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This study has investigated the wave diffraction due to insular breakwater using analytical solutions 
based on the Fresnel integral and Polynomial approximation solution of Fresnel integrals, and 
numerical solutions of boundary element method (BEM) based on the boundary integral equation. 
When using the Fresnel integrals the mathematical equations and the boundary conditions became 
complicated, but when using the Polynomial approximation solution these things became less complex 
and were able to be expressed in more simple terms. Using the Polynomial approximation solution also 
allowed for a fast approach to going through a great deal of data. The BEM allowed for the 
simplification of input data, the reduction of memory usage and the allowance of measuring the 
physical quantity within the boundary. The results of wave diffraction derived from the three methods 
were compared through implementation of various calculation conditions and has been expressed 
through graphs and contours. This study aims to provide information on how to use the polynomial 
approximation solution and the BEM instead of the Fresnel integrals in many practical situations and 
also in regions or wave fields where a great amount of calculation time is required in order to figure out 
wave diffraction problems.  
 
Key words: Wave diffraction, insular breakwater, Fresnel integral, polynomial approximation solution, 
boundary element method. 

 
 
INTRODUCTION 
 
When constructing breakwaters in order to obtain 
stillness in harbors and fishery port, the investigation of 
the diffraction problem due to the breakwater still 
receives a large interest in the field of coastal and ocean 
engineering. With the basis of Sommerfeld’s (1886) wave 
diffraction theory, Penny and Price (1944, 1952) have 
presented the wave diffraction theory due to infinite 
breakwater. By the research of Blue and Johnson (1949), 
Johnson (1952), Weigel et al. (1962) and, Wiegel (1964), 
the wave diffraction due to gap type breakwater has been 
used widely in the field of coastal engineering. Also 
hailed as a method to consider the mild slope of water 
depth, the research of Pos and Kilner (1987) has used 
the mild slope equation based on the finite element 
method (FEM) to conduct numerical calculations. Hunt 
(1990) has used the first kind of Fredholm integral 
equation to calculate the  wave  interval  passing  through  
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the gap of the gap type breakwater. Dalrymple and Martin 
(1990) used the eigenvalue - expansion approach to 
study the diffraction problem due to in - line segments of 
break-waters. Abul-Azm and Willimas (1997) also used 
the eigenvalue - expansion approach to study the diffrac-
tion problem due to non-collinear segment of breakwaters. 
Wiliams and Crull (1993), and Wiliams et al. (1995) 
applied the boundary integral equation based on the 
Green function on diffraction problems. Also, Briggs et al. 
(1995) used a physical model in the wave basin to experi-
ment with the diffraction caused by infinite breakwaters. 
Besides these, the solution to wave diffraction can be 
solved through the Fourier series and the eigenvalue-
expansion approach, but these approaches take a long 
time calculating, and in complex harbors it is difficult to 
set boundary conditions. 

In order to overcome these obstacles this study has 
reviewed the polynomial approximations and has studied 
the diffraction problems of insular breakwaters. The 
Fresnel integrals that were an analytical solution that has 
been traditionally used  were  reviewed  under  the  same  



 
 
 
 
conditions as the former method, and the theories of both 
sides were compared. The efficiency of numerical calcu-
lation time of diffraction and the accuracy of both theories 
were investigated. Also the numerical analysis of the 
BEM was applied to insular breakwater and compared to 
the two analytical solutions. The results obtained herein 
by this study provide information on how the results of 
BEM approach the results of both analytical solutions 
such as the Fresnel integral and the polynomial approxi-
mation for the wave diffraction by insular breakwater. 
Excellent agreement exists for both analytical solutions. 
Regarding the diffraction wave height, in small areas the 
numerical results have a slightly lower height than those 
of the analytical results, however apart from these areas 
there has been good agreement between the BEM and 
the analytical solutions.  

