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In this article, a numerical model was obtained in a two dimensional flow pattern simulation around a 
groyne. The model approximates the depth-averaged, shallow water equations with a finite volume, 
semi-implicit and semi-Lagrangian representation. Runge-Kutta scheme was used for departure point 
determination. The results showed that numerical model has high stability and efficiency. Also, 
numerical representation has the ability to recognize land boundaries; therefore, closed boundaries do 
not need specification. The comparison between numerical formulation results and experimental 
results show that except in areas with strong downward flow, there are good agreements between 
experimental and calculated results. 
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INTRODUCTION 
 
In hydraulics and coastal engineering, groynes (Figure 1) 
are very important structures for river navigation and 
coastal protection. Many experimental and numerical 
researches have been done in order to examine flow 
pattern and scouring around groynes. These studies 
were carried out in different conditions in terms of groyne 
length, groyne installation angle towards the approaching 
flow, permeable or impermeable states, submerged and 
non-submerged states and number of groynes (Yeo et 
al., 2005), etc. Powerful software such as FLUENT, 
FLOW3D have been a great help to develop these 
simulations (Shahrokhi and Sarveram, 2011; Abbasi et 
al., 2011). Despite the large amount and variety of 
researches that have been carried out so far in this field, 
no comprehensive and well-organized response has 
been provided yet. However considerable differences can 
be seen between the research results. 

The groyne which is located at the river main flow, 
perpendicularly causes narrowing and deviation of the 
flow and this in turn gives a complex three dimensional 
form to flow around a groyne. As local scouring, sediment 
transport and settlement around groyne require  clarifying  
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the three-dimensional flow pattern. It is necessary to 
consider the flow pattern around a groyne, which is 
important and necessary to conduct experimental exami-
nations. However, for a full understanding of this flow 
pattern, one has to use numerical techniques. 

The first research in this field was carried out by 
Francis et al. (1968). They considered separation zone 
for various types of groyne in a rectangular flume, but 
they did not measure the flow velocities. Researches 
done by Rajaratnam and Nwachukwu (1983), however, 
contain velocity measurements in the flow field. Ettema 
and Muste (2004) examined the effect of groyne length 
on downstream separation region by considering the 
effect of scale. Researches by Yeo et al. (2005) also deal 
with an experimental examination of the downstream 
separation region of a groyne under various groyne 
lengths, various installation angles and various degrees 
of groyne permeability. 

Tingsanchali and Maheswaran (1990) used a two-
dimensional depth-averaged model, incorporating a 
correction factor used in the k–ε model and introducing a 
three-dimensional correction factor to improve the 
computed bottom stresses. Molls et al. (1995) also 
developed a general mathematic model to solve the 
unsteady two-dimensional depth averaged equations by 
combining it with  a   constant   eddy   viscosity   turbulent
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Figure 1. Schematic model of groyne-surrounding flow. 
 
 
 

model. A great deal of research has been carried out in 
recent years, especially by Chinese researchers such as 
Zhanfeng and Xiaofeng (2006), Quanhong and Pengzhi 
(2007) and Tang and Ding (2007). They studied the 
model and scouring around groyne by using various 
models of Turbulence under different conditions of flow 
and groyne dimension. 

Mathematical descriptions of fluid flow are divided into 
two groups: Eulerian and Lagrangian. Eulerian describes 
the flow within a single fixed reference frame, through 
which the fluid flows. The second description happens 
within the fluid, which is known as Lagrangian. Here the 
observer is moving with the fluid. 

