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In this paper, we dealt with one problem in designing a production line, which is the problem of buffer 
allocation. A selection approach was developed and tested for selecting the best design for a huge 
number of alternatives set. The proposed selection approach is a combination between cardinal and 
ordinal optimization. The algorithm involves four procedures; ordinal optimization, optimal computing 
budget allocation, subset selection and indifference-zone. The purpose of this paper is to use the 
proposed selection approach to find the optimal allocation of buffers that maximizes the mean 
production rate (throughput) in short, unbalanced and reliable production lines. Numerical results are 
presented to demonstrate the efficiency of the selection algorithm in finding the best buffer profile 
where its mean production rate is at its maximum. 
 
Key words: Buffer allocation problem, production lines, ranking and selection, ordinal optimization, optimal 
computing budget allocation, optimization. 

 
 
INTRODUCTION 
 
Buffer allocation is important in the optimization problem 
involved with a production line. In buffer allocation 
problem (BAP), the objective is to allocate 𝑄 buffer 
spaces (slots) amongst the 𝑞 intermediate buffers 
between 𝑞 + 1 machines in a production line, in order to 
meet some specified purpose. There are different BAP 
and they depend on the chosen objective function. 
Particularly, the performance measures for a production 
line are the mean production rate and the average work 
in process. The concern is to allocate 𝑄 buffer spaces, 
over 𝑞 buffers in order to maximize the mean production 
rate. 

The BAP is a difficult optimization problem because it is 
difficult or impossible to calculate the exact value of the 
objective function for a given allocation. Thus, the 
objective function for this optimization problem needs to 
be estimated (Chaharsooghi  and  Nahavandi,  2003).  At  
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the same time, the BAP is involved with a huge number 
of feasible allocations with respect to the total number of 
buffer spaces and the number of stations in the 
production line. Assume that there are 𝑄 buffer spaces 
available that need to be allocated over the 𝑞 buffers, 

then there are  
Q + q − 1

Q
  different alternative designs. 

Each alternative is called “buffer profile”, where it 
represents a unique combination of storage allocation 
and with a potential to result in a different output level of 
the line. For example, if the number of buffer spaces 
𝑄 = 18 and the number of buffers 𝑞 = 5 then there are 
7315 different buffer profiles. The objective would be to 
select from this huge set of alternatives the best buffer 
profile that has the maximum mean production rate. 

In this paper, the selection approach as proposed by 
Almomani and Abdul Rahman (2012) is used to solve the 
BAP by selecting the best buffer profile where its mean 
production rate is at its maximum. Almomani and Abdul 
Rahman (2012) proposed a new selection approach that 
selects a good design for large scale  problems  by  using  



 
 

414          Int. J. Phys. Sci. 
 
 
 

 
 
Figure 1. A production line of 4 machines and 3 buffers. 

 
 
 

 
 
Figure 2. A production line with 5 machines, 12 buffer spaces and a buffer profile is (2 3 4 3). 

 
 
 
the ordinal optimization and ranking and selection 
procedures. Their selection approach is a combination of 
four procedures; ordinal optimization (OO), optimal 
computing budget allocation (OCBA), subset selection 
(SS) and indifference-zone (IZ). The goal of their 
selection approach is to select a good design from a 
huge number of alternatives with high probability. The 
first step in this approach, involved with the OO to select 
a subset that overlaps with the set of the actual best 𝑚% 
design. Then, OCBA technique is used to allocate the 
available simulation samples in a way that maximize the 
probability of correct selection (𝑃(𝐶𝑆)). This is followed by 
SS procedure to get a smaller subset that contains the 
best design among the subset that is selected before. 
Finally, the IZ procedure is used to select the best design 
among the survivor designs in the previous stage. 
 
 
BUFFER ALLOCATION PROBLEM 

 
Production designs are often organized with a queuing 
workstations or machines that are connected in a series 
and are separated by buffers. Figure 1 represents a 
production line of 4 machines, and this line is called a 
flow line, or a transfer line. Clearly in Figure 1, the circles 
represent machines and the squares represent buffers. 
The job moves in the direction of the arrows, from source 
inventory to the first machine for service, then to the first 
buffer where it waits until the second machine become 
available (empty) then it moves to the second machine, 
etc. until it finishes all the services (stations) in the queue 
and leaves the line. 

The importance of buffers in the production designs 
comes from the fact that job flow may be affected by 
machine failures or by other variables during processing. 
Therefore, buffers are inserted between machines to limit 
the spread of disruptions, lessen congestion, decrease 
the negative effect of blocking and of course all these  will 

cause an increase in the efficiency of the line. However, 
inserting buffers in the production line requires additional 
capital investment and floor space, which is expensive. 
Therefore, the challenge here is how to determine the 
buffer size or how to allocate the buffer spaces in a way 
that will achieve the desired performance. Note that, the 
buffers cannot be too large because; an increase in the 
buffer size usually will increase the total of work in 
progress, time to the customer, inventory and capital. The 
work-in-process inventory and capital costs incurred will 
outweigh the benefit of increasing productivity, so the 
buffers may be inadequate. On the other hand, the 
buffers cannot be too small because the machines will be 
untapped to meet demand. 