To perform analytical and numerical calculations, first, 
insular breakwater needs to be displayed as an upright 
wall that is in a straight line. The length of the insular 
breakwater is designated as 1.0 and 4.0 L (L = wave-
length), the wave period is ranged at 10 seconds and the 
incident wave angle is 90° and 60°. The present study 
was investigated for four cases of conditions of 
calculations.  
 
 
THEORETICAL DEVELOPMENT 
 
Analytical solutions for wave diffraction due to insular 
breakwater 
 
The geometry of the problem is presented in Figure 1. In order to 
solve the problem of diffraction in insular breakwaters the theore-
tical calculation is performed. As shown in Figure 1, the left wave 
field of the breakwater is indicated as 1 and the right wave field is 
indicated as 2. Assuming that the fluid is inviscid, incompressible, 
and the flow irrotational, then the fluid motion in each of the fluid 
regions may be described in terms of velocity potentials 

tikezhkyx ωψ )(cosh),( +=Φ  and wave elevation 
tikeyx ωψς ),(= . The velocity potential satisfy the Laplace 

equation, and then the Helmholtz equation may be written as; 
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Equation (1) can be expressed by polar coordinate (r, �) as 
Equation (2) 
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The boundary conditions on the free-surface and sea-bed can be 
expressed in the following form,  
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Where; g is the acceleration due to gravity. The flow perpendicular 
to the side of the wall is zero at the boundary surface adjoined to 
breakwater. Taking equation (2) by two kinds of conditions, the 
solution of diffraction by insular breakwater can be can be written,  
 

{ } { }πεθπεθ σθψ 2)icos(2)i-cos( )()(),( −Θ+−−Θ− += iikri
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ijiii egeufr

 (i and j=1,2)                                                                                  (5) 
 
Where; � is to modify the phase difference of the incident wave 
between the two wave fields of the breakwater, k is the wave 
number, and 
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When; uij and �ij are positive, which means the incident region is 
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When uij and �ij are negative, which means the diffracted region is; 
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Figure 1. Definition sketch of the inclined incident wave propagated to 
the insular breakwater. 
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Where; C (�ij), S (�ij) are Fresnel integrals, at this time �ij is uij or �ij, 
and can be defined as equation (11)  
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We can replace the Fresnel integrals by the polynomial 
approximations in the above equations. The diffraction analysis can 
be simplified by using the polynomial approximations of the Fresnel 
integrals.  
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or value of ijλ , that is where ∞≤≤ ijλ0 , and  
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Where the remainder for both equations is 002.0)( ≤ijλδ .  

If the real and imagined parts of function )( ijuf  and )( ijg σ may 

be expressed as ijV  and ijW  respectively, the following can be 

written as; 
  

ijijij iWVuf +=− )(  , ijijij iWVg +=− )( σ  (i and j=1,2)              (14)                        
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Diffraction coefficient of dijK  can be written as; 
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Numerical solutions for wave diffraction due to insular 
breakwater 
 
The boundary region is expressed as Ω  (insular breakwater 
boundary), and the length of the breakwater is expressed as B. The 
offshore structure is subject to a train of regular component waves 
of angular frequency ω  propagating at angle Θ  to the positive x-
axis. The wave diffraction due to insular breakwater using the 
boundary element method based on the Green’s second identity is 
obtained, and boundary of breakwater is divided by infinitesimal 
segment in Figure 1. The wave function ),( yxψ  in equation (1) 
can be written as: 
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Figure 2. Comparisons of diffraction coefficients at the vicinity of the breakwater for the length of breakwater B =1.0L 
and incident wave angle.  

 
 
Applying Green’s second identity to ),( yxSψ  over the fluid domain, 
the following integral equation can be expressed as: 
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Where; 
)1(

0H
 is the Hankel function of the first kind of order zero, 

),( yx  is the point of the fluid region, ),( ηξ  is the boundary point 

of breakwater, and 22 )()( ηξ −+−= yxR .  

