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In this paper, a nonlinear control of an induction motor (IM) supplied with a photovoltaic generator to 
assure the level control of two coupled tanks is designed. The global system is decomposed into two 
separate models thus, coupled are assured by discontinuous command. In the first step, we propose a 
sliding mode technique to make the speed and the flux control of the IM robust to parameter variations. 
Then, the aim is to assure the stability of the system autonomously towards a desired state (water 
level), by varying the speed of the IM. The use of the nonlinear sliding mode method provides a very 
good performance for motor operation and robustness of the control law despite the external/internal 
perturbation. Simulation results are given to highlight the performance of the proposed control 
technique under load disturbances and parameter uncertainties. 
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INTRODUCTION 
 
The sliding mode controller is designed for a class of non 
linear dynamic systems to tackle the problems with model 
uncertainties, parameter fluctuations and external distur-
bances. By this design, the bounds of the uncertainties 
are not required to be known in advance. 

The variable structure control (VSC) possesses this 
robustness using the sliding mode control that can offer 
many good properties such as good performance against 
unmodelled dynamics, insensitivity to parameter varia-
tion, external disturbance rejection and fast dynamic 
(Utkin, 1977). These advantages of sliding mode control 
can be employed in the position and speed control of an 
alternative current system. 

In this paper, we begin with the IM oriented model in 

view of the vector control, next the rotor flux rΦ , is 

estimated. We, then, present the sliding mode theory and 
design the sliding mode controllers of rotor flux and motor 
speed. Finally, we provide some conclusion remarks on 
the control proposed of IM using sliding mode. 

The induction machine is largely used  in  industry,  mainly 
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due to its reliability and relatively low cost. The control of 
the induction machine (IM) must take into account 
machine specificities: the high order of the model, the 
nonlinear functioning as well as the coupling between the 
different variables of control. 

In the second stage, we are interested in the level 
control in the coupled tanks. Several researchers have 
investigated the problem of controlling liquid flow of a 
single or multiple tanks (Khan and Spurgeon, 2006; Pan 
et al., 2005). The speed variations of the IM carry the 
level regulation control, the relation between speed and 
the flow of pumped water is given by (Caro and Bonal, 
1997). 

 
 
PROCESS DESCRIPTION 

 
The increasing demand of water in rural zones and 
isolated sites made that a growing interest is done to the 
utilization of photovoltaic (PV) generator as energy 
source for several motor-pumps. In fact, the realization of 
autonomous, reliable pumping systems with a good 
efficiency, gives a practical and economical solution to 
the water lack problem in  desert  regions  (Dhafer  et  al.,  



 
 
 
 

 
 
Figure 1. Scheme of the global process.  

 
 
 

 
 
Figure 2. Diagram of the photovoltaic water-pumping system. 

 
 
 

2007). For this reason, we chose the system in (Figure 1) 
to study its feasibility in real case. 

The system under study is a combination of two 
subsystems. The PV-powered water pumping system 
investigated in this paper consists mainly of a PV 
generator, DC–AC converter, and induction motor-pump. 
The second subsystem is composed of two coupled 
tanks. 
 
 

DYNAMIC MODEL OF INDUCTION MOTOR 
 

The first part of the global system investigated in this 
article consists mainly of a photovoltaic generator (PV), a 
three phase inverter MLI, and an induction motor-pump. 
The scheme of the studied process is indicated in (Figure 
2). 

We suppose, the inverter behaves as a perfect 
transferring power organ. Similarly, the characteristic of 
the generator PV is supposed ideal that we can 
assimilate in a classic power source. The photovoltaic 
generator is characterized (at an illumination 

of
2

/1000 mW ), by an opened circuit voltage VVco 471= , 

an optimal operation point M (378 V; 2,27 A) and  

AI pH 47.2=  ,10143.8 6 AI s
−×=  VVT 5.37=  (Figure 3). 

Afterward, we use the equivalent model of a three-phase  
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Figure 3.  Simulation responses of the PV in closed loop. 

