
International Journal of the Physical Sciences Vol. 7(34), pp. 5297-5303, 6 September, 2012
Available online at http://www.academicjournals.org/IJPS
DOI: 10.5897/IJPS12.246
ISSN 1992 - 1950 © 2012 Academic Journals

Full Length Research Paper

A multi-agent-based model for distributed system
processing

N. V. Blamah and A. O. Adewumi*

School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa.

Accepted 16 July, 2012

Distributed systems have several challenges related to large datasets and numerous communication
channels, and it is desirable to design systems that optimize the quality of services within the system
and improve throughput to come up with the optimal result. In this paper, we present a model for
multiagent system for distributed processing of tasks, where the processes continue to operate despite
network disconnection and incomplete data sources’ availability. The model provides a more reliable
and cost-effective means of distributed processing.

Key words: Multiagent system, mobile agent, distributed system, databases, agent-based modeling.

INTRODUCTION

The spread of computers and handheld devices have
brought the need to collaborate and cooperate among
users in different spheres of life. As we continue to
witness this trend, future networks will be dense and
heterogeneous such that centralized systems design will
be ineffective. This has made distributed and concurrent
systems the norm of computing, and has given birth to
different designs of distributed technologies where
theoretical models (Wooldridge, 2009) are designed to
portray computing as primarily a process of interaction.

Many businesses have come to rely totally upon the
essential information asset stored in their corporate
databases. If for any reason the information is not
available in a timely fashion, the operations may come to
a halt, and if it stays unavailable for a protracted period,
serious financial consequences may follow. They there-
fore query their systems frequently as their businesses
progress. Query processing is much more difficult in
distributed environment than in centralized environments
because a large number of parameters affect the perfor-
mance of distributed queries. The distributed systems of
enterprises are normally physically distributed across
many sites by fragmenting and replicating the data, and

*Corresponding author. E-mail: adewumia@ukzn.ac.za.

may interact with hundreds of other systems outside the
organizations. The systems select data from multiple
sites in a network and perform computations on multiple
CPUs to achieve a single result. It is therefore not un-
common for the communication requirements of the
components to become highly intensive, with the
consequences of overall poor systems performance.

It is quite evident that the performance of a distributed
system is critically dependent on the ability to optimally
device strategies that utilize available resources and
minimize the cost of communication, data movement, and
response time.

There have been several efforts (Blamah et al., 2008;
Reza et al., 2008; Alaa et al., 2005; Pan et al., 2002)
toward improving the quality of services provided within
distributed system. This work is one of such efforts,
where we present a model for multiagent system for
distributed processing of tasks.

MULTIAGENT SYSTEMS

Multiagent systems are systems composed of multiple
interacting computing elements, known as agents.
Agents are computer systems that are at least to some
extent capable of autonomous action – of deciding for
themselves what they need to do in order to satisfy their

5298 Int. J. Phys. Sci.

DB V

V1 V2

V1 = Π(r2 ⋈ r3)

V2 = Π(r4 ⋈ r5)

V= Π(V1 ⋈ V2 ⋈ r6 ⋈ r8)

Figure 1. Database showing view definitions in an agent-

based not self-maintainable re-computation materialized
view.

IS2 r4, r5 IS1 r1, r2, r3 IS3 r6, r7, r8

Figure 2. Relations from ISs in an agent-based not self-
maintainable re-computation materialized view.

design objectives. They are also capable of interacting
with other agents – not simply by exchanging data, but by
engaging in analogues of the kind of social activity that
we all engage in every day of our lives (cooperation,
coordination, negotiation, and the like) in an intelligible
manner. As an emerging sub-field of artificial intelligence,
it is concerned with interaction of agents to solve a
common problem (Wooldridge, 2002).