There are two types of BAP; short and long lines as 
presented in Papadopoulos et al. (2009). The short line is 
a production line with up to 6 machines with a maximum 
of up to 20 buffer spaces, whereas the larger lines is 
otherwise. Furthermore, the BAP can be defined as 
balanced and unbalanced line, where the balanced line is 
a line with equal mean service time at each of the 𝑞 + 1 
machine. Production line also, can be defined as a 
reliable or unreliable line, where in reliable line; each 
machine of the line cannot fail. An illustration of the 
definitions is given in Figure 2. 

Figure 2 shows a short production line with 𝑞 + 1 = 5 
machines represented by 𝑀0 ,𝑀1 ,𝑀2 ,𝑀3 ,𝑀4, the inter-
mediate buffers are represented by 𝐵1 , 𝐵2 , 𝐵3 , 𝐵4 with 𝑞 =
4, with the total buffer spaces 𝑄 = 12 and the current 
buffer allocation (buffer profile) is (2 3 4 3). Clearly, the 
first machine (𝑀0) has unlimited supply of jobs, and the 
last machine (𝑀4) has unlimited space, which means that 
(𝑀4) is never been blocked. Furthermore, the second 
machine (𝑀1) is currently been blocked, (𝑀2) has failed 
and is under repair and (𝑀3) is starved. Note that, each 
job enter the design from the first machine, passes in 
order through all machines and the intermediate buffer 
allocations and exits the line from the last machine. If  the 



 
 

 
 
 
 
machine completed its service and the next buffer has 
space available, then the job will be passed on, and the 
machine will receive a new job from its input buffer. If the 
buffer has no jobs then the machine will remain empty 
until a new job is placed in the buffer. This type of 
production line is subject to manufacturing blocking and 
starving (blocking after service). 

In this paper, it is assume that the production line as 
short, reliable and is unbalanced with unlimited supply of 
jobs in the first machine (the machine will never been 
starved) and unlimited space after the final machine (the 
machine will never be blocked). Jobs received service at 
each machine with the service times being independently 
random variables following the exponential distribution 
with rate 𝜇𝑖, for 𝑖 = 0,1,… , 𝑞. With the model given 
previously, the objective is to maximize the mean 
production rate, subject to a given total buffer spaces 
(slots). In mathematical notation, this BAP can be stated 
as follows: 
 

max𝑃(𝐵) 

𝑠. 𝑡. 𝐵𝑖

𝑞

𝑖=1

= 𝑄 

𝐵𝑖 ≥ 0 𝑖 = 1,2,… , 𝑞

 

 
where, 𝑃(𝐵) is the production rate of the 𝑞 + 1 machine 

production line as a function of the buffer sizes vector 
(buffer profile); 𝐵 = (𝐵1  𝐵2  … 𝐵𝑞) is the buffer vector (to 

represent buffer profile), where 𝐵𝑖 as integer for all 𝑖 =
1, 2,… , 𝑞, and 𝑄 is a fixed nonnegative integer represents 
the available buffer spaces (slots) in the production line. 

Other works related to the BAP, among others are Lutz 
et al. (1998) has solved the BAP by determining buffer 
location and size in production lines using a simulation-
search heuristic procedure, which is based on tabu 
search, combined with simulation. Spinellis and 
Papadopoulos (2000) described a simulated annealing 
procedure for solving the BAP in reliable production lines, 
with the objective of maximizing the mean production 
line. Chaharsooghi and Nahavandi (2003) presented a 
heuristic algorithm to find the optimal allocation of buffers 
that maximizes mean production rate. Alon et al. (2005) 
presented a stochastic algorithm for solving the BAP, 
based on the cross-entropy method. Gershwin and Schor 
(2000) described the efficient approaches for determining 
how buffer spaces should be allocated in a flow line, with 
two types of problems; the primal and dual. Yuzukirmizia 
and Smithb (2008) proposed a new procedure to get a 
sub-optimal buffer profile for closed queuing networks 
with multiple servers and finite buffers. For more details 
about BAP js given in Alrefaei and Andradóttir (2005), 
Daskalaki and Smith (2004), Foley and Park (2002), Kim 
et al. (2002), Huang et al. (2002), Diamantidis and 
Papadopoloulos (2004), Roser et al. (2003), Malekian 
and Abdullah (2011) and Hedayati et al. (2011). 
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SELECTION APPROACHES WITH ORDINAL 
OPTIMIZATION 
 