 
 
 

asynchronous motor in the Park transformation 
(Olorunfemi, 1991; Mimouni et al., 2004). 

So, an induction machine model can be described by 
the following state equations in the synchronous 
reference frame whose axis d is aligned with the rotor flux 
vector. 
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Where the electromagnetic torque is given in d-q frame: 
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Where rqrd ΦΦ ,  are rotor flux components, sqsd uu , are 

stator voltage components, qsds ii , are stator current 

components, δ  is leakage factor and p is number of pole 

pairs. sR and rR are stator and rotor resistances, 

sL and rL  denote stator and rotor inductances, whereas 

srM is mutual inductance. emC  is the electromagnetic 

torque, rC is the load torque, J is the moment of inertia of 

the Induction Motor, Ω  is mechanical speed, sω is stator 

pulsation, f is damping coefficient, Tr  is rotoric time-
constant.  
 
 
SLIDING MODE CONTROL DESIGN 
 
Consider a nonlinear system which can be represented 
by the following state space model in a canonical form 
(Slotine and Li, 1998): 
 

( )( ) ( )( ) ( )( ) ( )tduttxgttxftx
n ++= ,,

( ) ( )txty =                           (7) 

 

Where  ( ) ( ) ( )( )[ ]Tn
txtxtxx

1−= L&  is the state 

vector, ( )( )ttxf ,  and ( )( )ttxg ,  are nonlinear 

functions, u is the control input, d(t) is the external 
disturbances. 
The objective of the control is to determine a control law 
u(t) to force the system output y(t) in (7) to follow a given 

bounded reference signal ( )tyd , that is, the tracking 

error ( ) ( ) ( )tytyte d −=  and its forward shifted values, 

defined as: 
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The design of SMC involves two tasks. The first one is to 
select the switching hyperplane to prescribe the desired 
dynamic characteristics of the controlled system. The 
second one is to design the discontinuous control such 

that the system enters the sliding mode ( ) 0, =txs  and 

remains in it forever (Slotine and Li, 1998). 
In this paper, we use the sliding surface proposed par 

J.J. Slotine, 
 

( ) ( )te
dt

d
txs

n 1

,

−


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
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


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In which ( ) ( )txtxe d −= , λ  is a positive coefficient, and 

n is the system order. 

 
 
 
 

It remains to be shown that the control law can be 
constructed so that the sliding surface will be reached. 
The surfaces are chosen as functions of the error 
between the references input signal and the measured 
signals (Utkin, 1993). 

Then, a sliding hyperplane can be represented 

as ( ) 0, =txs . 

Consider a Lyapunov function: 
 

2

2

1
sV =                                      (10) 

 

From Lyapunov theorem we know that if V&  is negative 

definite, the system trajectory will be driven and attracted 
toward the sliding surface and remain sliding on it until 
the origin is reached asymptotically (Buhler, 1986). 
 

ssV && =                                      (11) 

 
The simplified 1

st 
order problem of keeping the scalar 

( )txs ,  at zero can be achieved by choosing the control 

law u(t). A sufficient condition for the stability of the 
system is 
 

ss
dt

d
η−≤2

2

1
                                    (12) 

 
Where η is a positive constant.  

 
The equation (12) is called reaching condition or sliding 
condition. s(t) verifying (12) is referred to as sliding 
surface, and the system’s behaviour once on the surface 
is called sliding mode. 

If the control input is so designed that the inequality 
(12) is satisfied, together with the properly chosen sliding 
hyperplan, the state will be driven toward the origin of the 
state space along the sliding hyperplane from any given 
initial state. This is the way of the SMC that guarantees 
asymptotic stability of the systems. 

The process of sliding mode control can be divided in 
two phases, that is, the approaching phase and the 
sliding phase. The sliding mode control law u(t) consists 

of two terms, equivalent term ( )tu
eq

, and switching term 

( )tu
s

. 