 
The diffraction coefficient at the point of the fluid region ),( yx  can 
yield,  
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RESULTS AND DISCUSSION  
 
The numerical computational program has been deve-
loped to implement the above theories, which are the 
Fresnel integrals, the polynomial approximation of Fresnel 
integrals, and the boundary element method (BEM) using 
the Green function, for the regular wave diffraction due to 
insular breakwater. Numerical and analytical examples 
are presented to investigate the comparisons of three 
solutions (Fresnel integrals, polynomial approxi-mations, 
and BEM) for the diffraction due to insular breakwater   
with    different    length   of   breakwater   and    different 

incident wave angles. In this study, the condition of 
calculations are water depth at the vicinity of fluid region 
h = 10 m, wave period t = 10 s, incident wave angle �90=Θ  

and �60 , and the length of breakwater B=1.0L and B = 4.0 
L, respectively. Figure 2 presents the results for the 
diffraction coefficient obtained by the analytical solutions 
and numerical solutions, where the spatial variations of 
the diffraction coefficient   are illustrated along the four    
selected sections, A-A’, B-B’, C-C’, and D-D’ in the case 
of B = 1.0 L and �90=Θ . In all cases, excellent agree-
ment has been made between the Fresnel integrals and 
the polynomial approximations. When comparing the 
numerical solutions (BEM) to the analytical solutions, 
good agreement has been shown between the two 
solutions but at the center line (A-A’) and B-B’ line, 
diffraction coefficients by numerical solutions show to be 
slightly lower than the diffraction coefficients by analytical 
solutions. The reason behind this discrepancy is that in 
analytical solutions the boundaries are set in a straight 
line while in BEM the boundaries are divided into infini-
tesimal segments. As the diffraction coefficient moves 
away from the boundary elements (the part that is right 
behind the breakwater = x/L = 0.2~1.5) the two solutions 
fall into better agreement. 

Figure 3 presents the results for the diffraction coef-
ficient obtained by the analytical solutions and numerical 
solutions, where the spatial variations of the diffraction 
coefficient are illustrated along 7 selected sections, A-A’, 
B-B’, C-C’, D-D’, E-E’, F-F’, and G-G’ in the case of B = 1.0 
L and �60=Θ . In all cases, excellent agreement has been 
made between the Fresnel integrals  and  the  polynomial  
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Figure 3. Comparisons of diffraction coefficients at the vicinity of the breakwater for the length of breakwater B=1.0L and 
incident wave angle �60=Θ . 
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Figure 4. The wave diffraction contour plots for the length of breakwater B=1.0L and incident wave angle �90=Θ (a) analytical 
solutions, (b) numerical solutions. 

 
 
 
approximations. When comparing the numerical solutions 
(BEM) to the analytical solutions show good agreement, 
but at the B-B’ line and the C-C’ line (left side of 
breakwater) the diffraction coefficients by numerical 
solutions have slightly lower diffraction coefficients than 
those  of  the analytical solutions. This is due to the fewer  

wave mode numbers that were scattered by wave oblique 
wave propagation on insular breakwater in the case of 
BEM. From these analyses, we notice that the overall 
wave height distributions of the wave field may be found 
in the vicinity of the insular breakwater with a contour plot. 
Figure 4 presents the contours of the wave height ratios 
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Figure 5. The wave diffraction contour plots for the length of breakwater B=1.0L and incident wave angle 

�60=Θ (a) analytical solutions, (b) numerical solutions. 
 
 
 
due to wave diffraction by insular breakwater for the two 
cases described above in the case of B = 1.0L 
and �90=Θ . Overall the contour plot of the two solutions 
showed a similar pattern. However the analytical solu-
tions in Figure 4 (a) have more scattering and incident 
wave mode numbers than the numerical solutions in 
Figure 4 (b). This is because the numerical solutions 
have been approximated and thus the number of wave 
modes is shown to be fewer and the wave band has 
appeared as being wide. Figure 5 presents the contours 
of the wave height ratios due to wave diffraction by 
insular breakwater for the two cases described above in 
the case of B =1.0L and �60=Θ . It has a similar tendency 
as in the case of the normal incidence of wave angle, but 
at the left wave field of the breakwater, namely the 
incident wave region, the wave height distributions are 
smoothing   due  to  numerical  approximation.  Figures  6   

and 7 present three dimensional projection contours of 
the wave height ratios due to wave diffraction by insular 
breakwater for the two cases described above in  the  
case of B = 1.0L.  