Statistical selection approaches are used to identify the 
best of simulated design from a finite set of simulation 
alternatives, with the best simulated design is defined in 
terms of the maximum (minimum) expected value of each 
alternative. This paper considers the problem of selecting 
the best design from a finite and large set of alternatives, 
where the expected value of each alternative can be 
inferred by simulation. This problem has been considered 
by several authors; a comprehensive review is given in 
Fu et al. (2005) who have considered the case where the 
objective function values cannot be evaluated exactly, but 
has to be estimated using simulation and the problem is 
then called a simulation optimization problem. Such 
problem is described as 
 
max𝜃∈𝛩 𝐽(𝜃) (1) 
 
where 𝐽 𝜃 = 𝐸 𝐿(𝜃, 𝑌) , with 𝐽, the expected 
performance measure of some complex stochastic 
design, 𝛩 is an arbitrary feasible solution set, that finite 
and has no structure, 𝜃 is a vector representing the 
system design parameters, 𝑌 represents all the random 
effect of the design and 𝐿 is a deterministic function that 
depends on 𝜃 and 𝑌. When the feasible solution set 𝛩 is 
small, then Ranking and Selection (R&S) procedures can 
be used for ranking the designs and selecting a subset 
that contains the best designs with a pre specified 
significance level. Unfortunately, R&S procedures are not 
applicable for large scale problems because it needs a 
huge computational time. Therefore, to reduce the 
computational effort, the idea of ordinal optimization (OO) 
proposed by Ho et al. (1992) will be used. However, with 
some changes in the objectives were instead of looking 
for the best design, the focus will be on finding a good 
enough design. 
 
 
Ranking and selection 
 
Selecting a design with the largest or smallest expected 
performance is one of the major problems that arise 
during a simulation. When the number of alternatives 𝑛 is 
small, R&S procedures can be used to select the best 
design or a subset that contains the best design. There 
are two different R&S approaches; indifference-zone (IZ) 
and subset selection (SS). Suppose there are 𝑛 
alternative designs that are normally distributed with 
unknown means 𝜇1 , 𝜇2 , … , 𝜇𝑛  and suppose that these 
means are ordered as 𝜇[1], 𝜇[2], … , 𝜇[𝑛] and the objective is 

to locate the design that has the best maximum 
mean 𝜇[𝑛]. In IZ, the correct selection (𝐶𝑆) is achieved by 

selecting a design that is within 𝛿∗ from the best, where 
𝛿∗    is    the    indifference   zone,   with   a   pre-specified 
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significance level 𝑃∗, 𝑃∗ is the probability for the 𝐶𝑆. In 
mathematical notation, it is to select an alternative 𝑖∗ such 

that 𝜇𝑖∗ ∈   𝜇[𝑛] − 𝛿∗, 𝜇[𝑛] , and requires that 𝑃(𝐶𝑆) ≥ 𝑃∗ 

where 1/𝑛 ≤ 𝑃∗ ≤ 1. For this problem, Rinott (1978) has 
proposed a two stage approach when the variances are 
completely unknown, and to use the IZ procedure, the 
number of alternatives 𝑛 should be less than or equal 20.  

However, when the number of alternatives is relatively 
large, SS procedures can be used. In this procedure, a 
small subset of design that contains the actual best 
design will be selected, and it is required that 𝑃(𝐶𝑆) ≥ 𝑃∗ 

where 1/𝑛 ≤ 𝑃∗ ≤ 1. The SS approach dates back to 
Gupta (1965), who presented a single stage approach for 
producing a subset containing the best design with a 
specified probability. More details on the R&S 
approaches can be found in Bechhofer et al. (1995) and 
Kim and Nelson (2006a, b, 2007). 

In real world problems, the number of alternatives is 
very huge (e.g. engineering applications), so the R&S 
approaches cannot be used to select the best designs, 
due to a huge computational time. Nelson et al. (2001) 
proposed a combination between SS and IZ procedures 
to obtain a computationally and statistically efficient 
approach for selecting the best design when the number 
of alternatives is large with the unknown variances. This 
procedure consists of two stages; in the first stage, SS 
procedure screened out and eliminated alternatives that 
are not competitive. This is followed by selecting the best 
system from the competitive alternative systems in the 
second stage (IZ procedure). Kim and Nelson (2001) 
proposed a fully sequential procedure, to select the best 
design when the number of alternative designs is large. 
They showed that their procedure works well for up to n = 
500 design and it required unequal variances for all 
designs. Their procedure objective is to eliminate, at an 
early stage, those stochastic designs that are apparently 
inferior, in order to reduce the overall computational effort 
that required selecting the best system. Alrefaei and 
Almomani (2007) proposed two sequential algorithms for 
selecting a subset of k designs that is contained in the set 
of the top s designs. 
 
 
Ordinal optimization and optimal computing budget 
allocation 
 
The OO's goal is to isolate a subset of good designs with 
high probability and to reduce the required simulation 
time for discrete event simulation. The aim of this 
procedure, as proposed by Ho et al. (1992) is to find 
good designs, rather than to estimate the performance 
value of these designs accurately. Therefore, the OO 
procedure is used to select a subset that overlaps with 
the set of the actual best 𝑚% designs with high 
probability. 

