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Attempts were made to quantify the buying and selling interaction of worldwide financial markets into
quantitative findings. We introduce a probability density derived from non-extensive Tsallis statistical
mechanics that can be applied to the interpretation of percent price index changes for important
indices such as NYSE Composite, DJIA, S&P 500, NASDAQ Composite, FTSE 100, NIKKEI 225, Hang
Seng, Straits Times and SET index. Results of applying Tsallis’ probability density through markets’
observation illustrated the behavior of all indices indicating super diffusive dynamics. Furthermore, an
Ilto-Langevin equation with a time-dependent diffusion coefficient and the nonlinear Fokker-Planck
equation can exhibit investment risk of each price index. Finally, we not only explained the complex
behavior of financial indices in Physics aspect, but simplified it into quantitative meanings able to be

virtually used further as well.
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INTRODUCTION

In financial market, most securities analysts’ association
consensuses analyze market data by using fundamental
statistics, qualitative information and experience making
their decisions without exactly understanding their
dynamics’ type in scientific meaning. Therefore, Physics
viewpoints are proposed in order to address this financial
market dynamics. This is a kind of application of new
interdisciplinary subject in the issue of Econophysics.
Though microscopic interactions among traders which
lead to behavior in financial markets are not easily
understood, there are recently many attempts describing
the behavior of market dynamics such as using agent-
based model (Amiri and Shirgahi, 2011) and time series
analysis (Kamarposhti, 2011). Ising-like model has been
a good candidate for describing this behavior for many
years (Chowdhury and Stau_erb, 1999; Bornholdt, 2001),
but until now, this method has not obviously been the
most satisfying model. The advent of non-extensive
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Tsallis statistical mechanics by means of maximizing the
Tsallis entropy (Tsallis, 1988) connected with the
essence of the nonlinear Fokker-Planck equation asso-
ciated with an underlying Ito-Langevin process (Plastino
and Plastino, 1995; Borland, 1998) can more specify the
type of diffusion and also be a good choice for taking into
account of this dynamics. Previous work related to this
statistics closely resembled markets’ observation
including currency exchange price changes (Mantegna
and Stanley, 2000), but their algorithms were not able to
compare among market indices and were used only well
in one hour price change (Michael and Johnson, 2003).
The purpose of this paper is to develop more accurate
microscopic interactive traders model based on
preceding daily 20 years data in important market indices
such as NYSE Composite, DJIA, S&P 500, NASDAQ
Composite, FTSE 100, NIKKEI 225, Hang Seng, Straits
Times and SET index (Yahoo Finance url:
http://finance.yahoo.com.) and compare market risk
altogether in at least unit of day. Moreover, investors and
others can instantaneously make a comparison of the
significant parameters in terms of the risk of investment
ina simple way before they can effectively make



investment decisions.

THEORY

Tsallis’ non-extensive statistical mechanics was chosen
because it could be used to interpret the interactions of a
complex system of financial market as follows.

Non-extensive statistical mechanics

Non-extensive Tsallis entropy is written in a different way
from statistical mechanics, but it can be proved to be

Boltzmann-Gibbs entropy (s:—jplnp) by taking limit
qg—1.
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We used constraints for this non-extensive entropy as
follows.
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We found that if g (Tsallis non-extensivity parameter is
independent of time) was equal to 1, the ‘g-variance’ was
the ordinary variance. Then, these constraints were
maximized by fixed g and got the Tsallis probability
distribution function.

I[x x( ]P(x t)'dx=0 (3)

) dx=o0, @)* (4)

1

Pn= {1+ﬁ(r)( )[x-x(0)]} )
where Z(t) is a normalization constant for each time.
1
(* 7—*)
- 24aq-1 6
20 ©
1
t)=—————
ﬂ) QOZI(Z‘)ZZ(I)LH (7)

TI0)

where B(x,y)=————= is Euler’s Beta function.
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The ordinary variance by using distribution of Equation 5
can be derived in Equation 8.

Vuttivorakulchai et al. 5851

1 a—

oy —<x x(t > I[x X ] t)dx= (S_M)ﬁ(t);q 3 (8)

5
oo (g >—
423
Fokker-Planck equation
aP(-x7t)ﬂ _ a u D azp(x,t)
Sl =[P () P () [+ 255 (©)
F(x)=a-bx (10)

F(x) is a linear drift force and D is diffusion constant.
Condition for solving Tsallis probability distribution

function is

g=l+u-v. (11)

We obtain the following 3 equations dependent of time.
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1 must be equal to 1 to preserve constraint in Equation 2
by comparing Equations 6 and 13. Then Equations 11 to
13 give
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Ito-Langevin equation
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where £(t) is 8-correlated Gaussian noise.
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Equation 16 can be proved to be equivalent to Equation
8 (Gardiner, 1997).
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Nonlinear Fokker-Planck equation for g =1 results from
Tsallis probability distribution function.
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It can be easily seen that
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Substituting Equations 20 and 21 into Equation 16, we
obtain Equation 22
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A theory has been proposed to model anomalous
diffusion when it is due to non-Gaussian statistics (Tsallis
and Bukman, 1996). This theory led to

a=— (23)

where « is dynamic exponent parameter.