In the sliding phase, where ( ) 0, =txs  and ( ) 0, =txs&  

the equivalent term ( )tu
eq

 is designed to keep the 

system on the sliding surface. In the approaching phase, 

where ( ) 0, ≠txs  , the switching term ( )tu
s

 is designed 

to satisfy the reaching condition (12). While in sliding 
phase we have: 
 

( ) 0, =txs&                         (13) 



 
 
 
 
By solving the above equation formally for the control 
input, we obtain an expression for u called the equivalent 

control ( )tu
eq

, which can be interpreted as the 

continuous control law that would maintain ( ) 0, =txs&  if 

the dynamics were exactly known. 
In order to satisfy sliding conditions (12) and to despite 

uncertainties on the dynamic of the system, we add a 

discontinuous term across the surface ( ) 0, =txs , so the 

sliding mode control law u(t) has the following form: 
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Where K is the control gain. 
 

For a defined function ϕ  : 
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The controller described by the equation (14) presents 
high robustness, insensitive to parameter fluctuations and 
disturbances (Utkin, 1977; Slotine and Li, 1998; Utkin, 
1978; Khalil, 1992), but it will have high-frequency 
switching (chattering phenomena) near the sliding 
surface due to sgn function involved. These drastic 
changes of input can be avoided by introducing a 
boundary layer with width ε  (Slotine and Li, 1998; Khalil, 

1992). Thus replacing ( )( )tssgn  by ( )( )ε/tssat  in 

(14), we have 
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After this step, the objective is to determine a control law 
which drives the state trajectories along the surface. 
 
 
Speed control 
 
To control the speed of the induction machine, three 
surfaces are chosen. Variables of control are the rotation 

speed Ω  and the flux rdΦ . The flux will be maintained at 

its nominal value to have a maximal torque. 
We take n=1, the speed control manifold equations can 

be obtained as:   
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Substituting the expression of Ω&  equation (5) in equation 
(17 a), we obtain: 
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We take  
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During the sliding mode and in permanent regime, we 
have:  
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During the convergence mode, the condition 

( ) ( ) 0≤ΩΩ SS &  must be verified. We obtain:  
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Therefore, the correction factor is given by:  
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To verify the system stability condition, the parameter Ωk  

must be positive. 
 
 

Stator current control and limitation 
 

In order to limit all possible overshoot of the current qsi , 

we add a limiter of current defined by  
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Substituting the expression of qsi& Equation (2) in Equation  
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(18 b), we obtain:  
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The control voltage is  
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To verify the system stability condition, the parameter 

qsik must be positive. 

 
 
Flux control 
 
In the proposed control, we take n=2 to appear 
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dsu , the manifold equation can be obtained by: 
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To verify the system stability condition, the parameter 

rd
kΦ  must be positive. 

The selection of coefficients Ωk ,
qsik ,

rd
kΦ and λ  must be 

done in order to satisfy following requirements:  
 
Existence condition of the sliding mode, which requires 
that the state trajectories are directed toward the sliding 
manifold,  
Hitting condition, which requires that the system 
trajectories encounter the manifold sliding irrespective of  

 
 
 
 
their starting point in the state space (insure the rapidity 
of the convergence),  

Stability of the system trajectories on the sliding 
manifold, 

Not saturate the control to allow the application of the 
control discontinuous. 
 
 

DYNAMIC MODEL OF HYDRAULIC SYSTEM 
 

The second part of the global procedure is formed by a 
coupled tank, considered as a benchmark for the study 
and the analysis command of hydraulic systems. This 
device, allows to examine the law order in the liquid level 
reservoirs, while varying the debit from the variation of 
the speed of the pump. 