Suppose the correct selection is to select a  subset 𝐺 of 

 
 
 
 
𝑔 designs from the feasible solution set 𝛩 that contains at 
least one of the top 𝑚% best designs. Since 𝛩 is very 
huge, then the probability of correct selection is given 

by 𝑃(𝐶𝑆) ≈  1 −  1 −
𝑚

100
 
𝑔

 . Furthermore, suppose that 

the correct selection is to select a subset 𝐺 of 𝑔 designs 

that contains at least 𝑟 of the best 𝑠 designs. If 𝑆 is 
assumed to be the subset that contains the actual best 𝑠 
designs, then the probability of correct selection can be 
obtained using the hyper geometric distribution 

as 𝑃 𝐶𝑆 = 𝑃  𝐺 ∩ 𝑆 ≥ 𝑟 =  
 
𝑠
𝑖
  

𝑛−𝑠
𝑔−𝑖

 

 
𝑛
𝑔 

𝑔
𝑖=𝑟 . Since the 

number of alternatives is very large then the 𝑃(𝐶𝑆) can 
be approximated by the binomial random variable, 

as 𝑃(𝐶𝑆) ≈   
𝑔
𝑖
  

𝑚

100
 
𝑖

 1 −
𝑚

100
 
𝑔−𝑖

𝑔
𝑖=𝑟 . More details of 

OO can be found in Deng and Ho (1999), Lee et al. 
(1999), Li et al. (2002), Zhao et al. (2005) and Ho et al. 
(2007). 

Meanwhile, the OCBA technique was proposed to 
improve the performance of OO procedure by 
determining the optimal numbers of simulation samples 
for each design, instead of equally simulating all designs. 
The technique is used to determine the best simulation 
lengths for all simulation designs to reduce the total 
computation time. The goal of OCBA is to allocate the 
total simulation samples from all designs in a way that 
maximizes the probability of selecting the best design 
within a given computing budget (Chen et al., 2000, 
1999; Banks, 1998). Let 𝐵 be the total sample that is 
available for solving the optimization problem given in (1). 
The target is to allocate these computed simulating 
samples to maximize the 𝑃(𝐶𝑆), written in mathematical 
notation as follows: 

 
max
𝑇1 ,…,𝑇𝑛

𝑃 𝐶𝑆  

𝑠. 𝑡. 𝑇𝑖

𝑛

𝑖=1

= 𝐵 

𝑇𝑖 ∈ ℕ 𝑖 = 1,2, … , 𝑛

 

 
where, ℕ is the set of non-negative integers, 𝑇𝑖  is the 
number of samples allocated to design 𝑖, and  𝑇𝑖

𝑛
𝑖=1  

denotes the total computational samples, and assume 
that the simulation times for different designs are roughly 
the same. To solve this problem, Chen et al. (2000) 
proposed the following theorem. 

 
 
Theorem 1 

 
Given a total number of simulated samples B to be 
allocated to n competing designs whose performance is 
depicted by random variables with means 
J θ1 , J θ2 ,… , J θn ,   and   finite   variances   σ1

2 ,σ2
2 , … ,σn

2 



 
 

 
 
 
 
respectively, as B → ∞, the approximate probability of 
correct selection can be asymptotically maximized when 

 

1. 
𝑇𝑖

𝑇𝑗
=  

𝜎𝑖/𝛿𝑏 ,𝑖

𝜎𝑗 /𝛿𝑏 ,𝑗
 ; where 𝑖, 𝑗 ∈ {1,2,… , 𝑛} and 𝑖 ≠ 𝑗 ≠ 𝑏. 

2. 𝑇𝑏 = 𝜎𝑏  
𝑇𝑖

2

𝜎𝑖
2

𝑛
𝑖=1,𝑖≠𝑏  

 
where δb,i is the estimated difference between the 

performance of the two designs (δb,i = Jb
 − Ji

 ), and 

Jb
 ≤ mini Ji

  for all i. Here Ji
 =

1

Ti
 Yij

Ti
j=1 , where Yij  is a 

sample from Yi for j = 1,… , Ti. 