In fact any numerical model which we make inevitably 
has limitations. One of these failures in flux based 
Eulerian scheme is the difficulty of achieving stable and 
accurate simulations with long time steps. For a fluid 
which moves across several cells in a single step with 
sufficiently long time steps, the flux transfers between 
cells becomes extremely difficult to show (Leonard, 
1993). In practice, schemes of this form are operated 
such that only flows between each cell and its immediate 
neighbors need to be considered during any single time-
step. If the scheme is explicit, this constraint becomes a 
necessary condition for stability. Lagrangian schemes 
operate with a far less severe restriction on the time-step 
length, especially where the flow is strongly advection 
dominated. For such flows, the Lagrangian forms of the 
evolution equations are more tractable numerically than 
the equations in Eulerian form. As a result, the time step 
can substantially increase beyond what would be 
acceptable for an Eulerian scheme, without detriment in 

either stability or accuracy. However, Lagrangian numerical  

schemes are still methods of approximation and as such  
subject to limitations of some kind or others. The basic 
particle–trajectory model invariably falls foul of the 
profusion of scales which are typical in any realistic fluid 
flow. An initially evenly distributed collection of particles 
may, with time, become broken up into clusters and 
voids. The consequence of this is a loss of model 
representation for the fluid as a whole. 

Semi-Lagrangian methods attempts to retain the 
desirable properties of the two descriptions by avoiding 
their less desirable failures and by integrating along 
particle trajectories while, evaluating target functions at 
mesh points at every time step. For a review on primary 
semi-Lagrangian schemes and related issues see 
Staiforth and Cote (1991). 

This paper is organized as follows: first, the governing 
equations (shallow water equations) are presented; 
second, presents the numerical formulation of the 
purposed model; and finally, the results of the numerical 
applications for two-dimensional cases of flow pattern 
around a groyne were obtained. 

 
 
GOVERNING EQUATIONS 

 
The governing equations are the depth-averaged, 
shallow water equations. These equations assume a 
hydrostatic pressure distribution, a well mixed water 
column, and a small depth to width ratio. 
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Where U is the depth-averaged in x-direction velocity 
component, V is the depth averaged y-direction velocity 
component, η is the free surface elevation, g is the 
gravitational constant, t is time, ε is the horizontal eddy 
viscosity coefficient, H is the total water depth, h is 
undisturbed water depth, n is Manning’s roughness 

coefficient, as shown in the Figure 2, hH  . 

 
 
NUMERICAL MODELING 
 
As shown in Figure 2, free surface elevation, η, is defined 
at the center of each computational volume. Total water 
depth, H, and directional velocity components, U and V, 
are defined at the midpoint of volume faces. Undisturbed 
water depth, h, is also defined at the midpoint of volume 
faces. The finite volume structure provides a control 
volume representation that is inherently mass con-
servative (Clive, 1991). 

The combination of a semi-implicit free surface solution 
and a semi-Lagrangian representation of advection, 
provide advantages of a stable solution. In the semi-
implicit process, the free surface elevation in the 
momentum equations (that is, Equations 1 and 2), and 
the velocity divergence in the continuity Equation 3, is 
treated implicitly. The advective terms in the momentum 
equations are  discretized  explicitly.  When  the  explicitly 
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Figure 2. Location and variable definition of flow 
on computational grid. 

 
 
 

discretized advection terms are represented with a semi-
Lagrangian approach, researches show that the Courant 
number stability condition on time step duration could be 
relaxed (Vicenzo, 1990). Additionally, Robert (1982) 
demonstrated that the association of a semi-Lagrangian 
treatment of advection and a semi-implicit representation 
of gravitational oscillations provides a six-fold increase in 
the maximum stable time step duration in atmospheric 
modeling. 

The continuity equation is discretized as follows: 
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Where (i, j) subscript is spatial location and the 
superscript, N or N+1, represents the temporal location, 
Δx and Δy represent the x and y direction volume lengths 
respectively, Δt is the computational time step duration, θ 
represents the degree of implicitness. Researches show 
that an implicit or semi-implicit free surface elevation 
solution provides enhanced stability (Robert, 1982; 
Vicenzo, 1990). 