This process behaves two vertical tanks coupled by a 
flow canal, a manual valve used to change the canal 
section, in consequently, to change the characteristics of 
flow between the reservoirs (Figure 4). A level sensor is 
installed in the top of every reservoir. The relation 

between the speed of the IM Ω  and the entry debit of the 

second reservoir 2q : 

 

Ω= ... 212 pGaaq                        (20a) 

 
The second reservoir can be filled from the first reservoir 
by the intermediary of canal 1. While, the debit of the 
second reservoir towards the first is assured by canal 2. 
The equilibrated equation of the flow, for the first 
reservoir:  
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For the second reservoir: 
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Such as: 
 

111 2. ghsq =                      (20d) 
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With: 
 
h1: the level in the first tank 
h2: the level in the second tank, 
q1: the inlet flow rate, 
q2: the flow rate from Tank 1 - Tank 2, 
q12: the flow rate out of Tank 2, 
g: the gravitational constant, 
S: the cross-section area of Tank 1 and Tank 2, 



 
 
 
 

 

 
Induction motor-pump          Manual valve            Level Sensor 

 
 
Figure 4. Descriptive scheme of hydraulic system. 

 
 
 

s1, s2 the area of the coupling orifice, 
a1, a2 the coefficients of the manuals valve 1 and valve 2, 
a0 the offloads coefficient valve 3, 
Gp: the pump gain 
 
Finally, the hydraulic system is governed by the following 
non linear differential equation: 
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Ks: the level sensor gain. 
 
The centrifugal pump is also described by characteristic 
H(Q) given by (Caro and Bonal, 1997): 
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2
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Where b0, b1, b2 and X are constant parameters. Hp and 
Q are respectively the geometric head and the flow of 
pumped water. 

In the model of Figure 4, Ωmin being the minimal speed 
from which the pump starts to generate a pumped water 
flow. It is given by the following relation (Caro and Bonal, 
1997): 
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Three cases are possible: 
 

If  Ω < Ωmin   no flow rate is generated: 
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Q = 0                                                                      (20i) 
 

If  Ω  =Ωmin   the pump starting to pumped water:   
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If  Ω  > Ωmin the flow pumped water is given by: 
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MLI TENSION INVERTER 
 
The technique of the natural modulation permits to 
determine the moments and the durations of the switches 
lighting or extinction by comparison between the tension 
references and a triangular high frequency carry. The 
three-phase tensions (with MLI control) provided by the 
inverter (Figure 5) are given according to the states of the 
switches Tci and of the direct tension Uc by: 
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Where the logical function connexion Fc1 is defined as: 
Fc1 = 1 if the switch Tc1 is closed, Fc1= 0 if the switch Tc1 
is opened. 
 

The switch Tci { } { }( )2,1,3,2,1 ∈∈ ic  is supposed perfect. 

The simple inverter voltage can be presented by logical 
function connexion in matrix from as (Equation 21). 

The tension curve of the voltage inverter is given in 
(Figure 6).   
 
 

DESCRIPTION OF THE SYSTEM 
 
The bloc diagram of the proposed robust control scheme 
is presented in (Figure 7). The blocks SMC1, SMC2, 
SMC3, and SMC4 represent the proposed sliding mode 
controllers. To avoid the appearance of an inaccurate 
value of current, a saturation bloc is used. 

The rotor flux rΦ is estimated by the “flux rotor observer”. 

The block ‘IM’ represents the induction motor. 
We implement the previous sliding mode algorithms 
using a MATLAB/Simulink simulator. 
 
 

SIMULATION RESULTS 
 
In order to validate the control strategies as discussed 
above, we  have  studied  the  speed  performances  with 
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Figure 6. Input logical signals MLI for the switching frequency inverter. 

 
 

 
 
Figure 5. Voltage inverter. 

 
 
 

current limitation described in (Figure 7). The feedback 
control algorithms were iterated until best simulation 
results were obtained.  (Figure 9) shows the robustness 
tests in relation to inertia variations. (Figure 10) shows 
the robustness tests to the stator and rotor resistance 
variations. 

The speed and flux references are respectively (Figure 
8):  
 

rpmsrdref 960/100 ==Ω ,   wbr 6.00 =Φ  

In the second part of the global system, the bloc SMC4 
permits to find out the pursuit of the liquid level in the 
second tank (Figure 11). (Figure 12) shows the robust-
ness tests in relation to inertia variations (Figure 13) 
shows the robustness tests to the stator and rotor 
resistance variations.  
 