Agents are designed to be autonomous problem-
solvers, possibly communicating with other agents and
users, and are therefore equipped with sufficient cogni-
tive abilities to reason about a domain, make certain
types of decisions themselves, and perform the
associated actions. This paradigm has become more and
more important in many aspects of computer science by
introducing the issues of distributed intelligence and
interaction. They represent a new way of analyzing,
designing, and implementing complex software systems.
In multiagent systems, communication is the basis for
interactions and social organizations which enables the
agents to cooperate and coordinate their actions (Reza et
al., 2008; Taghezout et al., 2009).

We have a number of factors which point to the appro-
priateness of an agent-based approach, e.g., environ-
ments that are open, or at least highly dynamic,
uncertain, or complex; environments where the distribu-
tion of either data, control, or expertise means that a
centralized solution is extremely difficult or even
impossible. A typical example is distributed database
systems in which each database is under separate
control; they do not generally lend themselves to centra-
lized solutions (Wooldridge, 2002) – so they may be

conveniently modeled as multiagent systems, in which
each database is a semi-autonomous component.

Literature review

Liu (2002) proposed two different optimization strategies
which can greatly improve maintenance performance for
a set of source updates in dynamic databases. The first
strategy, the parallel maintainer, schedules multiple main-
tenance processes concurrently. The second strategy,
the batch maintainer, groups multiple source updates and
then maintains them within one maintenance process.
This work is based on the TxnWrap model (Chen and
Rundensteiner, 2000); the materialized views at the
database must be maintained in response to actual
relation updates in the remote sources. Many approaches
to view maintenances have been proposed in literature
(Liu et al., 2002; Liu, 2002; Connely and Begg, 2005;
Chen, 2005; Idika, 2005), which are based on the client-
server approach.

The real work of processing data and taking output
from databases depends largely on how it is managed.
Park et al. (2008) proposed a mobile agent platform for
supporting mobile ad-hoc networks. The proposed
algorithms provide agent service among mobile devices
and route packets between agents. The implementation
of the prototype of the algorithm was based on the
Bluetooth protocol. Taghezout et al. (2009) proposed the
integration of agents in a Cooperative Intelligent Decision
Support System. The resulting system is designed to
support operators during contingencies, where the ope-
rators will be able to gather information about the incident
location, access databases related to the incident,
activate predictive modeling programs, support analyses
of the operator, and monitor the progress of the situation
and action execution. The communication support enhan-
ced communication and coordination capabilities of
participants and a simple scenario was given to illustrate
the feasibility of the design.

This paper is an effort made towards designing a more
robust multiagent system for distributed processing of
tasks.

FORMULATION OF MODEL

Let us consider a case of remote database (DB) being
maintained by data from external information sources
(ISs). Let the auxiliary view V, and primary materialized
views V1 and V2 at the DB be defined by the relational
algebra as presented in Figure 1. We then consider the
remote relations on three different ISs as shown in Figure
2, which are the data sources for the views on DB.

Details of the relations within the remote ISs are
omitted here for simplicity. The information sources exist
as independent entities with no communication channels
provided amongst them, but each of them can

Blamah and Adewumi 5299

Step 2: Notify DB
Step 1:

Update r3

IS1

r1, r2,r3

IS3
r6, r7, r8

Step 4(a)': V1 = Π(r2 ⋈ r3)

Step 4(b)': V2 = Π(r4 ⋈ r5)

Step 5: V= Π(V1 ⋈ V2 ⋈ r6 ⋈ r8)

DB

V

V1 V2

Client

Step 3(a): SELECT r2; r3

Step 3(b):

SELECT r4; r5

Step 4(a): Return r2; r3

Step 4(b):

Return r4; r5 Step 3(c):

SELECT r6; r8

Step 4(c):

Return r6; r8

IS2
r4, r5

Figure 3. Database showing view updates in an agent-based not self-maintainable re-computation materialized view.

communicate with the DB.
If the views defined at the DB (V1, V2) and the remote

relations are not self-maintainable, then V is also not self-
maintainable. It means the DB has to send for queries to
the ISs during update. We use Figure 3 to describe the
update process; the solid line between the Client
computer and IS1 is an indication of network connection,
which may be based on the client-server system, while
the dashed lines are indications of network links, which
are connected only when communication is about to take
place.