 
 
ALGORITHM OF THE SELECTION APPROACH 

 
The selection approach as proposed by Almomani and 
Abdul Rahman (2012) includes a combination of OO, 
OCBA, SS and IZ procedures. Initially, using OO 
procedure, a subset 𝐺 is randomly selected from a 
feasible solution set that overlaps with the set that 
contains the actual best 𝑚% designs with high 
probability  1 − 𝛼1 . Then OCBA procedure is used to 
allocate the available computing budget. This is followed 
with SS procedure to get a smaller subset 𝐼 with 
probability as high as  1 − 𝛼2 , that contains the best 
design among the previous selected subset. Finally, IZ 
procedure is applied to select the best design from that 
set 𝐼 with high probability  1 − 𝛼3 . The algorithm of the 
selection approach is as follows:- 

 
1. Setup: Specify 𝑔 and 𝑘 where |𝐺| = 𝑔, and |𝐺 ′| = 𝑘. 
Consider the number of initial simulation samples 𝑡0 ≥ 2 
with the indifference zone 𝛿∗, and 𝑡 = 𝑡 1−𝛼2/2 1 𝑔−1 ,𝑡0−1 

from the t-distribution. Let 𝑇1
𝑙 = 𝑇2

𝑙 = ⋯ = 𝑇𝑔
𝑙 = 𝑡0, and 

determine the total computing budget 𝐵. Note that; 𝐺 is 
the selected subset from 𝛩, that satisfies 𝑃(𝐺 contains at 

least one of the best 𝑚% designs) ≥ 1 − 𝛼1, whereas 𝐺 ′ 
is the selected subset from 𝐺, where 𝑔 ≥  𝑘. Here the 
iteration number is represented as 𝑙.  

Select a subset 𝐺 of size 𝑔 randomly from 𝛩, and also 
take a random sample 𝑡0 of observations 𝑦𝑖𝑗   𝑗 = 1,… , 𝑡0  

for each design 𝑖 in 𝐺, where 𝑖 = 1,… , 𝑔. 

2. Initialization: Calculate the sample mean 𝑦 𝑖
(1) and 

variances 𝑠𝑖
2, where 𝑦 𝑖

(1) =
 𝑦𝑖𝑗

 𝑇𝑖
𝑙

𝑗=1

 𝑇𝑖
𝑙  and 𝑠𝑖

2 =

  𝑦𝑖𝑗−𝑦 𝑖
(1) 

2 𝑇𝑖
𝑙

𝑗=1

 𝑇𝑖
𝑙−1

, for all 𝑖 = 1,… , 𝑔. Order the designs in 𝐺 

according to their sample averages; 𝑦 [1]
(1) ≤ 𝑦 [2]

(1) ≤ ⋯ 

≤ 𝑦     
[𝑔]

(1)
. Then select the best 𝑘 designs (with the largest 

mean) from the set 𝐺, and represent this subset as 𝐺 ′. 

3. Stopping  rule:   If   𝑇𝑖
𝑙𝑔

𝑖=1 ≥ 𝐵,  then  stop.  Otherwise, 
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randomly select a subset 𝐺 ′′ of the 𝑔 − 𝑘 alternatives 

from 𝛩 − 𝐺 ′, let  𝐺 = 𝐺 ′ ∪ 𝐺 ′′ . 

4. Simulation budget allocation: Increase the computing 
budget by ∆ and compute the new budget 

allocation, 𝑇1
𝑙+1 , 𝑇2

𝑙+1 , … , 𝑇𝑔
𝑙+1 by using Theorem 1. 

Perform additional max⁡{0,  𝑇𝑖
𝑙+1 −  𝑇𝑖

𝑙} simulations for 
each design 𝑖, 𝑖 = 1, … , 𝑔, let 𝑙 ← 𝑙 + 1. Go to Initialization. 

5. Screening: Set 𝐼 = {𝑖: 1 ≤ 𝑖 ≤ 𝑘 and 𝑦 𝑖
(1) ≥ 𝑦 𝑗

(1) −

[𝑊𝑖𝑗 −  𝛿∗]+, ∀ 𝑖 ≠ 𝑗} where 𝑊𝑖𝑗 = 𝑡  
 𝑠𝑖

2

𝑇𝑖
+

 𝑠𝑗
2

𝑇𝑗
 

1/2

 for 

all 𝑖 ≠ 𝑗, and  𝑥 + =  𝑥 if 𝑥 > 0 and  𝑥 + =  0 otherwise. If 

𝐼 contains a single index, then this design is the best 
design. Otherwise, for all 𝑖 ∈ 𝐼, compute the second 

sample size 𝑁𝑖 = max⁡ 𝑇𝑖 ,   
 ℎ𝑠𝑖

 𝛿∗
 

2

   where ℎ = ℎ(1 −

𝛼3 , 𝑡0 , |𝐼|) be the Rinott (1978) constant and can be 
obtained from tables of Wilcox (1984). Take additional 
𝑁𝑖 − 𝑇𝑖  random samples of 𝑦𝑖𝑗  for each design 𝑖 ∈ 𝐼, and 

compute the overall sample means for 𝑖 ∈ 𝐼; 𝑦 𝑖
(2) =

 𝑦𝑖𝑗
𝑁𝑖
𝑗=1

𝑁𝑖
. Select design 𝑖 ∈ 𝐼 with the largest 𝑦 𝑖

(2) as the 

best. 
 
