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In this paper, we consider the differential transform method (DTM) for finding approximate and exact 
solutions of some partial differential equations with variable coefficients. The efficiency of the 
considered method is illustrated by some examples. The results reveal that the proposed method is very 
effective and simple and can be applied for other linear and nonlinear problems in mathematical physics.  
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INTRODUCTION 
 
Up to now, more and more nonlinear equations were 
presented, which described the motion of the isolated 
waves, localized in a small part of space, in many fields 
such as hydrodynamic, plasma physics, nonlinear optic, 
and others. The investigation of exact solutions of these 
nonlinear equations is interesting and important. In the 
past several decades, many authors mainly had paid 
attention to study solutions of nonlinear equations by 
using various methods, such as Backlund transformation 
(Ablowitz and Clarkson, 1991; Coely, 2001), Darboux 
transformation (Wadati et al., 1975), inverse scattering 
method (Gardner et al., 1967), Hirota’s bilinear method 
(Hirota, 1971), the tanh method (Malfeit, 1992), the sine-
cosine method (Yan, 1996; Yan and Zhang, 2000), the 
homogeneous balance method (Wang, 1996; Yan and 
Zhang, 2001), and the Riccati expansion method with 
constant coefficients (Yan, 2001). Recently, an extended 
tanh–function method and symbolic computation are 
suggested in Fan (2001) for solving the new coupled 
modified KdV equations to obtain four kinds of soliton 
solutions. This method has some merits in contrast with 
the tanh-function method. It not only uses a simpler 
algorithm to produce  an  algebric  system,  but  also  can 
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pick up singular soliton solutions with no extra effort (Fan 
and Zhang, 1998; Hirota and Satsuma, 1981; Malfliet, 
1992; Satsuma and Hirota, 1982; Wu et al., 1999). The 
numerical solution of Burger’s equation is of great 
importance due to the equation’s application in the 
approximate theory of flow through a shock wave 
traveling in a viscous fluid (Cole, 1951) and in the 
Burger’s model of turbulence (Burgers, 1948). It is solved 
analytically for arbitrary initial conditions (Hopf, 1950). 
Finite element methods have been applied to fluid 
problems, Galerkin and Petrov-Galerkin finite element 
methods involving a time-dependent grid (Caldwell et al., 
1981; Herbst et al., 1982). Numerical solution using cubic 
spline global functions were developed in (Rubin and 
Graves, 1975) to obtain two systems or diagonally 
dominant equations which are solved to determine the 
evolution of the system. A collocation solution with cubic 
spline interpolation functions used to produce three 
coupled sets of equations for the dependent variable and 
its two first derivatives (Caldwell and Hinton, 1987). Ali et 
al (1992) applied finite element methods to the solution of 
Burger’s equation. The finite element approach is applied 
with collocation method over a constant grid of cubic 
spline element. Cubic spline had a resulting matrix 
system which is tri-diagonal and so solved by the 
Thomas algorithm. Soliman (2000) used the similarity 
reductions for the partial differential equations to  develop 



 
 
 
 
a scheme for solving the Burger’s equation. This scheme 
is based on similarity reductions of Burger’s equations on 
small sub-domain. The resulting similarity equation is 
integrated analytically. The analytical solution is then 
used to approximate the flux vector in Burger’s equation. 
The coupled system is derived by Esipov (1992). It is a 
simple model of sedimentation or evolution of scaled 
volume concentrations of two kinds of particles in fluid 
suspensions or colloids, under the effect of gravity (Nee 
and Duan, 1998). In this work, we aim to introduce a 
reliable technique in order to solve partial differential 
equations with variable coefficients. The technique is 
called differential transform method (DTM), which is 
based on Taylor series expansion. But, it differs from the 
traditional high order Taylor series method by the way of 
calculating coefficients. The technique and construct an 
analytical solution is in the form of a polynomial. The 
concept of differential transform was first introduced by 
Pukhov (1986), who solved linear and nonlinear initial 
value problems in electric circuit analysis. Chen and Ho 
(1999) developed this method for PDEs and obtained 
closed form series solutions for some linear and 
nonlinear initial value problems. Recently, Halim 
(Hassan, 2008) had shown that this method is applicable 
to a very wide range of PDEs and closed form solutions 
can be easily obtained. Halim (Hassan, 2008) has also 
been compared very well with Adomian decomposition 
method. The aim of this letter is to extend the DTM 
method proposed by (Pukhov, 1986; Chen and Ho, 1999; 
Hassan, 2008; Ali and Raslan, 2009) to solve partial 
differential equations with variable coefficients (Ali and 
Raslan, 2009). The structure of this paper is organized as 
follows: First, we begin with some basic definitions and 
the use of the proposed method, and we then applied the 
reduced differential transformation method to solve some 
test examples in order to show its ability and efficiency. 
 
 
METHODOLOGY  

 

To illustrate the basic idea of the DTM, we considered ),( txu is 
analytic and differentiated continuously in the domain of interest, 
then let  
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where the spectrum 
)(xUk is the transformed function, which is 

called T-function in brief. The differential inverse transform of 

)(xUk is defined as follows:  
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Combining (1) and (2), it can be obtained that 
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when 
)( 0t are taken as 

)0( 0 t
then Equation (3) is expressed 

as 
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and Equation (2) is shown as  
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In real application, the function 
),( txu

by a finite series of 
Equation (5) can be written as 
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usually, the values of n is decided by convergence of the series 
coefficients. The following theorems that can be deduced from 
Equation (3) and Equation (4) are given as:  

 
Theorem 1: If the original function is 

),,(),(),( txvtxwtxu 
then the transformed function is 

)()()( xVxWxU kkk 
. 