If a Client application through an Update (static) Agent
UA, modifies relation r3 on IS1, for example, which is
equivalent to step 1, we have an Update (mobile) Agent
called UAI, which initially resides on the ISs (IS1 in this
case), which informs the DB of such an update in step 2,
and leaves the responsibility of doing the update to the
DB.

The remainder of the update process continues as
follows: The DB has the definition of all the views stored
at it, and it also knows the locations of the remote
relations. Since the process is re-computation, it means
the views have to be computed from scratch. Also, the
process is not self-maintainable, so the DB prepares the
second Update (mobile) Agent called UAII, which initially
resides on DB, connects to all the remote information
sources and dispatches UAII in steps 3 (a) – (c) to get the
update data, after which network is disengaged. These
steps are executed independently but concurrently. If, for
example, the DB is only able to connect to some ISs at a
point, it goes ahead to dispatch UAII to the connected ISs
so that UAII can start transactions on those systems.
Whenever the DB connects to the other ISs, UAII are
deployed independent of the previous ones and data is
processed separately. This means data from different ISs

can be processed at different periods, depending on the
loads on each IS, and also on the availability of network
connection between each IS and the DB. This is quite
different from the implementations that require all
information sources to be available at the same time and
network connection to be stable throughout the update
period.

Each IS that is done with data processing connects
back to the DB in steps 4(a) to (c) and returns the result
using UAII. These steps are executed in complete
isolation from one another. When any result reaches the
DB from an IS, the network between that IS and the DB
maybe disconnected.

Step 4(a)' at the DB will be waiting for only step 4(a) to
be executed, after which it executes to compute V1. Step
4(b)' will also wait for only step 4(b), after which it
executes to compute V2. Step 5 is computed only after
the execution of step 4(a)' (to produce V1), step 4(b)' (to
produce V2,), and step 4(c) (to produce r6 and r8); this is
because the definition of the primary view V in step 5
includes the results of steps 4(a)', 4(b)' and 4(c). The
whole update process is thus completed when the
primary materialized view V in step 5 is finally updated.

We define the environment (database) states where the
agents operate as:

E = .

The agents have series of operations and actions at their
disposals, which we represent by:

Ac = , where we assign:

α0 = Step 1: Update r3

 α1 = Step 2: Notify DB

5300 Int. J. Phys. Sci.

α2 = Step 3(a): SELECT r2; r3

 α5 = Step 3(b): SELECT r4; r5

α3 = Step 4(a): Return r2; r3

 α6 = Step 4(b): Return r4; r5

α4 = Step 4(a)': V1 = Π (r2 ⋈ r3)
 α7 = Step 4(b)': V2 = Π(r4 ⋈ r5)

α8 = Step 3(c): SELECT r6; r8

 α10 = Step 5: V= Π (V1 ⋈ V2 ⋈ r6 ⋈ r8)

α9 = Step 4(c): Return r6; r8

The set of actions is represented in the following
sequence so as to make the tasks disjointed and allow
the various agents to handle the respective transactions
independently:

 (1)

A run is defined as

Therefore using the database states and the defined
actions in equation (1), the runs will result to:

Therefore the set of runs is represented by

 (2)

A state transformer function for an update within the
above setting, which represents the behavior of the
environment as a result of an agent’s action, is modeled
as follows:

; that is:

The environment, which is a triple, is therefore defined as

 (3)

Where E is set of environment states is initial

state, and τ is state transformer function.
We define the model of an agent as:

;

The agents UA, UAI and UAII are therefore defined and
represented as:

UA= ;

UAI=

and

UAII=

The set of agent is represented as

 (4)

By the definitions of runs, environments and agents as
presented in equations (1), (2) and (3), the model of the
system is represented as a pair containing an agent ,

and environment , which is a set of possible runs

 (5)

SERVER DESIGN

We implemented the model of the system in equation (5) by desig-
ning servers, which are composed of a number of components.