The SMC4 law (Figure 14) is given by: 
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'
K a positive constant  
 
 
Variation effect of rotor time constant 
 
The influence on variation rotor time constant is an important 
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Figure 7.  Block diagram of the proposed control scheme of IM   coupled in 
hydraulic system using the sliding mode controllers. 

 
 

  
 
Figure 8. Reference of speed, and rotor flux. 

 
 
parameter for studying the dynamic response and 
robustness of the controller, particularly for the system 
stability.  
Several research tasks (Jeon et al., 2002), showed that 
the performances of the control with (VSC) depend 
strongly on the accuracy with which the parameters of the  

 

 

 

 

Nominal case An increase of Inertia 2J 

 
 
Figure 9. System responses. 

 
 
 

motor are known exactly. Thus, for rated values of the 
command   currents.   The   simulation   of  mathematical  
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Nominal case An increase of resistances 1.5R
s
, 1.5R

r
 

 
 
Figure 10. System responses 

 
 

 
 
Figure 11. Reference level in the second tank. 

 
 
 

equations given by (23a) and (23b) are plotted in (Figure 
15). 
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Figure 12.  Real and desired output Hd2, case an increase of 
Inertia 2J. 

 
 

 
 
Figure 13.  Real and desired output Hd2, case an increase 
resistances 1.5R

s
, 1.5R

r. 

 
 

 

   
Figure 14. Command applied to the entry of the hydraulic 
system. 
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Figure 15. Curves of steady-state effect parameters for rate flux and torque currents command. 
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emC
*

 and  r
*φ  are respectively reference of the 

electromagnetic torque and the rotor flux. 
 
These curves show that the actual value of the rotor time 
constant is smaller than the predicted value 

when 1
*

<
r

r

T

T
. 

The identification method of rotor time constant is studied 
and simulated. 
 
 

CONCLUSION  
 

A sliding mode control method has been proposed and 
used for the control of an induction machine. It has 
shown the robustness of proposed control. The speed 
control operates with enough stability and has strong 
robustness to parameter variations. 

The control of two coupled tanks is assured by the 
speed variation. The performances of the controlled 
system are studied under variations in system 
parameters and in the presence of external disturbance. 
The simulation results indicate that the proposed control 
schemes work very well and are robust to change in the 
parameters of the system as well as to disturbances 
acting on the global system. 

Furthermore, this regulation presents a simple robust 
control algorithm that has the advantage to be easily 
implantable in calculator. 
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APPENDIX 
 

Motor parameters 
 

Nominal power output P = 750 W 
Nominal voltage: 220V 
Nominal current: 1.6 A 
Number of pole pairs: p = 2 
Rotoric resistance: Rr = 0.79 Ω 
Statoric resistance: Rs = 1.47 Ω 
Rotoric cyclic inductance Lr = 0.094 H 
Statoric cyclic inductance Ls = 0.105 H 
Mutual cyclic inductance Msr = 0.094 H 
Moment of inertia J = 0.00256 Kgm

2 

Friction coefficient f = 0.0029 Kgm
2
s

-1 

 

 

Pump parameters 
 
Geometric head Hp = 0.1 m 
b0 = 1.61 10-04 m s

2
 rd

-2 

b1 = 2.584 10-03 m s
2
 l

-1 
rd

-1 

b2 = -0.49 m l
2
 s

-2 

X = 0.98388 m s l
-1 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Coupled reservoirs  
 

The cross-section area of Tanks: S = 1.1310 m
2 

The area of the coupling orifices s1, s2    0.0079 m
2 

The coefficients of the manuals valves a1, a2, a0  ~ 1 
The pump gain Gp = 7.5 m

3
. s

-1
.v

-1 

The level sensor gain Ks = 24.5 v.m
-1 

The gravitational constant g = 9.8 m.s
-2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