Nelson et al. (2001) have shown that with probability at 
least 1 −  𝛼2 + 𝛼3 , the selection approach will select the 
best design from the subset 𝐺. Therefore, if 𝐺 contains at 
least one of the top 𝑚% designs, then the selection 
approach selects a good design with probability 1 − (𝛼2 +
𝛼3). On the other hand, from the OO procedure, it shows 
that the selected set 𝐺 contains at least one of the best 

𝑚% designs with probability of  1 − 𝛼1 = 1 −  1 −
𝑚

100
 
𝑔

. 

Therefore, 𝑃(the selected design from the selection 

approach is in the top m% designs) ≥  1 −  1 −

𝑚100𝑔1−(𝛼2+𝛼3)≥1−1−𝑚100𝑔+ 𝛼2+𝛼3. 

 
 
NUMERICAL EXAMPLE 
 
Here, the specified BAP is solved by using Almomani and 
Abdul Rahman (2012) approach. A production line 
involving 𝑞 + 1 machines 𝑀0 ,𝑀1 , … ,𝑀𝑞, modeled as a 

single server queuing stations, with 𝑞 intermediate buffers 
𝐵1 , 𝐵2 , … , 𝐵𝑞  have been considered as shown in Figure 3. 

Assume that there are unlimited supply of jobs in front of 
machine  𝑀0 and unlimited space after machine 𝑀𝑞. Jobs 

receive service at each machine with the service times at 
machine 𝑀𝑖  are being independent and exponentially 
distributed with rate  𝜇𝑖, for all 𝑖 = 1,2,… , 𝑞. 

The blocking scheme have been considered as follows: 
When a job 𝑗 receives service at machine 𝑀𝑖−1, job 𝑗 
attempts to enter buffer 𝐵𝑖 . If the buffer  𝐵𝑖  is full, then job 
𝑗 will be forced to stay at machine  𝑀𝑖−1 until it finds a 

space   in   the   buffer   𝐵𝑖.   During   this  period  of  time, 
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Figure 3. A production line with q+1 machines, q buffers, unlimited supply jobs in front of machine  𝑀0, and unlimited room 

for all jobs departing from machine 𝑀𝑞 . 

 
 
 

Table 1. The implementation of the algorithm given the parameters 𝑛 = 3876, 𝑔 = 50, 𝑘 = 10, ∆= 30,𝑚% = 5%,  𝑡0 = 10, 𝐵 = 5000. 
 

Replication 

 
 

Best 
Bufered 
profile 

P(x) E(OC) 

1 95687 229462 3290 (6 2 4 2 1) 3.81454 0.12760 

2 98889 232659 3037 (5 2 6 1 1) 3.82115 0.12099 

3 107524 241294 2834 (4 6 2 3 0) 3.87345 0.06869 

4 106755 240530 3389 (7 0 0 7 1) 3.80967 0.13247 

5 117284 251055 3489 (7 2 5 1 0) 3.90003 0.04211 

6 96639 230410 3140 (5 6 3 1 0) 3.86599 0.07615 

7 108598 242366 2330 (3 3 4 4 1) 3.77622 0.16592 

8 110278 244041 3126 (5 5 5 0 0) 3.90624 0.03590 

9 103583 237350 3359 (6 5 3 0 1) 3.86138 0.08076 

10 101249 235020 1966 (2 6 4 3 0) 3.89896 0.04318 

 
 
 
machine  𝑀𝑖−1 is blocked and cannot start processing 
another job until job 𝑗 moves to the next machine. 

Assume that there are 𝑄 buffer spaces (slots) available 
that need to be allocated over the 𝑞 buffers in order to 
maximize the mean production rate. It can be shown that 

there are  
Q + q − 1

Q
  different designs for such systems. 

Here, buffers are allowed to have zero size. The interest 
would be in selecting a design that gives a maximum 
mean production rate. In other words, is tried to solve the 
following maximization problem: 

 
max
𝑥∈𝛩

𝑃(𝑥) 

 
where 𝑃 𝑥  is the production rate of the design, given that 

design 𝑥 is being used and 𝛩 is the set of all  
Q + q − 1

Q
  

possible designs (alternatives). Here, assume that the 
production line is a reliable line. 