Figure 8 presents the results for the diffraction 
coefficient obtained by the analytical solutions and the 
numerical solutions, where the spatial variations of the 
diffraction coefficient are illustrated along the four 
selected sections, A-A’, B-B’, C-C’, and D-D’ in the case 
of B=4.0L and �90=Θ . In all cases, excellent agreement 
has been made between the Fresnel integrals and the 
polynomial approximations. When comparing the 
numerical solutions (BEM) to the analytical solutions, 
good agreement has been shown between the two 
solutions, but at the center line (A-A’) the diffraction coef-
ficients by numerical solutions show to be slightly lower 
than the diffraction coefficients by analytical solutions in a  
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(a)  

(b)  
 
Figure 6. The wave diffraction (3D) for the length of breakwater B=1.0L and 
incident wave angle �90=Θ (a) analytical solutions, (b) numerical solutions. 

 
 
 

 (a)  (b) 

 

Figure 7. The wave diffraction (3D) for the length of breakwater B=1.0L and incident wave angle �60=Θ (a) analytical solutions, (b) numerical 
solutions. 
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Figure 8. Comparisons of diffraction coefficients at the vicinity of the breakwater for the length of breakwater B=4.0L and incident wave 
angle �90=Θ . 

 
 
 
long range. This is because the breakwater has become 
longer and the boundary element has subsequently 
increased. 

Figure 9 presents the results for the diffraction coef-
ficient obtained by the analytical solutions and numerical 
solutions, where the spatial variations of the diffraction 
coefficient are illustrated along 7 selected sections, A-A’, 
B-B’, C-C’, D-D’, E-E’, F-F’, and G-G’ in the case of B = 
4.0L and �60=Θ . When comparing the numerical solu-
tions (BEM) to the analytical solutions, good agreement 
has been shown between the two solutions, but at the 
center lines (A-A’) the diffraction coefficients by numerical 
solutions have slightly lower diffraction coefficients than 
those of the analytical solutions. This is because the 
center line  is  close  to  the  boundary  of  the breakwater.  

Figure 10 presents the contours of the wave height ratios 
due to wave diffraction by insular breakwater for the two 
cases described above in the case of B = 4.0L 
and �90=Θ . Overall the contour plot of the two solutions 
showed a similar pattern, and these patterns fell in higher 
alignment at 4.0L than at 1.0L. At 4.0L the wave 
bandwidth was narrower than at 1.0L. Figure 11 presents 
the contours of the wave height ratios due to wave 
diffraction by insular breakwater for the two cases 
described above in the case of B = 4.0L and �60=Θ . The 
numerical solutions have been approximated, therefore 
the number of wave modes has appeared as fewer, and 
the wave bandwidth is wider. Figure 12 and 13 present 
three dimensional projection contours of the wave height 
ratios due to wave  diffraction  by  insular  breakwater  for 
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Figure 9. Comparisons of diffraction coefficients at the vicinity of the breakwater for the length of breakwater B=4.0L and incident wave 
angle �60=Θ . 
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Figure 10. The wave diffraction contour plots for the length of breakwater B=4.0L and incident wave angle �90=Θ (a) analytical 
solutions, (b) numerical solutions. 

 
 
 
the two cases described above in the case of B = 4.0 L. 
The results of the analytical   solutions and the results of 
the numerical solutions  were  compared  using  the  root  

mean square (RMS) method. This method was used by 
Walsh (1992) and Briggs et al. (1995) and the equation is 
as follows, 
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Figure 11. The wave diffraction contour plots for the length of breakwater B = 4.0 L and incident wave angle �60=Θ (a) analytical 
solutions, (b) numerical solutions. 