The numerical approximations with conservation of 
momentum equations, give the following equations: 
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Where, the FU and FV terms are the semi-Lagrangian 
advection operators. A semi-Lagrangian advection 
method employs a Lagrangian algorithm across the 
underlying Eulerian model grid. The Lagrangian 
component of the scheme traces the path line of a 
particle which is initially located at the volume face, which 
is the velocity definition location from Figure 1. Going 
backwards   along   the   particle   path   lie    a    distance  
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corresponding to the simulation time step duration (Δt) 
obtained. The particle departure point is the location of 
the particle at the beginning of the current time step. 
Again,  this  location  is  obtained  by  tracing  the  particle 
 
 
 

 
 
 
 
backwards along the path line (Bermejo, 1990). The 
method is only semi-Lagrangian, and partially Eulerian, 
because the velocity value at the departure point is 
obtained by interpolation from the surrounding known 
velocity values defined on the Eulerian grid. 
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In Equation 7 and 8, the subscript sLbicubic denotes bicubic 
interpolation from the underlying Eulerian grid at the 
departure point. In the viscous terms, ε is the horizontal 
eddy viscosity which is set as a fixed value. The 
subscripts on the velocity terms in the viscous terms 
denote the location on the Eulerian grid relative to the 
departure point (i + 1/2 - a; j - b) in Equation 8, where a (a 
= U Δt/Δx), is the x-direction Courant number rounded 
down and b (b = V Δt/Δy), is the y-direction Courant 
number rounded down. 

In this article, fourth-order, four-step, explicit Runge-
Kutta schemes (Chunmiao and Bennett, 1995) have been 
used for departure point determination. In this method, 

the partial time step ( ) is calculated with Equation 12, 

which enforces the Courant number criterion. The four 
step method in Equations 9 and 10 provides the particle 
location at the end of each partial time step. Each of the 
velocity values in these equations are obtained with 
bilinear interpolation from the underlying Eulerian grid, 
and the subscript b on the time level denotes bilinear 
interpolation. After M partial time steps, the particle has 
been traced backwards along the path line to locate the 
departure point. Each partial time step will move the 
particle no farther than one computational volume 
backwards because of the Courant number restriction 
contained in Equation 12. 
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SOLUTION METHOD AND BOUNDARY CONDITIONS  
 
Equation 4 has three unknowns, η

N+1
, U

N+1
 and V

N+1
. 

Substituting U
N+1

 and V
N+1 

respectively into Equations 5 
and 6 would result to an equation which has only free 
surface elevations as the unknowns. Arranging the 
unknowns (N+1 terms) on the left side and the knowns (N 
terms) on the right side, provides the system of equations 
for free surface elevation. This system is penta-diagonal, 
positive definite and is solved with the preconditioned 
conjugate gradient method (Hestenes and Stiefel, 1952). 

One advantage of proposed method is a natural and 
elegant treatment of wetting and drying boundaries on 
the underlying Eulerian grid. The finite volume layout in 
Figure 1 portrays an individual volume with total water 
depth (H) and undisturbed water depth (h) located at the 
volume faces. The free surface elevation for each volume 
(η) is defined at the volume center. Employing this layout, 
the total water depth across the simulation domain at 
each time step is updated with Equations 13 and 14.  

The total water depth is the sum of the free surface 
elevation (ηi,j

N+1
 or ηi+1,j

N+1
) with the undisturbed water 

depth (hi+1/2,j). The model automatically calculates the 
water/land boundary (Martin and Gorelick, 2005). 
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Closed   boundaries  are  boundaries   that  do  not  allow
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Figure 3. Computational domain for simulation of Rajaratnam and Nwachukwu test case. 

 
 
 

water flow while open boundaries are simulation domain 
boundaries which water may flow across them. Closed 
boundaries do not need specification in the proposed 
model because Equations 13 and 14 will determine the 
closed boundary locations in the simulation domain. 
However, open boundaries must be specified. Dirichlet 
boundary conditions were applied to inflow and outflow 
open boundaries. 
 