The aforementioned BAP will be solved by using 
Almomani and Abdul Rahman (2012) selection approach 
with two different parameter settings. In the first setting, 
assume that there are 𝑄 = 15 buffer spaces to be 
allocated over 𝑞 = 5 buffers. Thus, there are  6  machines 

and 𝛩 contains 3876 different designs (|𝛩| = 𝑛 =3876), 
and assume that  𝜇0 =  𝜇1 =  𝜇2 =  𝜇3 = 5 and 𝜇4 =  𝜇5 =
10, which means that, the production line in this example 
is unbalanced line. Furthermore, size of set 𝐺 is 𝑔 = 50, 

size of set 𝐺 ′ is 𝑘 = 10, number of initial simulation 
samples 𝑡0 = 10, total computing budget 𝐵 = 5000, 
indifference zone 𝛿∗ = 0.05, increment in simulation 
samples ∆= 30 and 𝛼2  =  𝛼2  =  0.005. Suppose that the 
goal is selecting the design from the best 5% designs in 
the set 𝛩. Therefore, the correct selection here will be the 
selected design 𝑖∗ that belongs to set {𝑥1 , 𝑥2 ,… , 𝑥193 }, 
where 𝑥𝑖, 𝑖 = 1,2, … ,193 representing the top designs that 
have the maximum mean production rate in the set 𝛩. 
The analytical probability of correct selection is P(CS)  ≥

1 −   1 − 0.05 50 + 0.005 + 0.005 ≥ 0.91. Table 1 

contains the results of this experiment with 10 

replications, where  𝑇𝑖
𝑔
𝑖=1  is the total sample size used in 

stopping rule step in the algorithm of Almomani and 
Abdul Rahman (2012),  𝑁𝑖𝑖∈𝐼  is the total sample size 
used in screening step, “Best” means the index of the 
chosen design that is being considered as the best 
design, 𝑃(𝑥) is the production rate for each design and 
𝐸(𝑂𝐶) represents the expected opportunity cost of a 
potential incorrect selection (He et al., 2007).  The  𝐸(𝑂𝐶) 
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Table 2. The implementation of the algorithm given the parameters 𝑛 = 10626, 𝑔 = 100, 𝑘 = 20, ∆= 50,𝑚% = 3%,  𝑡0 = 10, 𝐵 = 10000. 
 

Replications 

  

Best Bufered profile P(x) E(OC) 

1 513313 813192 5487 (3 6 8 1 2) 4.04343 0.06410 

2 471731 771610 8795 (7 10 2 1 0) 4.02004 0.08749 

3 511493 811376 6515 (4 6 5 5 0) 4.03954 0.06799 

4 623511 923376 5553 (3 7 7 1 2) 4.03508 0.07245 

5 574317 874196 7506 (5 9 4 1 1) 3.99606 0.11147 

6 610636 910506 8628 (7 4 5 1 3) 4.00918 0.09835 

7 533611 833489 8119 (6 6 5 2 1) 4.06380 0.04373 

8 500361 800240 8064 (6 5 4 3 2) 4.06569 0.04184 

9 544412 844286 6353 (4 4 5 2 5) 4.02684 0.08069 

10 500882 800755 9171 (8 5 4 3 0) 4.03886 0.06867 

 
 
 
values are defined as the absolute difference between 
the mean production rate achieved by Almomani and 
Abdul Rahman (2012) approach and the maximum mean 
production rate. So, 𝐸(𝑂𝐶) = |𝑃(𝑥𝑏) − 𝑃(𝑥𝑖∗)|, where 𝑥𝑏  

is the best design and 𝑥𝑖∗ is the design selected by the 
Almomani and Abdul Rahman (2012) approach.  

From Table 1, note that, in the first replication, 
Almomani and Abdul Rahman (2012) algorithm selected 
the design numbered 3290 with buffer profile (6 2 4 2 1) 
and the estimated production rate is 3.81454. It means in 
this replication, the maximum production rate was 
achieved when the buffer spaces are allocated on the 
buffers as follows; the buffer spaces in  𝐵1 is 6, the buffer 
spaces in  𝐵2  is 2, the buffer spaces in  𝐵3  is 4, the buffer 
spaces in  𝐵4 is 2 and the buffer spaces in  𝐵5 is 1. For a 
comparison, we have simulated all the 3876 designs for a 
long simulation run and found that the best design is 
2816 with buffer profile (4 5 4 2 0) and the mean 
production rate is 3.94214. Clearly, the production rate 
for the selected design is very closed to the production 
rate for the best design. Note also that the 𝐸(𝑂𝐶) value in 
this replication is 0.12760 which is too small. Since, the 
selected design in the first replication belongs to the best 
5% designs from the set of 3876 designs, so it is consider 
as a correct selection. 

Using the same algorithm (Almomani and Abdul 
Rahman, 2012), the second settings have considered 
buffer spaces 𝑄 = 20, that is to be allocated over 𝑞 = 5 
buffers. Here, the set of all alternatives 𝛩 contains 10626 
different designs. The algorithm is applied with the other 
following parameters such as; 𝑛 = 10626, 𝑔 = 100, 𝑘 =
20,  𝑡0 = 10,𝐵 = 10000,  𝛿∗ = 0.05, ∆= 50 and 𝛼2  =  𝛼2  =
 0.005. Now, the goal is selecting the design from the best 
3% designs from set 𝛩. Therefore, the correct selection 
here is selecting design 𝑖∗ that belongs to the 
set {𝑥1 , 𝑥2 , … , 𝑥318 }, where 𝑥𝑖, 𝑖 = 1,2,… ,318 represents 

the top designs in the set 𝛩. The  analytical  probability  of 

correct selection is P(CS)  ≥ 1 −   1 − 0.03 100 + 0.005 +

0.005 ≥ 0.94. The results of the first 10 replications of 
this experiment are recorded in Table 2. All the 10626 
designs have been simulated for a long simulation runs 
and found that the best design is numbered 7394 with a 
buffer profile (5 6 6 2 1) with mean production rate been 
4.10753.  

