with the following definitions: 
 

 and  
 

 
 
Figure 4 and 5 show the variation of the elasto-thixotropic 
and the viscoelastic behaviors of the sickle cells polymer. 
 
 
Conclusion 
 
This study shows that the use of Langevin equation to 
describe the polymerization of the deoxy-hemoglobin S  
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molecules in sickle cell anaemia is relevant. The graph of 
the time-dependent deformation of the molecules of 
deoxy-hemoglobins S gives a sigmoid. It is also shown 
that the verhulst model is satisfied by the deformation 
and the absorbance. Moreover the use of the Langevin 
equation helps to describe the mechanical properties, 
(visco-elasticity and elasto-thixotropy), of the aggregation 
of sickle hemoglobins S molecules. 
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