 
VALIDATION OF PROPOSED MODEL 
 
Rajaratnam and Nwachukwu test case 
 
Rajaratnam and Nwachukwu (1983) conducted the 
experiments to study the characteristics of flow, near a 
thin plate groyne projected perpendicularly into a fully 
developed flow, in a long rectangular channel. The flume 
used in the experiments was 37 m long, 0.9 m wide and 
0.76 m deep with smooth bed and sides. The groyne was 
an aluminum plate with 3 mm thickness and 152 mm 
length and was projected partly above the water surface. 
The flow velocity and water depth were U0 = 0.253 m/s 
and H = 0.189 m, respectively. As shown in Figure 4, the 
resultant velocity profiles measured at y/l = 1.0, 1.5, 2.0, 
3.0 and 4.0, where l = 152 mm is the length of the 
groyne, plotted after it was normalized by U0 = 0.253 m/s 
and measured in upstream region. 

Also, Quanhong and Pengzhi (2007) used from this 
experimental data to validate their model. Governing 
equations of their model were shallow water equations 
and depth-averaged k-ε model as the turbulence model. 
The results of these researchers model, in comparison 
with proposed model results, are presented as follows. 

According to Quanhong and Pengzhi (2007) model 
shown in Figure 3, the computational domain is 6 m in 
length and 0.9 m in width. The upstream and downstream 
boundaries are located at 2 and 4 m away from the 
groyne respectively. Flow flux of 0.047817 m

2
/s and 

water depth of 0.189 m is specified at the upstream and 
downstream boundaries respectively. As suggested by 
Molls et al. (1995), the horizontal eddy viscosity 
coefficient (ε = 0.0012 m

2
/s) is adapted and assumed 

constant  to be throughout the entire flow field. Also, the 

Manning’s roughness coefficient, n = 0.01 s/m
1/3

 is 
assigned. 

As shown in Figure 4, the agreement between experi-
mental and computed results is satisfactory. The only 
major discrepancy occurs at y/b = 2, where the computed 
results under-predict the experimental data downstream 
of the groyne. This may be due to the very high velocity 
gradient arising in this region which makes the depth-
averaged model inapplicable. Conversely, the experi-
mental data may be erroneous in this region. 
 
 
Holz (1990) test case 
 
The laboratory experiments chosen for this section were 
conducted at the Franzius Institute, in Hannover, 
Germany. Velocity profiles were taken at 32.4 m long and 
2.5 m wide horizontal concrete flume in which a 0.25 m 
long and 0.05 m wide groyne was placed perpendicular 
to the main flow. The computational domain chosen for 
the numerical experiments is shown in Figure 5, with 
which 6 monitor points are also shown. In these points, 
the horizontal velocity components at five depths (free 
surface, 0.2, 0.4, 0.6, 0.8 depths) were measured (Holz, 
1990). The flow direction is from left to right and flow flux 
of 0.08 m

2
/s and water depth of 0.23 m is specified at the 

upstream and downstream boundaries respectively. Also, 
horizontal eddy viscosity coefficient and Manning’s 
roughness coefficient are like the previous test case.  

Since the governing equations in this study are depth-
averaged, shallow water equations, flow velocity of 0.6 
depths was selected as the average velocity. Toro and 
Gomez (1998) also validated their three dimensional 
numerical model using the previous experimental results. 
The proposed model and Toro and Gomez model results, 
predict the flow depth around the groyne, these are 
shown in Figure 6. This figure shows that there are good 
agreements between the two models results. 

Numerical tests performed show that, for uniform grid 
0.05 × 0.05 m, the time step of 0.05 s provides desirable 
results. While the time step of Toro and Gomez model is 
more than three times smaller than the proposed model. 
This result shows that the proposed model efficiency is 
higher than Toro and Gomez model. 
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Figure 4. Comparison between resultant velocity profiles (W) of proposed model, Quanhong and Pengzhi model and Rajaratnam and 
Nwachukwu experimental data; all the velocities are normalized by U0=0.253 m/s; x/l = 0 is the groyne position along flume direction. 