 
 
 

(a)  (b)   
 
Figure 12. The wave diffraction (3D) for the length of breakwater B = 4.0 L and incident wave angle �90=Θ (a) analytical solutions, (b) 
numerical solutions. 
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Where; FresneldK )(  is the diffraction coefficient by 

Fresnel integrals, BEMdK )(  is the diffraction coefficient 

by boundary element method (BEM), PdK )(  is the 
diffraction coefficient by polynomial approximations and 
NP is the number of points investigated.  The  results  are  

listed in Table 1. In the case of comparing the Polynomial 
approximations to the Fresnel integrals, there was a 
difference that ranged from 0.09% to 0.2%, and this 
denotes an excellent agreement. In the case of the Nu-
merical solution (BEM) there was a difference that ranged 
from 5 - 11% and this expresses relative agreement. The 
CPU time of a computer that is used in numerical 
analysis is a very important element in the engineering 
field. There needs to be a lot of data researched in a 
large area and the ability to cope with the different 
environments of various situations. As shown in Table 2, 
this study has compared the computer processing time of 
the analytical solutions and the numerical solution. Using 
the polynomial approximations reduced the calculating 
time by a great amount from using the Fresnel integrals. 
In the case of the BEM time was reduced by 
approximately 45%. This shows that using either the 
polynomial approximations or the BEM allows for a vast 
reduction in the computer CPU time and can reduce the 
pressure on a computer’s CPU.  With  these  benefits  the 
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Figure 13. The wave diffraction (3D) for the length of breakwater B = 4.0 L and incident wave angle �90=Θ (a) analytical solutions, (b) 
numerical solutions. 
 
 
 

Table 1. RMS differences between the results of the analytical solutions and the numerical solutions. 

 
 
 
 

 

 
 
 

Table 2. Comparison of time taken to process data by each method. 
 

Type of breakwater 
Theory and time 

Insular breakwater with 1.0L  (s) 
Fresnel integrals 2.4 
Polynomial approximations 0.28 
Boundary Element Method 

The elapsed time 
(seconds) 

1.3 
 
 
 
wave field, where insular breakwaters are set up, can be 
divided into many boundary regions and the data from 
these many regions can be calculated accurately, 
allowing for effective investigation of wider coastal fields.  
 
 
Conclusion  
 
The numerical computational program has been 
developed to implement the diffraction theory, Fresnel 
integrals, polynomial approximation, and boundary 
element method (BEM) using the Green function, for the 
regular wave diffraction due to insular breakwater. In all 
cases, excellent agreement was made between the 
Fresnel integrals and polynomial approximations. When 
comparing the numerical solutions (BEM) to the analytical 
solutions, there was relatively good agreement although 
there was a slight difference in the area  right  behind  the  

breakwater. However this difference is due to the fact that  
the numerical solutions were approximated, whereby the 
number of wave modes appeared to be fewer and the 
wave bandwidth appeared wider. There was not a big 
difference in the RMS comparison among the three 
methods and this means that all three methods can be 
used in studying the diffraction of insular breakwaters.  
Also, by using the computer’s internal routine the calcula-
tion time of each method was observed. The Polynomial 
approximation solutions reduced the calculation time to 
an extraordinary rate and the BEM was also able to 
reduce the calculation time by 45%. This will not only 
allow for a reduction in time in calculating a lot of data in 
different field research areas but it will also provide a 
means for accurate diffraction calculations. The informa-
tion from this study can be applied to many different 
areas of coastal and ocean engineering and it is hoped 
that it will be used widely.  

Length of breakwater 
1.0 L 4.0 L Incident  wave angle 

BEM Polynomial BEM Polynomial 
90° 0.07 0.0009 0.06 0.0028 
60° 0.05 0.0012 0.11 0.0020 
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