This is the Tsallis relation. This quantifies a connection
between anomalous diffusion and non-Gaussian
statistics, predicting that a more highly non-Gaussian
system (largerg) will exhibit a greater degree of

anomalous diffusion (largerg). In other words, particle

random motion is predicted to be super diffusive if the
probability distribution function is a non-Gaussian
distribution with g >1(Bin et al., 2008). Due to Tsallis

relation, we characterized the diffusion types with the g-
values.

Considering the diffusion coefficient ( DP(x,1)""*), first,
this is anomalous diffusion correlated in time (memory
effects) except for ¢ = 1 that is Brownian motion or
normal diffusion. Second, if g is greater than 1, it is
apparently observed that this is super-diffusion and
makes the diffusion coefficient large in the next time
step. On the contrary, last, if gis less than 1, the value of
this equation tends to be small jump and that is sub-
diffusion.

METHODOLOGY

We applied theory into practice in aspect of behavioral financial market

indices. Day-to-day price indices were selected to analyze such as
NYSE Composite, DJIA, S&P 500, NASDAQ Composite, FTSE100,
NIKKEI 225, Hang Seng, Straits Times and SET index about 20 years
from September 1989 to January 2010 (randomly selected period of
time), approximately 5,000 days (T=1,2,...,5000).

Each price index is converted into the non-overlapping percent price
index change (x(j)) computed by
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where p(T) is price index at time T and ¢ is time interval. Fitting
(genetic algorithm method) a set of real market index data with
Equation 5 which was set an initial time interval (f) equal to 1 day, we

got an appropriate g parameter and S3(z,) (Figure 1A). Parameter b
and D were extracted from fitting a set of inverse variance data
( B(t) ) with that of its real data from time interval of 1-60 days (Figure

2). Then, Tsallis probability distribution function ( P(x,?)) from
Equation 5 was shown in Figure 1B to E by using the aforementioned
inverse variance data ( B(¢)) and g parameter. Differential Equation
14 was used in order to get a value of parameter a by fitting it with a
set of average data of the real percent price index changes increasing
with time interval (Figure 3). Diffusion coefficient ( DP(x, 1)) from

Equation 22 and from real market data were compared in Figure 4 as
well.

RESULTS AND DISCUSSION

There are 5 important parameters such as Tsallis
parameter (q), dynamic exponent parameter (),
parameters (a and b) from Equations 10 and 14, and
diffusion constant (D).

g is greater than 1, which leads to « greater than 1 as
shown in Table 1. That means all indices perform the
anomalous diffusion in superdiffusive type. In fact,
indices should be super-diffusion because the financial
market price indices are dependent on each people’s
decision and interaction among traders. In Figure 1A to
E, we depicted the distribution of percent price index
changes in each time interval.

It can be seen that the more the time interval
increases, the wider the percent price changes distri-
butions perform and the lower the highest point of this
distributions shows in all indices.

Parameters a and b from Equation 14 operate the
mean’s drift or the fluctuation of average percent price
index changes. The values of a and b shown in Table 1
indicate that both differ little from zero. Moreover, the
sign of parameter a and b determine the tendency of
mean percent price index changes. That is to say, a
positive sign of Equation 14 results in gradual increase in
the means of percent price index changes as shown in
Figure 3, and the opposite result occurs for a minus sign.
Diffusion constant in Equations 9 and 22 plays a
significant role in a time-dependent diffusion coefficient
(DP(x,1)'*) modeled by lto-Langevin process.

Therefore, percent price index change distributions
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Table 1. The values of essential parameters based on daily price from September 1989 to January 2010.