Blamah and Adewumi 5301

SERVER

Place1

Agent

1c

Placen

Blackboard

Database Applications

Co
m

m
un

ica
to

r

Agent2 Agentn

Figure 4. Server design.

The generalized server design is depicted in Figure 4. Agents
execute within places on servers. The servers instantiate place(s)
in order to execute agents, and they must also instantiate commu-
nicator(s) to enable them communicate with other entities. A Server

provides blackboard where agents record information about their
next destinations so that they can be traced. The servers were
designed as simple class hierarchies and were installed and
configured on each computer node.

The experimental environment used comprised of a local area
network (LAN) with four computers; Table 1 outlines the specifi-
cations (and names) of each of the computers that was used to
conduct the experiments, while the LAN comprised of a 16-port D-
Link switch and UTP cat 5e cables in a star topology.

All the databases used for the purpose of the experiments were
implemented using MySQL Server 5, while the mobile agents and
all the relevant servers were implemented with the installed J2SE
platform.

Experiment goal

The goal of this experiment is to measure the time taken to com-
plete an update and see the effect of distorting network connections
during the not self-maintainable re-computation process based on
agent framework and compare the results with the none-agent
based client-server system using the same setting. This is aimed at
observing the reliability of the system.

Procedure

The experimental environment was set up to have the following
relations defined at the ISs:
IS1 = IS1 (r1: category; r2: order; r3: product)
IS2 = IS2 (r4: company; r5: orderDetails)
IS3 = IS3 (r6: Customer; r7: Time; r8: Sales)

Agent-based/Client-server based transactions

The procedures are the same, except steps 3 and 4:

1. Start the Java Remote Method Invocation Register (rmiregister)
on all the machines
2. Start the DB Server on the main database component and the
Remote Systems Server on the remote systems components

3. Agent: Trigger an update on IS1using UA, which is equivalent to
step 1 in Figure 3; UAI at IS1 is sent to inform the DB of such an
update in step 2, and leaves the responsibility of doing the update
to the DB.
Client-Server: Trigger an update on IS1 and make remote
invocations on the DB (from the IS) to notify the DB of such an
update, this also leaves the remaining activities to the DB.
4. The DB has the definition of all the views stored at it, and it also
knows the locations of the remote relations. Since the DB is not

self-maintainable and the process is re-computation, it means the
views had to be computed from scratch.
Agent based: Sent UAII to complete the update.
Client-Server based: Make Remote Invocation to complete the
remaining update.
5. Wait until update completes.

RESULTS AND DISCUSSION

Fifteen different sets of observations were made by
varying the number of tuples in the relations. In the
course of conducting the experiment, it was observed
that each time network connections were tampered with,
the client-server model aborted execution and sent
network error messages, and the process had to restart
from the beginning. The agent based design also
behaved in the same manner if the mobile agent was on
transit in the course of network distortion. But after
successful migrations of mobile agents, restarts were
never required in the midst of network distortions and
each of the ISs was independent of the others. This is
quite different from the pure client-server implementation
that required all information sources involved in the view
definitions to be available and network connection to be

5302 Int. J. Phys. Sci.

Table 1. Computer units specifications.

Computer

name
Type

Processor

speed (GHz)
HDD/RAM Operating system/databases/software/network analyzer

Comp1 PM 1.8
80GB/512M
B

Win XP SP2, MySQL Server 5, Java (J2SE 1.6 update 1),
Performance Logs and Alerts Network Analyzer,

OperationalSystemServer, DataAccessServer, Mobile Agents

Comp2 PIV 3.2
150 GB/1
GB

Win XP SP2, MySQL Server 5, Java (J2SE 1.6 update 1),

Performance Logs and Alerts Network Analyzer,

OperationalSystemServer, DataAccessServer, Mobile Agents

Comp3 PM 1.8
80 GB/ 512
MB

Win XP SP2, MySQL Server 5, Java (J2SE 1.6 update 1),

Performance Logs and Alerts Network Analyzer,

DatabaseServer, Mobile Agents

Comp4 PIV 3.2
150
GB/1GB

Win XP SP2, MySQL Server 5, Java (J2SE 1.6 update 1),

Performance Logs and Alerts Network Analyzer,

OperationalSystemServer, DataFactoryServer,Mobile Agents

Figure 5. Performance measurement using time.

stable throughout the update period.