The first replication in Table 2 shows that, Almomani 
and Abdul Rahman (2012) algorithm has selected the 
design numbered 5487 with buffer profile (3 6 8 1 2) with 

the estimated production rate been 4.04343. It means 
that the maximum production rate in this replication 
was achieved according to the following buffer spaces 
allocation: The buffer spaces in  𝐵1 is 3, the buffer 
spaces in  𝐵2  is 6, the buffer spaces in  𝐵3  is 8, the buffer 
spaces in  𝐵4 is 1 and the buffer spaces in  𝐵5 is 2. 
Clearly, it shows that the production rate for the selected 
design is closed to the production rate for the best 
design, and the 𝐸(𝑂𝐶) value in this replication is 0.06410 
which is small. However, the design that has been 
selected in the first replication does not belong to the best 
3% designs from the set of 10626 designs, so it was an 
incorrect selection. 

This two experiments are then repeated for 100 
replications, and the results are summarized in Table 

3, where  𝑇𝑖
𝑔
𝑖=1

          represents the average number of the 

total sample size in the “stopping rule”,  𝑁𝑖𝑖∈𝐼
          is the 

average number of the total sample size in “screening” 

and the 𝐸(𝑂𝐶)          is the average number of the𝐸(𝑂𝐶). 
Clearly, Almomani and Abdul Rahman (2012) approach 
selected the best buffer profile with high 𝑃(𝐶𝑆) and its 
value is close to the analytical values. In the same time, 
the number of simulation samples used are relatively 
small, and the 𝐸(𝑂𝐶) is small too. 

Figures 4 and 5 show the 𝐸(𝑂𝐶) for the selection 

approach when 𝑛 = 3876 and 𝑛 = 10626 respectively, for  
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Table 3. The performance of the selection algorithm over 100 replications. 
 

Number of 
buffers 

Buffer 
spaces 

𝒏  𝐓𝐢

𝐠

𝐢=𝟏

       

  𝐍𝐢

𝐢∈𝐈

        
 𝑬(𝑶𝑪)          

Approach 
P(CS) 

Analytical 
P(CS) 

5 15 3876 104845 238618 0.102443 0.86 0.91 

5 20 10626 533543 833271 0.0910697 0.81 0.94 

 
 
 

 
 

Figure 4. The 𝐸(𝑂𝐶) for the selection approach when 𝑛 = 3876, 𝑔 = 50,𝑚% = 5% over 100 replications. 

 
 
 

 
 

Figure 5. The 𝐸(𝑂𝐶) for the selection approach when 𝑛 = 10626, 𝑔 = 100,𝑚% = 3% over 100 replications. 



 
 

 
 
 
 
a 100 replication. It is clear that for both buffer spaces, 
the 𝐸(𝑂𝐶) values for the selection approach are small, 
showing that the estimated production rate for the 
selected designs by using the Almomani and Abdul 
Rahman (2012) approach is closed to the production rate 
for the best design. 
 
 
Conclusion 
 
In this paper, one of the most difficult problems in the 
performance modeling, which is the buffer allocation 
problem, was solved for a finite production line. The 
difficulty of this problem is due to the difficulty to find the 
exact value of the objective function and it involves a 
large number of alternatives. Using a selection approach 
proposed by Almomani and Abdul Rahman (2012), the 
problem of buffer allocation was solved. The main idea 
was to decrease the number of the competing 
alternatives by using the ordinal optimization method to 
make it appropriate for the cardinal optimization methods. 
The advantage of the selection approach is that, it can be 
used to select the best buffer profile from a huge number 
of alternatives. It consists of four stages. Initially, the OO 
procedure was used to select randomly a subset 𝐺 from a 
feasible solution set that overlaps with the set that 
contains the actual best 𝑚% designs with high 
probability. Then the OCBA procedure was used to 
allocate the available computing budget. This was 
followed by the SS procedure to get a smaller subset 𝐼 
with high probability, which contains the best design 
among the previous selected subset. Finally, the IZ 
procedure was applied to select the best design from that 
set 𝐼. Numerical illustrations have demonstrated that the 
selection algorithm finds optimal (near optimal) 
allocations in a short, unbalanced and reliable production 
lines. It also shown that the algorithm was capable to 
allocate a design with maximum mean production rate by 
using a relatively small simulation samples, and at the 
same time with a minimum expected opportunity cost and 
high probability of correct selection. 
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