Parameter America Europe Asia
NYSE DJIA S&P 500 NASDAQ FTSE100 NIKKEI225 HANG SENG Straits times SET
q 1.69 1.60 1.68 1.66 1.40 1.53 1.73 1.59 1.56
a 1.53 1.43 1.52 1.49 1.25 1.36 1.57 1.42 1.39
a -0.025 -0.026 -0.022 -0.024 -0.015 0.048 -0.031 0.003 0.026
b 0.02 0.017 0.019 0.016 0.015 0.027 0.023 0.014 0.012
D 0.186 0.194 0.193 0.333 0.243 0.602 0.415 0.362 0.559
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Figure 1. Time evolution of percent price index change distributions only in SET index (A-D) Time interval of 1, 3, 5 and 7 days, respectively (E)
Summation of time evolution. The line represents Tsallis data. The star symbol represents the calculated results of real financial market index data.
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Figure 2. The inverse variance of percent price index changes. The line represents Tsallis data. The star symbol represents
the calculated results of real financial market index data.
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Figure 3. The averages of percent price index changes. The line represents Tsallis data. The star symbol represents
the calculated results of real financial market index data.
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Figure 4. Diffusion coefficient in SET index along with time evolution (time interval from 1 to 7 days). The line represents Tsallis data. The
star symbol represents the calculated results of real financial market index data.

depend only on the most recent probability of percent
price index changes due to a time-dependent diffusion
coefficient and lto-Langevin equation. We also show
time interval evolution of diffusion coefficient in Figure 4.
It obviously displayed that if time interval increases,
diffusion coefficient mostly decreases at the same
percent price index change data. We, however, also
found that the lowest diffusion coefficient which is nearly
zero percent price index change increases with time
interval evolution, that reasonably means the probability
to keep price index constant reduces with increasing time
interval. The diffusion coefficient can give the investment
risk information for investors and others as well. In this
case, the recent percent price index change can predict
the possibility of percent price index change for the next

time interval by using the Ito-Langevin process in
Equation 22. This result helps investors to make
decisions better whether they should invest in each
market.

We show how to use Tables 2 and 3 (some data shown
only two indices) to explain the tendency of percent price
index changes in a simple way which does not use the
Ito-Langevin process in Equation 22. Supposing the

recent percent price index change equals -3.33% in the
last 1 day time interval, then the diffusion coefficient
equals 6.20 in SET index. If DJIA price changes by -
3.33% in last 1 day time interval as well, the diffusion
coefficient is 4.28. It tells us that percent price index
change of SET index will fluctuate more than that of

DJIA index, which is proportional to the risk of
investment for the next 1 day time interval.

Conclusion

We can explain the behavior of financial market

dynamics interpreted by the non-extensive Tsallis
distributions connected with time evolution according to a
nonlinear Fokker-Plank equation underlying Ito-langevin
process with a time-dependent diffusion coefficient indi-
cating super-diffusion in all indices. Our results reflect on
the interaction among traders in diffusion coefficient term
according to the risk of investment that depends on the
previous step. We also simplify complicated theory into
easier interpretation for commoners by using data from
the diffusion coefficient table or the investment risk table.
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Table 2. Diffusion coefficient in SET index for each time interval and percent price change.

Diffusion Percent price change (%)
coefficient (SET)  -515 -455 -394 -3.33 -273 -212 -152 -091 -03 03 091 152 212 273 3.33 3.94 455 5.15
1 12.84 1031 810 6.20 4.62 335 240 1.76 1.44 143 1.73 236 329 454 6.11 799 102 127
2 8.45 6.97 567 456 3.63 288 232 194 174 173 191 227 281 353 444 554 6.82 8.28
Time 3 6.78 5.73 480 400 334 280 240 212 198 197 2.09 234 272 323 3.87 4.64 554 6.57
interval 4 5.94 5.11 439 376 324 283 2.51 229 218 217 225 245 274 313 3.63 422 492 572
(days) 5 5.46 4.78 418 367 324 289 263 244 235 233 240 256 279 3.11 352 4.00 457 523
6 5.16 4.58 407 363 326 296 274 258 250 248 254 267 287 3.14 3.48 3.89 437 492
7 4.97 4.46 402 363 3.31 305 285 271 263 262 266 277 294 317 347 3.82 424 472
Table 3. Diffusion coefficient in DJIA index for each time interval and percent price change.
Diffusion Percent price change (%)
coefficient [DJIA] -515 -4.55 -3.94 -3.33 -2.73 -212 -1.52 -091 -03 03 091 152 212 273 333 394 455 515
1 973 765 584 428 298 195 1.18 066 041 042 069 122 201 306 437 595 7.78 9.88
2 6.78 537 413 3.08 220 150 098 063 047 048 067 1.04 158 231 321 429 554 6.98
Time 3 529 422 328 248 182 129 090 064 052 053 068 097 139 194 264 347 443 553
interval 4 441 354 279 214 160 1.18 086 065 056 057 070 093 128 174 230 298 3.77 4.66
(days) 5 383 310 246 192 147 111 085 068 060 061 072 093 122 161 209 267 3.33 4.09
6 341 278 223 176 138 1.07 084 070 063 065 075 093 119 153 195 245 3.03 3.70
7 310 255 206 165 131 104 085 072 067 068 077 093 117 147 185 23 282 3.41
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