In all the observations that were made for the timing,
when the update task was much, the agent design
outperformed the client-server system; this is because of
the high number of tuples involved, in which the effect of
network delay contributed much to the time on the client-
server system. The time required to complete updates as
the number of tuples decreased tended towards being
the same for the two designs, which was as a result of
the lesser tasks, which did not place much of the effect of
network slowdowns on the client-server model. This is
shown in Figure 5.

CONCLUSION

Multiagent systems are designed to be composed of
autonomous entities that solve problems, and they have
the abilities to reason and take decisions themselves. In
this paper, we present a multiagent based model for
distributed systems management, which facilitates more
robust systems operation. The system was designed as a
hybrid of static and mobile agents, and it enables
reduced requirement for network connectivity and
provides an opportunity for data to be processed offline.

This improves on the systems availability; components

that would otherwise be idle because of lack of network
connections would be utilized once the mobile agents
successfully migrate to those systems. The model for
multiagent system presented in this paper provides a
more reliable and cost-effective means of distributed
processing of tasks.

REFERENCES

Alaa A, Emad A, Mohammed O (2005). A Survey of Distributed Query
Optimization. Int. Arab J. Inf. Technol. 2(1):48-57.

Blamah NV, Wajiga GM, Baha BY, Mu’azu HG (2008). A Mobile Agent-

Based Data Warehouse Materialized View Maintenance. J. Institute
Math. Comput. Sci. (Computer Science Series), India 19(2):189-206

Chen J, Rundensteiner EA (2000). Txnwrap: A transactional approach

to data warehouse maintenance. Technical Report WPI-CS-TR-00-
26, Worcester Polytechnic Institute, UK.

Chen S (2005). Efficient Incremental View Maintenance for Data

Warehousing, PhD Dissertation Submitted to the Faculty of The
Worcester Polytechnic Institute, UK.

Connely T, Begg C (2005). Database Systems, a Practical Approach to

Design, Implementation and Management, 4th Edition, Addison
Wesley.

Idika O (2005). Data Mining and Data Warehousing. A Publication of the

Digital Bridge Institute, International Center for Advanced
Communication Studies, Abuja, Nigeria.

Liu B (2002).Optimization Strategies for Data Warehouse Maintenance

in Distributed Environments, MSc Thesis Submitted to the Faculty of
the Worcester Polytechnic Institute, UK.

Blamah and Adewumi 5303

Liu B, Chen S, Rundensteiner EA (2002). A Transactional Approach to

Parallel Data Warehouse Maintenance, A Publication of the
Worcester Polytechnic Institute, UK.

Pan L, Bic LF, Dillencourt MB, Lai MK (2002). Mobile Agents: The Right
Vehicle for Distributed Sequential Computing, HiPC '02 Proceedings
of the 9th International Conference on High Performance Computing

pp.575-586.
Park J, Youn H, Lee E (2008). A Mobile Agent Platform for Supporting

Ad-hoc Network Environment. Int. J. Grid Distributed Computing

pp.9-16
Reza G, Amin MF, Hamid T, Mahdi S (2008). Evolutionary Query

Optimization for Heterogeneous Distributed Database Systems.

World Acad. Sci. Eng. Technol. 19:43-49.
Taghezout N, Adla A, Zarate P (2009). A Multi-agent Framework for

Group Decision Support System: Application to a Boiler Combustion

Management System (GLZ). Int. J. Software Eng. Appl. 3(2):9-20.
Wooldridge M (2002). An Introduction to MultiAgent Systems. John

Wiley & Sons Ltd, Chichester, England.

Wooldridge M (2009). An Introduction to MultiAgent Systems.2
nd

 ed.,
John Wiley & Sons Ltd, Chichester, England.