Theorem 2: If the original function is 
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then the transformed function is 
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Theorem 6: If the original function is 
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Theorem 7: If the original function is 
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then the 

transformed function is 
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Theorem 8: If the original function is 
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)()( xWxxU nk

m

k 
. 

Theorem 9: If the original function is 
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To illustrate the aforementioned theory, some examples of partial 
differential equations with variable coefficients are discussed in 
details and the obtained results are exactly the same which is found 
by varitional iteration method. 

 
 
APPLICATIONS 
 
Here, the extended differential transformation method 
(DTM) is used to find the solutions of the PDEs in one, 
two and three dimensions with variable coefficients, and 
compared with that obtained by other methods. 
 
 

Example 1 
 

Consider the one-dimensional heat equation with variable 
coefficients in the form  
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,                                            (7) 
 
and the initial condition 
 

2)0,( xxu 
,                                                              (8) 

 

where 
),( txuu 
is a function of the variables x and t . 

The exact solution of this problem is 
textxu 2),( 
. 

Then, by using the basic properties of the reduced 
differential transformation, we can find the transformed 
form of Equation (7) as; 
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using the initial condition, Equation (8), we have 
 

2

0 )( xxU 
.                                                           (10)  

 
Now, substituting Equation (10) into (9), we obtain the 
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)(xU k values successively 
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Finally the differential inverse transform of 
)(xUk gives: 
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Then, the exact solution is given as  
 

textxu 2),( 
                                                          (13) 

 
 
Example 2  

 
Consider the two-dimensional heat equation with variable 
coefficients as   
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where the initial condition is  
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Taking differential transform of Equation (14) and the 
initial condition Equation (15) respectively, 
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using the initial condition, Equation (15), we have 
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Now, substituting Equation (17) into (16), we obtain the  
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following 
),( yxU k  values successively
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Finally the differential inverse transform of 
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Then, the exact solution is given by  
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which is the exact solution of Equation (14) . 
 
 
Example 3 
 
Considering three-dimensional heat equation with 
variable coefficient as  
 

0)(
36

1
)( 2224  zzyyxxt uzuyuxxyzu

,      (21)  
 
and the initial condition 
 

0)0,,,( zyxu
.                                             (22) 

 
Taking differential transform of Equation (21) and the  
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Using the initial condition Equation (22), we have 
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Finally the differential inverse transform of 
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Then the exact solution is given by  
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Example 4 
 
Considering the one-dimensional wave equation with 
variable coefficient as  
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with an initial condition 
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Taking differential transform of Equation (29)  
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using the initial condition, Equation (30), we have 
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Now, substituting Equation (32) into (31), we obtain the 

following 
)(xU k  values successively  

 

 
 
 
 





, x
5040

1
)(, x

120

1
)(, x

6

1
 )(

,6,4,2,0 )(

2

7

2

5

2

3 



xUxUxU

kxU k

         (33) 
 

Finally the differential inverse transform of 
)(xU k gives: 
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Thus, the exact solution is given in the closed form as  
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Example 5 
 
Considering the two-dimensional wave equation with 
variable coefficient as 
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using the initial condition, Equation (37), we have 
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Now, substituting Equation (39) into (38), we obtain the 
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Hence, the exact solution is  

 

)sinh()cosh( x),,( 44 tyttyxu 
                 (42) 

 
 
Example 6 

 
Considering the three-dimensional wave equation with 
variable coefficient as  
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with the initial condition 
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Then, the exact solution is given in the closed form by  
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Example 7 
 
Considering the linear Klein-Gordon equation in the form  
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with an initial condition 
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substituting (53) into (52), we obtain the following 
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Finally the differential inverse transform of 
)(xU k  gives: 
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Then, the exact solution is given by  
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Example 8a 
 
Considering the nonlinear partial differential equation   
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using the initial condition Equation (59), we have 
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1

  ,                                                           (60) 
 
Now, substituting Equation (60) into Equation (61), we 

obtain the following 
)(xU k values successively 
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Finally the differential inverse transform of Uk(x) gives: 
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Then, the exact solution is given by  
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Example 8b 
 

Consider the nonlinear partial differential equation 
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with an initial condition 
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Taking differential transform of Equation (63) and the 
initial condition Equation (64) respectively, we have 
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using the initial condition Equation (64), we have 
 

U0(t) = t

1

  ,                                                              (66) 
 
Now, substituting Equation (66) into Equation (65), we 

obtain the following 
)(xU k values successively 
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Then, the exact solution is given by  
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Both operator yield distinct series which converge to the 
same solution. 
 
 

Conclusion 
 
The differential transform method has  been  successfully 



 
 
 
 
applied for solving partial differential  equations with 
variable coefficients. The solution obtained by differential 
transform method is an infinite power series for 
appropriate initial condition, which can in turn express the 
exact solutions in a closed form. The results show that 
the differential transform method is a powerful 
mathematical tool for solving partial differential equations 
with variable coefficients. The reliability of the differential 
transform method and the reduction in the size of 
computational domain give this method a wider 
applicability. Thus, we conclude that the proposed 
method can be extended to solve many PDEs with 
variable coefficients which arise in physical and 
engineering applications. 
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