 
 
 

 
 

Figure 5. Computational domain and monitor points for Holz test case. 
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Figure 6. Free surface elevation contours for test case 1, proposed model (left) and Toro and Gomez 3D model (right). 
 
 
 

Table 1. The x and y velocity components (parallel to the channel walls and parallel to the dike axis, respectively) at the monitor points 
in the 60% flow depth from free surface. 
 

Point 

x velocity component (U)(m/s)  y velocity component (V)(m/s) 

Proposed 

Model 

Toro and Gomez 
3D model 

Experimental 
model 

 Proposed 

Model 

Toro and Gomez 
3D model 

Experimental 
model 

1 0.405 0.381 0.401  0.075 0.070 0.085 

2 0.311 0.270 0.377  0.154 0.094 0.206 

3 0.031 0.038 0.022  -0.003 -0.003 0 

4 -0.087 -0.077 -0.095  0.002 0 0.017 

5 0.166 0.176 0.150  -0.034 -0.025 -0.054 

6 -0.015 0.039 -0.024  -0.014 -0.005 -0.018 
 
 
 

Table 1 shows that at point 1 compared with 
point 2 which is farther from the groyne, both 
models have good agreement with experimental 
results. But at point 2, both numerical model 
results are not satisfactory. This aberration is due 

to the significant flow vertical component; however 
in shallow water equations it is negligible. 

In monitor points that were placed in the 
downstream separation region of groyne (points 3 
and 4) velocity components model have fairly 

good agreement with experimental results. Toro 
and Gomez model did not predict velocity com-
ponents correctly in the point 6, because their 
model calculates the separation length incorrectly. 
But the proposed model present separation length 
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Figure 7. Streamline and flow velocity distribution around a groyne for test case 2. 
 
 
 

(about 2.95 m) and velocity components properly. Also, 
Figure 7 shows streamline and flow velocity distribution 
around a groyne, which is obtained by the proposed 
model. 

To determine the model’s sensitivity towards Manning’s 
roughness coefficient (n) and horizontal eddy viscosity 
coefficient (ε), these terms were varied and the results 
were compared. A change in the horizontal eddy viscosity 
coefficient (ε) and Manning’s roughness coefficient (n) 
affected the final solution. An increase in each of the 
mentioned coefficients decreased the length of the 
recirculation zone, whereas decreasing these coefficients 
increased the recirculation length. Also, changing these 
coefficients affected the downstream velocities while the 
upstream velocities of the groyne remain relatively 
unaffected. 

Finally, numerical tests showed that in the degree of 
implicitness of θ = 0.5, the proposed model is unstable. 
Although, the degree of implicitness θ = 1 obtains good 
accuracy but degree of implicitness θ = 0.8 provides the 
best results in terms of accuracy, stability and compu-
tational efficiency. 
 
 

Conclusions 
 

In this research, by combining a semi-implicit free surface 
solution and a semi-Lagrangian representation of 
advection, a very stable method for solving the shallow 
water equations is presented. Being free to take longer 
time-steps, due to high stability, allows a given forecast 
time to be reached with fewer steps. Two benefits were 
obtained from this. First, since fewer steps are taken, it is 
possible to reduce the total operation count for the fore-
cast and a higher operational speed is gained. Secondly, 
by reducing the number of steps, the accumulated error 
may be reduced, therefore improves the forecast quality. 
Also, numerical representation has the ability to 
recognize land/water boundaries. Therefore, closed 
boundaries do not need specification. This capability 
especially    in   complex   geometries    can   simplify  the  

solution algorithm and reduce the computational cost. 
Numerical tests showed that the implicitness degree θ 

= 0.8, provides the best results in terms of accuracy, 
stability and computational efficiency. In order to validate 
the proposed model, the results that predict the flow 
pattern around the groyne, with numerical and experi-
mental results of other researchers were compared.  

The comparison between numerical formulation and 
experimental results showed that except in areas where 
strong downward flow is observed, there are good 
agreements between experimental and calculated 
results. Also, proposed model efficiency was higher than 
other presented numerical models.  
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